1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
/******************************************************************************
* Top contributors (to current version):
* Aina Niemetz, Daniel Larraz
*
* This file is part of the cvc5 project.
*
* Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
* in the top-level source directory and their institutional affiliations.
* All rights reserved. See the file COPYING in the top-level source
* directory for licensing information.
* ****************************************************************************
*
* A simple demonstration of the API capabilities of cvc5.
*
*/
#include <cvc5/c/cvc5.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
int32_t gcd(int32_t a, int32_t b)
{
int32_t remainder = a % b;
if (remainder == 0)
{
return b;
}
return gcd(b, remainder);
}
int main()
{
// Create a term manager
//! [docs-c-quickstart-0 start]
Cvc5TermManager* tm = cvc5_term_manager_new();
//! [docs-c-quickstart-0 end]
// Create a solver
//! [docs-c-quickstart-1 start]
Cvc5* slv = cvc5_new(tm);
//! [docs-c-quickstart-1 end]
// We will ask the solver to produce models and unsat cores,
// hence these options should be turned on.
//! [docs-c-quickstart-2 start]
cvc5_set_option(slv, "produce-models", "true");
cvc5_set_option(slv, "produce-unsat-cores", "true");
//! [docs-c-quickstart-2 end]
// The simplest way to set a logic for the solver is to choose "ALL".
// This enables all logics in the solver.
// Alternatively, "QF_ALL" enables all logics without quantifiers.
// To optimize the solver's behavior for a more specific logic,
// use the logic name, e.g. "QF_BV" or "QF_AUFBV".
// Set the logic
//! [docs-c-quickstart-3 start]
cvc5_set_logic(slv, "ALL");
//! [docs-c-quickstart-3 end]
// In this example, we will define constraints over reals and integers.
// Hence, we first obtain the corresponding sorts.
//! [docs-c-quickstart-4 start]
Cvc5Sort real_sort = cvc5_get_real_sort(tm);
Cvc5Sort int_sort = cvc5_get_integer_sort(tm);
//! [docs-c-quickstart-4 end]
// x and y will be real variables, while a and b will be integer variables.
// Formally, their cpp type is Term,
// and they are called "constants" in SMT jargon:
//! [docs-c-quickstart-5 start]
Cvc5Term x = cvc5_mk_const(tm, real_sort, "x");
Cvc5Term y = cvc5_mk_const(tm, real_sort, "y");
Cvc5Term a = cvc5_mk_const(tm, int_sort, "a");
Cvc5Term b = cvc5_mk_const(tm, int_sort, "b");
//! [docs-c-quickstart-5 end]
// Our constraints regarding x and y will be:
//
// (1) 0 < x
// (2) 0 < y
// (3) x + y < 1
// (4) x <= y
//
//! [docs-c-quickstart-6 start]
// Formally, constraints are also terms. Their sort is Boolean.
// We will construct these constraints gradually,
// by defining each of their components.
// We start with the constant numerals 0 and 1:
Cvc5Term zero = cvc5_mk_real_int64(tm, 0);
Cvc5Term one = cvc5_mk_real_int64(tm, 1);
// Next, we construct the term x + y
Cvc5Term args2[2] = {x, y};
Cvc5Term x_plus_y = cvc5_mk_term(tm, CVC5_KIND_ADD, 2, args2);
// Now we can define the constraints.
// They use the operators +, <=, and <.
// In the API, these are denoted by ADD, LEQ, and LT.
// A list of available operators is available in:
// src/api/cpp/cvc5_kind.h
args2[0] = zero;
args2[1] = x;
Cvc5Term constraint1 = cvc5_mk_term(tm, CVC5_KIND_LT, 2, args2);
args2[1] = y;
Cvc5Term constraint2 = cvc5_mk_term(tm, CVC5_KIND_LT, 2, args2);
args2[0] = x_plus_y;
args2[1] = one;
Cvc5Term constraint3 = cvc5_mk_term(tm, CVC5_KIND_LT, 2, args2);
args2[0] = x;
args2[1] = y;
Cvc5Term constraint4 = cvc5_mk_term(tm, CVC5_KIND_LEQ, 2, args2);
// Now we assert the constraints to the solver.
cvc5_assert_formula(slv, constraint1);
cvc5_assert_formula(slv, constraint2);
cvc5_assert_formula(slv, constraint3);
cvc5_assert_formula(slv, constraint4);
//! [docs-c-quickstart-6 end]
// Check if the formula is satisfiable, that is,
// are there real values for x and y that satisfy all the constraints?
//! [docs-c-quickstart-7 start]
Cvc5Result r = cvc5_check_sat(slv);
//! [docs-c-quickstart-7 end]
// The result is either SAT, UNSAT, or UNKNOWN.
// In this case, it is SAT.
//! [docs-c-quickstart-8 start]
printf("expected: sat\n");
printf("result: %s\n", cvc5_result_to_string(r));
//! [docs-c-quickstart-8 end]
// We can get the values for x and y that satisfy the constraints.
//! [docs-c-quickstart-9 start]
Cvc5Term x_val = cvc5_get_value(slv, x);
Cvc5Term y_val = cvc5_get_value(slv, y);
//! [docs-c-quickstart-9 end]
// It is also possible to get values for compound terms,
// even if those did not appear in the original formula.
//! [docs-c-quickstart-10 start]
args2[0] = x;
args2[1] = y;
Cvc5Term x_minus_y = cvc5_mk_term(tm, CVC5_KIND_SUB, 2, args2);
Cvc5Term x_minus_y_val = cvc5_get_value(slv, x_minus_y);
//! [docs-c-quickstart-10 end]
// We can now obtain the string representations of the values.
//! [docs-c-quickstart-11 start]
// Note: The const char* returned by cvc5_term_get_real_value is only valid
// until the next call to this function.
char* x_str = strdup(cvc5_term_get_real_value(x_val));
char* y_str = strdup(cvc5_term_get_real_value(y_val));
char* x_minus_y_str = strdup(cvc5_term_get_real_value(x_minus_y_val));
printf("value for x: %s\n", x_str);
printf("value for y: %s\n", y_str);
printf("value for x - y: %s\n", x_minus_y_str);
free(y_str);
free(x_str);
free(x_minus_y_str);
// Alternatively, you can directly print the value strings without
// copying them first:
printf("value for x: %s\n", cvc5_term_get_real_value(x_val));
printf("value for y: %s\n", cvc5_term_get_real_value(y_val));
printf("value for x - y: %s\n", cvc5_term_get_real_value(x_minus_y_val));
//! [docs-c-quickstart-11 end]
//! [docs-c-quickstart-12 start]
// Further, we can convert the values to cpp types
int64_t x_num;
uint64_t x_den;
cvc5_term_get_real64_value(x_val, &x_num, &x_den);
int64_t y_num;
uint64_t y_den;
cvc5_term_get_real64_value(y_val, &y_num, &y_den);
int64_t x_minus_y_num;
uint64_t x_minus_y_den;
cvc5_term_get_real64_value(x_minus_y_val, &x_minus_y_num, &x_minus_y_den);
printf("value for x: %" PRId64 "/%" PRIu64 "\n", x_num, x_den);
printf("value for y: %" PRId64 "/%" PRIu64 "\n", y_num, y_den);
printf("value for x - y: %" PRId64 "/%" PRIu64 "\n", x_minus_y_num, x_minus_y_den);
//! [docs-c-quickstart-12 end]
// Another way to independently compute the value of x - y would be
// to perform the (rational) arithmetic manually.
// However, for more complex terms,
// it is easier to let the solver do the evaluation.
//! [docs-c-quickstart-13 start]
int64_t x_minus_y_num_computed = x_num * y_den - x_den * y_num;
uint64_t x_minus_y_den_computed = x_den * y_den;
uint64_t g = gcd(x_minus_y_num_computed, x_minus_y_den_computed);
x_minus_y_num_computed = x_minus_y_num_computed / g;
x_minus_y_den_computed = x_minus_y_den_computed / g;
if (x_minus_y_num_computed == x_minus_y_num
&& x_minus_y_den_computed == x_minus_y_den)
{
printf("computed correctly\n");
}
else
{
printf("computed incorrectly\n");
}
//! [docs-c-quickstart-13 end]
// Next, we will check satisfiability of the same formula,
// only this time over integer variables a and b.
// We start by resetting assertions added to the solver.
//! [docs-c-quickstart-14 start]
cvc5_reset_assertions(slv);
//! [docs-c-quickstart-14 end]
// Next, we assert the same assertions above with integers.
// This time, we inline the construction of terms
// to the assertion command.
//! [docs-c-quickstart-15 start]
args2[0] = cvc5_mk_integer_int64(tm, 0);
args2[1] = a;
cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_LT, 2, args2));
args2[1] = b;
cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_LT, 2, args2));
args2[0] = a;
args2[1] = b;
Cvc5Term add = cvc5_mk_term(tm, CVC5_KIND_ADD, 2, args2);
args2[0] = add;
args2[1] = cvc5_mk_integer_int64(tm, 1);
cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_LT, 2, args2));
args2[0] = a;
args2[1] = b;
cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_LEQ, 2, args2));
//! [docs-c-quickstart-15 end]
// We check whether the revised assertion is satisfiable.
//! [docs-c-quickstart-16 start]
cvc5_result_release(r); // optional, not needed anymore so we can release
r = cvc5_check_sat(slv);
//! [docs-c-quickstart-16 end]
// This time the formula is unsatisfiable
//! [docs-c-quickstart-17 start]
printf("expected: unsat\n");
printf("result: %s\n", cvc5_result_to_string(r));
//! [docs-c-quickstart-17 end]
// We can query the solver for an unsatisfiable core, i.e., a subset
// of the assertions that is already unsatisfiable.
//! [docs-c-quickstart-18 start]
size_t size;
const Cvc5Term* unsat_core = cvc5_get_unsat_core(slv, &size);
printf("unsat core size: %zu\n", size);
printf("unsat core: \n");
for (size_t i = 0; i < size; i++)
{
printf("%s\n", cvc5_term_to_string(unsat_core[i]));
}
//! [docs-c-quickstart-18 end]
// Delete solver instance.
//! [docs-c-quickstart-19 start]
cvc5_delete(slv);
//! [docs-c-quickstart-19 end]
// Delete term manager instance.
//! [docs-c-quickstart-20 start]
cvc5_term_manager_delete(tm);
//! [docs-c-quickstart-20 end]
return 0;
}
|