1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
|
#!/usr/bin/env python
###############################################################################
# Top contributors (to current version):
# Makai Mann, Aina Niemetz, Andrew Reynolds
#
# This file is part of the cvc5 project.
#
# Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
# in the top-level source directory and their institutional affiliations.
# All rights reserved. See the file COPYING in the top-level source
# directory for licensing information.
# #############################################################################
#
# A simple demonstration of the solving capabilities of the cvc5 bit-vector
# solver through the Python API. This is a direct translation of
# bitvectors-new.cpp.
##
import cvc5
from cvc5 import Kind
if __name__ == "__main__":
tm = cvc5.TermManager()
slv = cvc5.Solver(tm)
slv.setLogic("QF_BV") # Set the logic
# The following example has been adapted from the book A Hacker's Delight by
# Henry S. Warren.
#
# Given a variable x that can only have two values, a or b. We want to
# assign to x a value other than the current one. The straightforward code
# to do that is:
#
#(0) if (x == a ) x = b;
# else x = a;
#
# Two more efficient yet equivalent methods are:
#
#(1) x = a xor b xor x;
#
#(2) x = a + b - x;
#
# We will use cvc5 to prove that the three pieces of code above are all
# equivalent by encoding the problem in the bit-vector theory.
# Creating a bit-vector type of width 32
bitvector32 = tm.mkBitVectorSort(32)
# Variables
x = tm.mkConst(bitvector32, "x")
a = tm.mkConst(bitvector32, "a")
b = tm.mkConst(bitvector32, "b")
# First encode the assumption that x must be equal to a or b
x_eq_a = tm.mkTerm(Kind.EQUAL, x, a)
x_eq_b = tm.mkTerm(Kind.EQUAL, x, b)
assumption = tm.mkTerm(Kind.OR, x_eq_a, x_eq_b)
# Assert the assumption
slv.assertFormula(assumption)
# Introduce a new variable for the new value of x after assignment.
# x after executing code (0)
new_x = tm.mkConst(bitvector32, "new_x")
# x after executing code (1) or (2)
new_x_ = tm.mkConst(bitvector32, "new_x_")
# Encoding code (0)
# new_x = x == a ? b : a
ite = tm.mkTerm(Kind.ITE, x_eq_a, b, a)
assignment0 = tm.mkTerm(Kind.EQUAL, new_x, ite)
# Assert the encoding of code (0)
print("Asserting {} to cvc5".format(assignment0))
slv.assertFormula(assignment0)
print("Pushing a new context.")
slv.push()
# Encoding code (1)
# new_x_ = a xor b xor x
a_xor_b_xor_x = tm.mkTerm(Kind.BITVECTOR_XOR, a, b, x)
assignment1 = tm.mkTerm(Kind.EQUAL, new_x_, a_xor_b_xor_x)
# Assert encoding to cvc5 in current context
print("Asserting {} to cvc5".format(assignment1))
slv.assertFormula(assignment1)
new_x_eq_new_x_ = tm.mkTerm(Kind.EQUAL, new_x, new_x_)
print("Checking sat assuming:", new_x_eq_new_x_.notTerm())
print("Expect UNSAT.")
print("cvc5:", slv.checkSatAssuming(new_x_eq_new_x_.notTerm()))
print("Popping context.")
slv.pop()
# Encoding code (2)
# new_x_ = a + b - x
a_plus_b = tm.mkTerm(Kind.BITVECTOR_ADD, a, b)
a_plus_b_minus_x = tm.mkTerm(Kind.BITVECTOR_SUB, a_plus_b, x)
assignment2 = tm.mkTerm(Kind.EQUAL, new_x_, a_plus_b_minus_x)
# Assert encoding to cvc5 in current context
print("Asserting {} to cvc5".format(assignment2))
slv.assertFormula(assignment2)
print("Checking sat assuming:", new_x_eq_new_x_.notTerm())
print("Expect UNSAT.")
print("cvc5:", slv.checkSatAssuming(new_x_eq_new_x_.notTerm()))
x_neq_x = tm.mkTerm(Kind.EQUAL, x, x).notTerm()
query = tm.mkTerm(Kind.AND, new_x_eq_new_x_, x_neq_x)
print("Check sat assuming: ", query.notTerm())
print("Expect SAT.")
print("cvc5:", slv.checkSatAssuming(query.notTerm()))
# Assert that a is odd
extract_op = tm.mkOp(Kind.BITVECTOR_EXTRACT, 0, 0)
lsb_of_a = tm.mkTerm(extract_op, a)
print("Sort of {} is {}".format(lsb_of_a, lsb_of_a.getSort()))
a_odd = tm.mkTerm(Kind.EQUAL, lsb_of_a, tm.mkBitVector(1, 1))
print("Assert", a_odd)
print("Check satisifiability")
slv.assertFormula(a_odd)
print("Expect sat")
print("cvc5:", slv.checkSat())
|