File: uf.cpp

package info (click to toggle)
cvc5 1.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 87,260 kB
  • sloc: cpp: 383,850; java: 12,207; python: 12,090; sh: 5,679; ansic: 4,729; lisp: 763; perl: 208; makefile: 38
file content (62 lines) | stat: -rw-r--r-- 1,676 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/******************************************************************************
 * Top contributors (to current version):
 *   Yoni Zohar
 *
 * This file is part of the cvc5 project.
 *
 * Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
 * in the top-level source directory and their institutional affiliations.
 * All rights reserved.  See the file COPYING in the top-level source
 * directory for licensing information.
 * ****************************************************************************
 *
 * A simple demonstration of the capabilities of the cvc5 uf solver.
 */

#include <cvc5/cvc5.h>

#include <iostream>

using namespace cvc5;

int main()
{
  TermManager tm;
  Solver slv(tm);
  slv.setLogic("QF_UF");

  // Sorts
  Sort u = tm.mkUninterpretedSort("U");
  Sort boolean = tm.getBooleanSort();
  Sort uTou = tm.mkFunctionSort({u}, u);
  Sort uPred = tm.mkFunctionSort({u}, boolean);

  // Variables
  Term x = tm.mkConst(u, "x");
  Term y = tm.mkConst(u, "y");

  // Functions
  Term f = tm.mkConst(uTou, "f");
  Term p = tm.mkConst(uPred, "p");

  // Terms
  Term f_x = tm.mkTerm(Kind::APPLY_UF, {f, x});
  Term f_y = tm.mkTerm(Kind::APPLY_UF, {f, y});
  Term p_f_x = tm.mkTerm(Kind::APPLY_UF, {p, f_x});
  Term p_f_y = tm.mkTerm(Kind::APPLY_UF, {p, f_y});

  // Construct the assertions
  Term assertions =
      tm.mkTerm(Kind::AND,
                {
                    tm.mkTerm(Kind::EQUAL, {x, f_x}),  
                    tm.mkTerm(Kind::EQUAL, {y, f_y}),
                    p_f_x.notTerm(),
                    p_f_y
                });
  slv.assertFormula(assertions);

  std::cout << slv.checkSat()  << std::endl;

  return 0;
}