File: floating_point_arith.cpp

package info (click to toggle)
cvc5 1.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 87,260 kB
  • sloc: cpp: 383,850; java: 12,207; python: 12,090; sh: 5,679; ansic: 4,729; lisp: 763; perl: 208; makefile: 38
file content (150 lines) | stat: -rw-r--r-- 6,061 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/******************************************************************************
 * Top contributors (to current version):
 *   Aina Niemetz, Mudathir Mohamed, Mathias Preiner
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * An example of solving floating-point problems with cvc5's cpp API.
 *
 * This example shows to create floating-point types, variables and expressions,
 * and how to create rounding mode constants by solving toy problems. The
 * example also shows making special values (such as NaN and +oo) and converting
 * an IEEE 754-2008 bit-vector to a floating-point number.
 */

#include <cvc5/cvc5.h>

#include <iostream>
#include <cassert>

using namespace cvc5;

int main()
{
  TermManager tm;
  Solver solver(tm);
  solver.setOption("incremental", "true");
  solver.setOption("produce-models", "true");

  // Make single precision floating-point variables
  Sort fpt32 = tm.mkFloatingPointSort(8, 24);
  Term a = tm.mkConst(fpt32, "a");
  Term b = tm.mkConst(fpt32, "b");
  Term c = tm.mkConst(fpt32, "c");
  Term d = tm.mkConst(fpt32, "d");
  Term e = tm.mkConst(fpt32, "e");
  // Rounding mode
  Term rm = tm.mkRoundingMode(RoundingMode::ROUND_NEAREST_TIES_TO_EVEN);

  std::cout << "Show that fused multiplication and addition `(fp.fma RM a b c)`"
            << std::endl
            << "is different from `(fp.add RM (fp.mul a b) c)`:" << std::endl;
  solver.push(1);
  Term fma = tm.mkTerm(Kind::FLOATINGPOINT_FMA, {rm, a, b, c});
  Term mul = tm.mkTerm(Kind::FLOATINGPOINT_MULT, {rm, a, b});
  Term add = tm.mkTerm(Kind::FLOATINGPOINT_ADD, {rm, mul, c});
  solver.assertFormula(tm.mkTerm(Kind::DISTINCT, {fma, add}));
  Result r = solver.checkSat();  // result is sat
  std::cout << "Expect sat: " << r << std::endl;
  std::cout << "Value of `a`: " << solver.getValue(a) << std::endl;
  std::cout << "Value of `b`: " << solver.getValue(b) << std::endl;
  std::cout << "Value of `c`: " << solver.getValue(c) << std::endl;
  std::cout << "Value of `(fp.fma RNE a b c)`: " << solver.getValue(fma)
            << std::endl;
  std::cout << "Value of `(fp.add RNE (fp.mul a b) c)`: "
            << solver.getValue(add) << std::endl;
  std::cout << std::endl;
  solver.pop(1);

  std::cout << "Show that floating-point addition is not associative:"
            << std::endl;
  std::cout << "(a + (b + c)) != ((a + b) + c)" << std::endl;
  solver.push(1);
  solver.assertFormula(tm.mkTerm(
      Kind::DISTINCT,
      {tm.mkTerm(Kind::FLOATINGPOINT_ADD,
                 {rm, a, tm.mkTerm(Kind::FLOATINGPOINT_ADD, {rm, b, c})}),
       tm.mkTerm(Kind::FLOATINGPOINT_ADD,
                 {rm, tm.mkTerm(Kind::FLOATINGPOINT_ADD, {rm, a, b}), c})}));

  r = solver.checkSat();  // result is sat
  std::cout << "Expect sat: " << r << std::endl;
  assert (r.isSat());

  std::cout << "Value of `a`: " << solver.getValue(a) << std::endl;
  std::cout << "Value of `b`: " << solver.getValue(b) << std::endl;
  std::cout << "Value of `c`: " << solver.getValue(c) << std::endl;
  std::cout << std::endl;

  std::cout << "Now, restrict `a` to be either NaN or positive infinity:"
            << std::endl;
  Term nan = tm.mkFloatingPointNaN(8, 24);
  Term inf = tm.mkFloatingPointPosInf(8, 24);
  solver.assertFormula(tm.mkTerm(
      Kind::OR,
      {tm.mkTerm(Kind::EQUAL, {a, inf}), tm.mkTerm(Kind::EQUAL, {a, nan})}));

  r = solver.checkSat();  // result is sat
  std::cout << "Expect sat: " << r << std::endl;
  assert (r.isSat());

  std::cout << "Value of `a`: " << solver.getValue(a) << std::endl;
  std::cout << "Value of `b`: " << solver.getValue(b) << std::endl;
  std::cout << "Value of `c`: " << solver.getValue(c) << std::endl;
  std::cout << std::endl;
  solver.pop(1);

  std::cout << "Now, try to find a (normal) floating-point number that rounds"
            << std::endl
            << "to different integer values for different rounding modes:"
            << std::endl;
  solver.push(1);
  Term rtp = tm.mkRoundingMode(RoundingMode::ROUND_TOWARD_POSITIVE);
  Term rtn = tm.mkRoundingMode(RoundingMode::ROUND_TOWARD_NEGATIVE);
  Op op = tm.mkOp(Kind::FLOATINGPOINT_TO_UBV, {16});  // (_ fp.to_ubv 16)
  Term lhs = tm.mkTerm(op, {rtp, d});
  Term rhs = tm.mkTerm(op, {rtn, d});
  solver.assertFormula(tm.mkTerm(Kind::FLOATINGPOINT_IS_NORMAL, {d}));
  solver.assertFormula(
      tm.mkTerm(Kind::NOT, {tm.mkTerm(Kind::EQUAL, {lhs, rhs})}));

  r = solver.checkSat();  // result is sat
  std::cout << "Expect sat: " << r << std::endl;
  assert (r.isSat());
  std::cout << std::endl;

  std::cout << "Get value of `d` as floating-point, bit-vector and real:"
            << std::endl;
  Term val = solver.getValue(d);
  std::cout << "Value of `d`: " << val << std::endl;
  std::cout << "Value of `((_ fp.to_ubv 16) RTP d)`: " << solver.getValue(lhs)
            << std::endl;
  std::cout << "Value of `((_ fp.to_ubv 16) RTN d)`: " << solver.getValue(rhs)
            << std::endl;
  std::cout << "Value of `(fp.to_real d)` "
            << solver.getValue(tm.mkTerm(Kind::FLOATINGPOINT_TO_REAL, {val}))
            << std::endl;
  std::cout << std::endl;
  solver.pop(1);

  std::cout << "Finally, try to find a floating-point number between positive"
            << std::endl
            << "zero and the smallest positive floating-point number:"
            << std::endl;
  Term zero = tm.mkFloatingPointPosZero(8, 24);
  Term smallest = tm.mkFloatingPoint(8, 24, tm.mkBitVector(32, 1));
  solver.assertFormula(
      tm.mkTerm(Kind::AND,
                {tm.mkTerm(Kind::FLOATINGPOINT_LT, {zero, e}),
                 tm.mkTerm(Kind::FLOATINGPOINT_LT, {e, smallest})}));

  r = solver.checkSat();  // result is unsat
  std::cout << "Expect unsat: " << r << std::endl;
  assert(r.isUnsat());
}