File: sets.cpp

package info (click to toggle)
cvc5 1.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 87,260 kB
  • sloc: cpp: 383,850; java: 12,207; python: 12,090; sh: 5,679; ansic: 4,729; lisp: 763; perl: 208; makefile: 38
file content (95 lines) | stat: -rw-r--r-- 3,046 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
/******************************************************************************
 * Top contributors (to current version):
 *   Aina Niemetz, Kshitij Bansal, Andrew Reynolds
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * A simple demonstration of reasoning about sets via the C++ API.
 */

#include <cvc5/cvc5.h>

#include <iostream>

using namespace std;
using namespace cvc5;

int main()
{
  TermManager tm;
  Solver slv(tm);

  // Optionally, set the logic. We need at least UF for equality predicate,
  // integers (LIA) and sets (FS).
  slv.setLogic("QF_UFLIAFS");

  // Produce models
  slv.setOption("produce-models", "true");

  Sort integer = tm.getIntegerSort();
  Sort set = tm.mkSetSort(integer);

  // Verify union distributions over intersection
  // (A union B) intersection C = (A intersection C) union (B intersection C)
  {
    Term A = tm.mkConst(set, "A");
    Term B = tm.mkConst(set, "B");
    Term C = tm.mkConst(set, "C");

    Term unionAB = tm.mkTerm(Kind::SET_UNION, {A, B});
    Term lhs = tm.mkTerm(Kind::SET_INTER, {unionAB, C});

    Term intersectionAC = tm.mkTerm(Kind::SET_INTER, {A, C});
    Term intersectionBC = tm.mkTerm(Kind::SET_INTER, {B, C});
    Term rhs = tm.mkTerm(Kind::SET_UNION, {intersectionAC, intersectionBC});

    Term theorem = tm.mkTerm(Kind::EQUAL, {lhs, rhs});

    cout << "cvc5 reports: " << theorem << " is "
         << slv.checkSatAssuming(theorem.notTerm()) << "." << endl;
  }

  // Verify emptset is a subset of any set
  {
    Term A = tm.mkConst(set, "A");
    Term emptyset = tm.mkEmptySet(set);

    Term theorem = tm.mkTerm(Kind::SET_SUBSET, {emptyset, A});

    cout << "cvc5 reports: " << theorem << " is "
         << slv.checkSatAssuming(theorem.notTerm()) << "." << endl;
  }

  // Find me an element in {1, 2} intersection {2, 3}, if there is one.
  {
    Term one = tm.mkInteger(1);
    Term two = tm.mkInteger(2);
    Term three = tm.mkInteger(3);

    Term singleton_one = tm.mkTerm(Kind::SET_SINGLETON, {one});
    Term singleton_two = tm.mkTerm(Kind::SET_SINGLETON, {two});
    Term singleton_three = tm.mkTerm(Kind::SET_SINGLETON, {three});
    Term one_two = tm.mkTerm(Kind::SET_UNION, {singleton_one, singleton_two});
    Term two_three =
        tm.mkTerm(Kind::SET_UNION, {singleton_two, singleton_three});
    Term intersection = tm.mkTerm(Kind::SET_INTER, {one_two, two_three});

    Term x = tm.mkConst(integer, "x");

    Term e = tm.mkTerm(Kind::SET_MEMBER, {x, intersection});

    Result result = slv.checkSatAssuming(e);
    cout << "cvc5 reports: " << e << " is " << result << "." << endl;

    if (result.isSat())
    {
      cout << "For instance, " << slv.getValue(x) << " is a member." << endl;
    }
  }
}