File: combination.py

package info (click to toggle)
cvc5 1.3.2-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 87,260 kB
  • sloc: cpp: 383,850; java: 12,207; python: 12,090; sh: 5,679; ansic: 4,729; lisp: 763; perl: 208; makefile: 38
file content (53 lines) | stat: -rw-r--r-- 1,573 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
###############################################################################
# Top contributors (to current version):
#   Alex Ozdemir
#
# This file is part of the cvc5 project.
#
# Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
# in the top-level source directory and their institutional affiliations.
# All rights reserved.  See the file COPYING in the top-level source
# directory for licensing information.
# #############################################################################
#
# A simple demonstration of the capabilities of cvc5
#
# A simple demonstration of how to use uninterpreted functions, combining this
# with arithmetic, and extracting a model at the end of a satisfiable query.
# The model is displayed using getValue().
##
from cvc5.pythonic import *

if __name__ == "__main__":

    U = DeclareSort("U")
    x, y = Consts("x y", U)

    f = Function("f", U, IntSort())
    p = Function("p", IntSort(), BoolSort())

    assumptions = [f(x) >= 0, f(y) >= 0, f(x) + f(y) <= 1, Not(p(0)), p(f(y))]

    prove(Implies(And(assumptions), x != y))

    s = Solver()
    s.add(assumptions)
    assert sat == s.check()
    m = s.model()

    def print_val(t):
        print("{}: {}".format(t, m[t]))

    # print the of some terms
    print_val(f(x))
    print_val(f(y))
    print_val(f(x) + f(y))
    print_val(p(0))
    print_val(p(f(y)))

    # print value of *all* terms
    def print_all_subterms(t):
        print_val(t)
        for c in t.children():
            print_all_subterms(c)
    print_all_subterms(And(assumptions))