1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
|
#!/usr/bin/env python
###############################################################################
# Top contributors (to current version):
# Makai Mann, Aina Niemetz, Alex Ozdemir
#
# This file is part of the cvc5 project.
#
# Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
# in the top-level source directory and their institutional affiliations.
# All rights reserved. See the file COPYING in the top-level source
# directory for licensing information.
# #############################################################################
#
# A simple demonstration of the solving capabilities of the cvc5
# bit-vector and array solvers through the Python API. This is a direct
# translation of bitvectors_and_arrays-new.cpp.
##
import cvc5
from cvc5 import Kind
import math
if __name__ == "__main__":
tm = cvc5.TermManager()
slv = cvc5.Solver(tm)
slv.setOption("produce-models", "true")
slv.setOption("output-language", "smtlib")
slv.setLogic("QF_ABV")
# Consider the following code (where size is some previously defined constant):
#
#
# Assert (current_array[0] > 0);
# for (unsigned i = 1; i < k; ++i) {
# current_array[i] = 2 * current_array[i - 1];
# Assert (current_array[i-1] < current_array[i]);
# }
#
# We want to check whether the assertion in the body of the for loop holds
# throughout the loop.
# Setting up the problem parameters
k = 4
index_size = int(math.ceil(math.log(k, 2)))
# Sorts
elementSort = tm.mkBitVectorSort(32)
indexSort = tm.mkBitVectorSort(index_size)
arraySort = tm.mkArraySort(indexSort, elementSort)
# Variables
current_array = tm.mkConst(arraySort, "current_array")
# Making a bit-vector constant
zero = tm.mkBitVector(index_size, 0)
# Test making a constant array
constarr0 = tm.mkConstArray(arraySort, tm.mkBitVector(32, 0))
# Asserting that current_array[0] > 0
current_array0 = tm.mkTerm(Kind.SELECT, current_array, zero)
current_array0_gt_0 = tm.mkTerm(Kind.BITVECTOR_SGT,
current_array0,
tm.mkBitVector(32, 0))
slv.assertFormula(current_array0_gt_0)
# Building the assertions in the loop unrolling
index = tm.mkBitVector(index_size, 0)
old_current = tm.mkTerm(Kind.SELECT, current_array, index)
two = tm.mkBitVector(32, 2)
assertions = []
for i in range(1, k):
index = tm.mkBitVector(index_size, i)
new_current = tm.mkTerm(Kind.BITVECTOR_MULT, two, old_current)
# current[i] = 2*current[i-1]
current_array = \
tm.mkTerm(Kind.STORE, current_array, index, new_current)
# current[i-1] < current[i]
current_slt_new_current = \
tm.mkTerm(Kind.BITVECTOR_SLT, old_current, new_current)
assertions.append(current_slt_new_current)
old_current = tm.mkTerm(Kind.SELECT, current_array, index)
query = tm.mkTerm(Kind.NOT, tm.mkTerm(Kind.AND, *assertions))
print("Asserting {} to cvc5".format(query))
slv.assertFormula(query)
print("Expect sat.")
print("cvc5:", slv.checkSatAssuming(tm.mkTrue()))
# Getting the model
print("The satisfying model is: ")
print(" current_array =", slv.getValue(current_array))
print(" current_array[0]", slv.getValue(current_array0))
|