File: quickstart.c

package info (click to toggle)
cvc5 1.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 87,260 kB
  • sloc: cpp: 383,850; java: 12,207; python: 12,090; sh: 5,679; ansic: 4,729; lisp: 763; perl: 208; makefile: 38
file content (277 lines) | stat: -rw-r--r-- 9,553 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/******************************************************************************
 * Top contributors (to current version):
 *   Aina Niemetz, Daniel Larraz
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * A simple demonstration of the API capabilities of cvc5.
 *
 */

#include <cvc5/c/cvc5.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>

int32_t gcd(int32_t a, int32_t b)
{
  int32_t remainder = a % b;

  if (remainder == 0)
  {
    return b;
  }

  return gcd(b, remainder);
}

int main()
{
  // Create a term manager
  //! [docs-c-quickstart-0 start]
  Cvc5TermManager* tm = cvc5_term_manager_new();
  //! [docs-c-quickstart-0 end]
  // Create a solver
  //! [docs-c-quickstart-1 start]
  Cvc5* slv = cvc5_new(tm);
  //! [docs-c-quickstart-1 end]

  // We will ask the solver to produce models and unsat cores,
  // hence these options should be turned on.
  //! [docs-c-quickstart-2 start]
  cvc5_set_option(slv, "produce-models", "true");
  cvc5_set_option(slv, "produce-unsat-cores", "true");
  //! [docs-c-quickstart-2 end]

  // The simplest way to set a logic for the solver is to choose "ALL".
  // This enables all logics in the solver.
  // Alternatively, "QF_ALL" enables all logics without quantifiers.
  // To optimize the solver's behavior for a more specific logic,
  // use the logic name, e.g. "QF_BV" or "QF_AUFBV".

  // Set the logic
  //! [docs-c-quickstart-3 start]
  cvc5_set_logic(slv, "ALL");
  //! [docs-c-quickstart-3 end]

  // In this example, we will define constraints over reals and integers.
  // Hence, we first obtain the corresponding sorts.
  //! [docs-c-quickstart-4 start]
  Cvc5Sort real_sort = cvc5_get_real_sort(tm);
  Cvc5Sort int_sort = cvc5_get_integer_sort(tm);
  //! [docs-c-quickstart-4 end]

  // x and y will be real variables, while a and b will be integer variables.
  // Formally, their cpp type is Term,
  // and they are called "constants" in SMT jargon:
  //! [docs-c-quickstart-5 start]
  Cvc5Term x = cvc5_mk_const(tm, real_sort, "x");
  Cvc5Term y = cvc5_mk_const(tm, real_sort, "y");
  Cvc5Term a = cvc5_mk_const(tm, int_sort, "a");
  Cvc5Term b = cvc5_mk_const(tm, int_sort, "b");
  //! [docs-c-quickstart-5 end]

  // Our constraints regarding x and y will be:
  //
  //   (1)  0 < x
  //   (2)  0 < y
  //   (3)  x + y < 1
  //   (4)  x <= y
  //

  //! [docs-c-quickstart-6 start]
  // Formally, constraints are also terms. Their sort is Boolean.
  // We will construct these constraints gradually,
  // by defining each of their components.
  // We start with the constant numerals 0 and 1:
  Cvc5Term zero = cvc5_mk_real_int64(tm, 0);
  Cvc5Term one = cvc5_mk_real_int64(tm, 1);

  // Next, we construct the term x + y
  Cvc5Term args2[2] = {x, y};
  Cvc5Term x_plus_y = cvc5_mk_term(tm, CVC5_KIND_ADD, 2, args2);

  // Now we can define the constraints.
  // They use the operators +, <=, and <.
  // In the API, these are denoted by ADD, LEQ, and LT.
  // A list of available operators is available in:
  // src/api/cpp/cvc5_kind.h
  args2[0] = zero;
  args2[1] = x;
  Cvc5Term constraint1 = cvc5_mk_term(tm, CVC5_KIND_LT, 2, args2);
  args2[1] = y;
  Cvc5Term constraint2 = cvc5_mk_term(tm, CVC5_KIND_LT, 2, args2);
  args2[0] = x_plus_y;
  args2[1] = one;
  Cvc5Term constraint3 = cvc5_mk_term(tm, CVC5_KIND_LT, 2, args2);
  args2[0] = x;
  args2[1] = y;
  Cvc5Term constraint4 = cvc5_mk_term(tm, CVC5_KIND_LEQ, 2, args2);

  // Now we assert the constraints to the solver.
  cvc5_assert_formula(slv, constraint1);
  cvc5_assert_formula(slv, constraint2);
  cvc5_assert_formula(slv, constraint3);
  cvc5_assert_formula(slv, constraint4);
  //! [docs-c-quickstart-6 end]

  // Check if the formula is satisfiable, that is,
  // are there real values for x and y that satisfy all the constraints?
  //! [docs-c-quickstart-7 start]
  Cvc5Result r = cvc5_check_sat(slv);
  //! [docs-c-quickstart-7 end]

  // The result is either SAT, UNSAT, or UNKNOWN.
  // In this case, it is SAT.
  //! [docs-c-quickstart-8 start]
  printf("expected: sat\n");
  printf("result: %s\n", cvc5_result_to_string(r));
  //! [docs-c-quickstart-8 end]

  // We can get the values for x and y that satisfy the constraints.
  //! [docs-c-quickstart-9 start]
  Cvc5Term x_val = cvc5_get_value(slv, x);
  Cvc5Term y_val = cvc5_get_value(slv, y);
  //! [docs-c-quickstart-9 end]

  // It is also possible to get values for compound terms,
  // even if those did not appear in the original formula.
  //! [docs-c-quickstart-10 start]
  args2[0] = x;
  args2[1] = y;
  Cvc5Term x_minus_y = cvc5_mk_term(tm, CVC5_KIND_SUB, 2, args2);
  Cvc5Term x_minus_y_val = cvc5_get_value(slv, x_minus_y);
  //! [docs-c-quickstart-10 end]

  // We can now obtain the string representations of the values.
  //! [docs-c-quickstart-11 start]
  // Note: The const char* returned by cvc5_term_get_real_value is only valid
  //       until the next call to this function.
  char* x_str = strdup(cvc5_term_get_real_value(x_val));
  char* y_str = strdup(cvc5_term_get_real_value(y_val));
  char* x_minus_y_str = strdup(cvc5_term_get_real_value(x_minus_y_val));

  printf("value for x: %s\n", x_str);
  printf("value for y: %s\n", y_str);
  printf("value for x - y: %s\n", x_minus_y_str);

  free(y_str);
  free(x_str);
  free(x_minus_y_str);

  // Alternatively, you can directly print the value strings without
  // copying them first:
  printf("value for x: %s\n", cvc5_term_get_real_value(x_val));
  printf("value for y: %s\n", cvc5_term_get_real_value(y_val));
  printf("value for x - y: %s\n", cvc5_term_get_real_value(x_minus_y_val));
  //! [docs-c-quickstart-11 end]

  //! [docs-c-quickstart-12 start]
  // Further, we can convert the values to cpp types
  int64_t x_num;
  uint64_t x_den;
  cvc5_term_get_real64_value(x_val, &x_num, &x_den);
  int64_t y_num;
  uint64_t y_den;
  cvc5_term_get_real64_value(y_val, &y_num, &y_den);
  int64_t x_minus_y_num;
  uint64_t x_minus_y_den;
  cvc5_term_get_real64_value(x_minus_y_val, &x_minus_y_num, &x_minus_y_den);

  printf("value for x: %" PRId64 "/%" PRIu64 "\n", x_num, x_den);
  printf("value for y: %" PRId64 "/%" PRIu64 "\n", y_num, y_den);
  printf("value for x - y: %" PRId64 "/%" PRIu64 "\n", x_minus_y_num, x_minus_y_den);
  //! [docs-c-quickstart-12 end]

  // Another way to independently compute the value of x - y would be
  // to perform the (rational) arithmetic manually.
  // However, for more complex terms,
  // it is easier to let the solver do the evaluation.
  //! [docs-c-quickstart-13 start]
  int64_t x_minus_y_num_computed = x_num * y_den - x_den * y_num;
  uint64_t x_minus_y_den_computed = x_den * y_den;
  uint64_t g = gcd(x_minus_y_num_computed, x_minus_y_den_computed);
  x_minus_y_num_computed = x_minus_y_num_computed / g;
  x_minus_y_den_computed = x_minus_y_den_computed / g;
  if (x_minus_y_num_computed == x_minus_y_num
      && x_minus_y_den_computed == x_minus_y_den)
  {
    printf("computed correctly\n");
  }
  else
  {
    printf("computed incorrectly\n");
  }
  //! [docs-c-quickstart-13 end]

  // Next, we will check satisfiability of the same formula,
  // only this time over integer variables a and b.

  // We start by resetting assertions added to the solver.
  //! [docs-c-quickstart-14 start]
  cvc5_reset_assertions(slv);
  //! [docs-c-quickstart-14 end]

  // Next, we assert the same assertions above with integers.
  // This time, we inline the construction of terms
  // to the assertion command.
  //! [docs-c-quickstart-15 start]
  args2[0] = cvc5_mk_integer_int64(tm, 0);
  args2[1] = a;
  cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_LT, 2, args2));
  args2[1] = b;
  cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_LT, 2, args2));
  args2[0] = a;
  args2[1] = b;
  Cvc5Term add = cvc5_mk_term(tm, CVC5_KIND_ADD, 2, args2);
  args2[0] = add;
  args2[1] = cvc5_mk_integer_int64(tm, 1);
  cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_LT, 2, args2));
  args2[0] = a;
  args2[1] = b;
  cvc5_assert_formula(slv, cvc5_mk_term(tm, CVC5_KIND_LEQ, 2, args2));
  //! [docs-c-quickstart-15 end]

  // We check whether the revised assertion is satisfiable.
  //! [docs-c-quickstart-16 start]
  cvc5_result_release(r);  // optional, not needed anymore so we can release
  r = cvc5_check_sat(slv);
  //! [docs-c-quickstart-16 end]

  // This time the formula is unsatisfiable
  //! [docs-c-quickstart-17 start]
  printf("expected: unsat\n");
  printf("result: %s\n", cvc5_result_to_string(r));
  //! [docs-c-quickstart-17 end]

  // We can query the solver for an unsatisfiable core, i.e., a subset
  // of the assertions that is already unsatisfiable.
  //! [docs-c-quickstart-18 start]
  size_t size;
  const Cvc5Term* unsat_core = cvc5_get_unsat_core(slv, &size);
  printf("unsat core size: %zu\n", size);
  printf("unsat core: \n");
  for (size_t i = 0; i < size; i++)
  {
    printf("%s\n", cvc5_term_to_string(unsat_core[i]));
  }
  //! [docs-c-quickstart-18 end]

  // Delete solver instance.
  //! [docs-c-quickstart-19 start]
  cvc5_delete(slv);
  //! [docs-c-quickstart-19 end]

  // Delete term manager instance.
  //! [docs-c-quickstart-20 start]
  cvc5_term_manager_delete(tm);
  //! [docs-c-quickstart-20 end]
  return 0;
}