1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
|
/******************************************************************************
* Top contributors (to current version):
* Mudathir Mohamed, Daniel Larraz, Liana Hadarean
*
* This file is part of the cvc5 project.
*
* Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
* in the top-level source directory and their institutional affiliations.
* All rights reserved. See the file COPYING in the top-level source
* directory for licensing information.
* ****************************************************************************
*
* A simple demonstration of the solving capabilities of the cvc5
* bit-vector solver.
*
*/
import io.github.cvc5.*;
import java.util.*;
public class BitVectors
{
public static void main(String args[]) throws CVC5ApiException
{
TermManager tm = new TermManager();
Solver slv = new Solver(tm);
{
slv.setLogic("QF_BV"); // Set the logic
// The following example has been adapted from the book A Hacker's Delight by
// Henry S. Warren.
//
// Given a variable x that can only have two values, a or b. We want to
// assign to x a value other than the current one. The straightforward code
// to do that is:
//
//(0) if (x == a ) x = b;
// else x = a;
//
// Two more efficient yet equivalent methods are:
//
//(1) x = a ⊕ b ⊕ x;
//
//(2) x = a + b - x;
//
// We will use cvc5 to prove that the three pieces of code above are all
// equivalent by encoding the problem in the bit-vector theory.
// Creating a bit-vector type of width 32
Sort bitvector32 = tm.mkBitVectorSort(32);
// Variables
Term x = tm.mkConst(bitvector32, "x");
Term a = tm.mkConst(bitvector32, "a");
Term b = tm.mkConst(bitvector32, "b");
// First encode the assumption that x must be Kind.EQUAL to a or b
Term x_eq_a = tm.mkTerm(Kind.EQUAL, x, a);
Term x_eq_b = tm.mkTerm(Kind.EQUAL, x, b);
Term assumption = tm.mkTerm(Kind.OR, x_eq_a, x_eq_b);
// Assert the assumption
slv.assertFormula(assumption);
// Introduce a new variable for the new value of x after assignment.
Term new_x = tm.mkConst(bitvector32, "new_x"); // x after executing code (0)
Term new_x_ = tm.mkConst(bitvector32, "new_x_"); // x after executing code (1) or (2)
// Encoding code (0)
// new_x = x == a ? b : a;
Term ite = tm.mkTerm(Kind.ITE, x_eq_a, b, a);
Term assignment0 = tm.mkTerm(Kind.EQUAL, new_x, ite);
// Assert the encoding of code (0)
System.out.println("Asserting " + assignment0 + " to cvc5 ");
slv.assertFormula(assignment0);
System.out.println("Pushing a new context.");
slv.push();
// Encoding code (1)
// new_x_ = a xor b xor x
Term a_xor_b_xor_x = tm.mkTerm(Kind.BITVECTOR_XOR, a, b, x);
Term assignment1 = tm.mkTerm(Kind.EQUAL, new_x_, a_xor_b_xor_x);
// Assert encoding to cvc5 in current context;
System.out.println("Asserting " + assignment1 + " to cvc5 ");
slv.assertFormula(assignment1);
Term new_x_eq_new_x_ = tm.mkTerm(Kind.EQUAL, new_x, new_x_);
System.out.println(" Check sat assuming: " + new_x_eq_new_x_.notTerm());
System.out.println(" Expect UNSAT. ");
System.out.println(" cvc5: " + slv.checkSatAssuming(new_x_eq_new_x_.notTerm()));
System.out.println(" Popping context. ");
slv.pop();
// Encoding code (2)
// new_x_ = a + b - x
Term a_plus_b = tm.mkTerm(Kind.BITVECTOR_ADD, a, b);
Term a_plus_b_minus_x = tm.mkTerm(Kind.BITVECTOR_SUB, a_plus_b, x);
Term assignment2 = tm.mkTerm(Kind.EQUAL, new_x_, a_plus_b_minus_x);
// Assert encoding to cvc5 in current context;
System.out.println("Asserting " + assignment2 + " to cvc5 ");
slv.assertFormula(assignment2);
System.out.println(" Check sat assuming: " + new_x_eq_new_x_.notTerm());
System.out.println(" Expect UNSAT. ");
System.out.println(" cvc5: " + slv.checkSatAssuming(new_x_eq_new_x_.notTerm()));
Term x_neq_x = tm.mkTerm(Kind.EQUAL, x, x).notTerm();
Term[] v = new Term[] {new_x_eq_new_x_, x_neq_x};
Term query = tm.mkTerm(Kind.AND, v);
System.out.println(" Check sat assuming: " + query.notTerm());
System.out.println(" Expect SAT. ");
System.out.println(" cvc5: " + slv.checkSatAssuming(query.notTerm()));
// Assert that a is odd
Op extract_op = tm.mkOp(Kind.BITVECTOR_EXTRACT, 0, 0);
Term lsb_of_a = tm.mkTerm(extract_op, a);
System.out.println("Sort of " + lsb_of_a + " is " + lsb_of_a.getSort());
Term a_odd = tm.mkTerm(Kind.EQUAL, lsb_of_a, tm.mkBitVector(1, 1));
System.out.println("Assert " + a_odd);
System.out.println("Check satisfiability.");
slv.assertFormula(a_odd);
System.out.println(" Expect sat. ");
System.out.println(" cvc5: " + slv.checkSat());
}
Context.deletePointers();
}
}
|