1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
#!/usr/bin/env python
###############################################################################
# Top contributors (to current version):
# Yoni Zohar, Aina Niemetz, Daniel Larraz
#
# This file is part of the cvc5 project.
#
# Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
# in the top-level source directory and their institutional affiliations.
# All rights reserved. See the file COPYING in the top-level source
# directory for licensing information.
# #############################################################################
#
# A simple demonstration of the api capabilities of cvc5, adapted from quickstart.cpp
##
import cvc5
from cvc5 import Kind
if __name__ == "__main__":
# Create a term manager
#! [docs-python-quickstart-0 start]
tm = cvc5.TermManager()
#! [docs-python-quickstart-0 end]
# Create a solver
#! [docs-python-quickstart-1 start]
solver = cvc5.Solver(tm)
#! [docs-python-quickstart-1 end]
# We will ask the solver to produce models and unsat cores,
# hence these options should be turned on.
#! [docs-python-quickstart-2 start]
solver.setOption("produce-models", "true")
solver.setOption("produce-unsat-cores", "true")
#! [docs-python-quickstart-2 end]
# The simplest way to set a logic for the solver is to choose "ALL".
# This enables all logics in the solver.
# Alternatively, "QF_ALL" enables all logics without quantifiers.
# To optimize the solver's behavior for a more specific logic,
# use the logic name, e.g. "QF_BV" or "QF_AUFBV".
# Set the logic
#! [docs-python-quickstart-3 start]
solver.setLogic("ALL")
#! [docs-python-quickstart-3 end]
# In this example, we will define constraints over reals and integers.
# Hence, we first obtain the corresponding sorts.
#! [docs-python-quickstart-4 start]
realSort = tm.getRealSort()
intSort = tm.getIntegerSort()
#! [docs-python-quickstart-4 end]
# x and y will be real variables, while a and b will be integer variables.
# Formally, their python type is Term,
# and they are called "constants" in SMT jargon:
#! [docs-python-quickstart-5 start]
x = tm.mkConst(realSort, "x")
y = tm.mkConst(realSort, "y")
a = tm.mkConst(intSort, "a")
b = tm.mkConst(intSort, "b")
#! [docs-python-quickstart-5 end]
# Our constraints regarding x and y will be:
#
# (1) 0 < x
# (2) 0 < y
# (3) x + y < 1
# (4) x <= y
#
#! [docs-python-quickstart-6 start]
# Formally, constraints are also terms. Their sort is Boolean.
# We will construct these constraints gradually,
# by defining each of their components.
# We start with the constant numerals 0 and 1:
zero = tm.mkReal(0)
one = tm.mkReal(1)
# Next, we construct the term x + y
xPlusY = tm.mkTerm(Kind.ADD, x, y)
# Now we can define the constraints.
# They use the operators +, <=, and <.
# In the API, these are denoted by Plus, Leq, and Lt.
constraint1 = tm.mkTerm(Kind.LT, zero, x)
constraint2 = tm.mkTerm(Kind.LT, zero, y)
constraint3 = tm.mkTerm(Kind.LT, xPlusY, one)
constraint4 = tm.mkTerm(Kind.LEQ, x, y)
# Now we assert the constraints to the solver.
solver.assertFormula(constraint1)
solver.assertFormula(constraint2)
solver.assertFormula(constraint3)
solver.assertFormula(constraint4)
#! [docs-python-quickstart-6 end]
# Check if the formula is satisfiable, that is,
# are there real values for x and y that satisfy all the constraints?
#! [docs-python-quickstart-7 start]
r1 = solver.checkSat()
#! [docs-python-quickstart-7 end]
# The result is either SAT, UNSAT, or UNKNOWN.
# In this case, it is SAT.
#! [docs-python-quickstart-8 start]
print("expected: sat")
print("result: ", r1)
#! [docs-python-quickstart-8 end]
# We can get the values for x and y that satisfy the constraints.
#! [docs-python-quickstart-9 start]
xVal = solver.getValue(x)
yVal = solver.getValue(y)
#! [docs-python-quickstart-9 end]
# It is also possible to get values for compound terms,
# even if those did not appear in the original formula.
#! [docs-python-quickstart-10 start]
xMinusY = tm.mkTerm(Kind.SUB, x, y)
xMinusYVal = solver.getValue(xMinusY)
#! [docs-python-quickstart-10 end]
# We can now obtain the values as python values
#! [docs-python-quickstart-11 start]
xPy = xVal.getRealValue()
yPy = yVal.getRealValue()
xMinusYPy = xMinusYVal.getRealValue()
print("value for x: ", xPy)
print("value for y: ", yPy)
print("value for x - y: ", xMinusYPy)
#! [docs-python-quickstart-11 end]
# Another way to independently compute the value of x - y would be
# to use the python minus operator instead of asking the solver.
# However, for more complex terms,
# it is easier to let the solver do the evaluation.
#! [docs-python-quickstart-12 start]
xMinusYComputed = xPy - yPy
if xMinusYComputed == xMinusYPy:
print("computed correctly")
else:
print("computed incorrectly")
#! [docs-python-quickstart-12 end]
# Further, we can convert the values to strings
#! [docs-python-quickstart-13 start]
xStr = str(xPy)
yStr = str(yPy)
xMinusYStr = str(xMinusYPy)
#! [docs-python-quickstart-13 end]
# Next, we will check satisfiability of the same formula,
# only this time over integer variables a and b.
# We start by resetting assertions added to the solver.
#! [docs-python-quickstart-14 start]
solver.resetAssertions()
#! [docs-python-quickstart-14 end]
# Next, we assert the same assertions above with integers.
# This time, we inline the construction of terms
# to the assertion command.
#! [docs-python-quickstart-15 start]
solver.assertFormula(tm.mkTerm(Kind.LT, tm.mkInteger(0), a))
solver.assertFormula(tm.mkTerm(Kind.LT, tm.mkInteger(0), b))
solver.assertFormula(
tm.mkTerm(
Kind.LT, tm.mkTerm(Kind.ADD, a, b), tm.mkInteger(1)))
solver.assertFormula(tm.mkTerm(Kind.LEQ, a, b))
#! [docs-python-quickstart-15 end]
# We check whether the revised assertion is satisfiable.
#! [docs-python-quickstart-16 start]
r2 = solver.checkSat()
#! [docs-python-quickstart-16 end]
# This time the formula is unsatisfiable
#! [docs-python-quickstart-17 start]
print("expected: unsat")
print("result:", r2)
#! [docs-python-quickstart-17 end]
# We can query the solver for an unsatisfiable core, i.e., a subset
# of the assertions that is already unsatisfiable.
#! [docs-python-quickstart-18 start]
unsatCore = solver.getUnsatCore()
print("unsat core size:", len(unsatCore))
print("unsat core:", unsatCore)
#! [docs-python-quickstart-18 end]
|