1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
|
#!/usr/bin/env python
###############################################################################
# Top contributors (to current version):
# Makai Mann, Aina Niemetz, Mathias Preiner
#
# This file is part of the cvc5 project.
#
# Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
# in the top-level source directory and their institutional affiliations.
# All rights reserved. See the file COPYING in the top-level source
# directory for licensing information.
# #############################################################################
#
# A simple demonstration of the solving capabilities of the cvc5 linear
# arithmetic solver through the Python API. This is a direct translation of
# linear_arith-new.cpp.
##
import cvc5
from cvc5 import Kind
if __name__ == "__main__":
tm = cvc5.TermManager()
slv = cvc5.Solver(tm)
slv.setLogic("QF_LIRA")
# Prove that if given x (Integer) and y (Real) and some constraints
# then the maximum value of y - x is 2/3
# Sorts
real = tm.getRealSort()
integer = tm.getIntegerSort()
# Variables
x = tm.mkConst(integer, "x")
y = tm.mkConst(real, "y")
# Constants
three = tm.mkInteger(3)
neg2 = tm.mkInteger(-2)
two_thirds = tm.mkReal(2, 3)
# Terms
three_y = tm.mkTerm(Kind.MULT, three, y)
diff = tm.mkTerm(Kind.SUB, y, x)
# Formulas
x_geq_3y = tm.mkTerm(Kind.GEQ, x, three_y)
x_leq_y = tm.mkTerm(Kind.LEQ, x ,y)
neg2_lt_x = tm.mkTerm(Kind.LT, neg2, x)
assertions = tm.mkTerm(Kind.AND, x_geq_3y, x_leq_y, neg2_lt_x)
print("Given the assertions", assertions)
slv.assertFormula(assertions)
slv.push()
diff_leq_two_thirds = tm.mkTerm(Kind.LEQ, diff, two_thirds)
print("Prove that", diff_leq_two_thirds, "with cvc5")
print("cvc5 should report UNSAT")
print("Result from cvc5 is:",
slv.checkSatAssuming(diff_leq_two_thirds.notTerm()))
slv.pop()
print()
slv.push()
diff_is_two_thirds = tm.mkTerm(Kind.EQUAL, diff, two_thirds)
slv.assertFormula(diff_is_two_thirds)
print("Show that the assertions are consistent with\n", diff_is_two_thirds, "with cvc5")
print("cvc5 should report SAT")
print("Result from cvc5 is:", slv.checkSat())
slv.pop()
|