1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
|
/******************************************************************************
* Top contributors (to current version):
* Alex Ozdemir, Aina Niemetz
*
* This file is part of the cvc5 project.
*
* Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
* in the top-level source directory and their institutional affiliations.
* All rights reserved. See the file COPYING in the top-level source
* directory for licensing information.
* ****************************************************************************
*
* An example of solving finite field problems with cvc5's cpp API.
*/
#include <cvc5/cvc5.h>
#include <cassert>
#include <iostream>
using namespace std;
using namespace cvc5;
int main()
{
TermManager tm;
Solver solver(tm);
solver.setOption("produce-models", "true");
Sort f5 = tm.mkFiniteFieldSort("5");
Term a = tm.mkConst(f5, "a");
Term b = tm.mkConst(f5, "b");
Term z = tm.mkFiniteFieldElem("0", f5);
Term inv = tm.mkTerm(Kind::EQUAL,
{tm.mkTerm(Kind::FINITE_FIELD_ADD,
{tm.mkTerm(Kind::FINITE_FIELD_MULT, {a, b}),
tm.mkFiniteFieldElem("-1", f5)}),
z});
Term aIsTwo = tm.mkTerm(
Kind::EQUAL,
{tm.mkTerm(Kind::FINITE_FIELD_ADD, {a, tm.mkFiniteFieldElem("-2", f5)}),
z});
// ab - 1 = 0
solver.assertFormula(inv);
// a = 2
solver.assertFormula(aIsTwo);
// should be SAT, with b = 2^(-1)
Result r = solver.checkSat();
assert(r.isSat());
cout << "a = " << solver.getValue(a) << endl;
cout << "b = " << solver.getValue(b) << endl;
// b = 2
Term bIsTwo = tm.mkTerm(
Kind::EQUAL,
{tm.mkTerm(Kind::FINITE_FIELD_ADD, {b, tm.mkFiniteFieldElem("-2", f5)}),
z});
// should be UNSAT, 2*2 - 1 != 0
solver.assertFormula(bIsTwo);
r = solver.checkSat();
assert(r.isUnsat());
}
|