1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
#!/usr/bin/env python
###############################################################################
# Top contributors (to current version):
# Mudathir Mohamed, Aina Niemetz, Makai Mann
#
# This file is part of the cvc5 project.
#
# Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
# in the top-level source directory and their institutional affiliations.
# All rights reserved. See the file COPYING in the top-level source
# directory for licensing information.
# #############################################################################
#
# A simple demonstration of the solving capabilities of the cvc5 relations solver
# through the Python API. This is a direct translation of relations.cpp.
##
import cvc5
from cvc5 import Kind
if __name__ == "__main__":
tm = cvc5.TermManager()
solver = cvc5.Solver(tm)
# Set the logic
solver.setLogic("ALL")
# options
solver.setOption("produce-models", "true")
# we need finite model finding to answer sat problems with universal
# quantified formulas
solver.setOption("finite-model-find", "true")
# we need sets extension to support set.universe operator
solver.setOption("sets-exp", "true")
integer = tm.getIntegerSort()
set_ = tm.mkSetSort(integer)
# Verify union distributions over intersection
# (A union B) intersection C = (A intersection C) union (B intersection C)
# (declare-sort Person 0)
personSort = tm.mkUninterpretedSort("Person")
# (Tuple Person)
tupleArity1 = tm.mkTupleSort(personSort)
# (Relation Person)
relationArity1 = tm.mkSetSort(tupleArity1)
# (Tuple Person Person)
tupleArity2 = tm.mkTupleSort(personSort, personSort)
# (Relation Person Person)
relationArity2 = tm.mkSetSort(tupleArity2)
# empty set
emptySetTerm = tm.mkEmptySet(relationArity1)
# empty relation
emptyRelationTerm = tm.mkEmptySet(relationArity2)
# universe set
universeSet = tm.mkUniverseSet(relationArity1)
# variables
people = tm.mkConst(relationArity1, "people")
males = tm.mkConst(relationArity1, "males")
females = tm.mkConst(relationArity1, "females")
father = tm.mkConst(relationArity2, "father")
mother = tm.mkConst(relationArity2, "mother")
parent = tm.mkConst(relationArity2, "parent")
ancestor = tm.mkConst(relationArity2, "ancestor")
descendant = tm.mkConst(relationArity2, "descendant")
isEmpty1 = tm.mkTerm(Kind.EQUAL, males, emptySetTerm)
isEmpty2 = tm.mkTerm(Kind.EQUAL, females, emptySetTerm)
# (assert (= people (as set.universe (Relation Person))))
peopleAreTheUniverse = tm.mkTerm(Kind.EQUAL, people, universeSet)
# (assert (not (= males (as set.empty (Relation Person)))))
maleSetIsNotEmpty = tm.mkTerm(Kind.NOT, isEmpty1)
# (assert (not (= females (as set.empty (Relation Person)))))
femaleSetIsNotEmpty = tm.mkTerm(Kind.NOT, isEmpty2)
# (assert (= (set.inter males females)
# (as set.empty (Relation Person))))
malesFemalesIntersection = tm.mkTerm(Kind.SET_INTER, males, females)
malesAndFemalesAreDisjoint = \
tm.mkTerm(Kind.EQUAL, malesFemalesIntersection, emptySetTerm)
# (assert (not (= father (as set.empty (Relation Person Person)))))
# (assert (not (= mother (as set.empty (Relation Person Person)))))
isEmpty3 = tm.mkTerm(Kind.EQUAL, father, emptyRelationTerm)
isEmpty4 = tm.mkTerm(Kind.EQUAL, mother, emptyRelationTerm)
fatherIsNotEmpty = tm.mkTerm(Kind.NOT, isEmpty3)
motherIsNotEmpty = tm.mkTerm(Kind.NOT, isEmpty4)
# fathers are males
# (assert (set.subset (rel.join father people) males))
fathers = tm.mkTerm(Kind.RELATION_JOIN, father, people)
fathersAreMales = tm.mkTerm(Kind.SET_SUBSET, fathers, males)
# mothers are females
# (assert (set.subset (rel.join mother people) females))
mothers = tm.mkTerm(Kind.RELATION_JOIN, mother, people)
mothersAreFemales = tm.mkTerm(Kind.SET_SUBSET, mothers, females)
# (assert (= parent (set.union father mother)))
unionFatherMother = tm.mkTerm(Kind.SET_UNION, father, mother)
parentIsFatherOrMother = \
tm.mkTerm(Kind.EQUAL, parent, unionFatherMother)
# (assert (= ancestor (rel.tclosure parent)))
transitiveClosure = tm.mkTerm(Kind.RELATION_TCLOSURE, parent)
ancestorFormula = tm.mkTerm(Kind.EQUAL, ancestor, transitiveClosure)
# (assert (= descendant (rel.transpose ancestor)))
transpose = tm.mkTerm(Kind.RELATION_TRANSPOSE, ancestor)
descendantFormula = tm.mkTerm(Kind.EQUAL, descendant, transpose)
# (assert (forall ((x Person)) (not (set.member (tuple x x) ancestor))))
x = tm.mkVar(personSort, "x")
xxTuple = tm.mkTuple([x, x])
member = tm.mkTerm(Kind.SET_MEMBER, xxTuple, ancestor)
notMember = tm.mkTerm(Kind.NOT, member)
quantifiedVariables = tm.mkTerm(Kind.VARIABLE_LIST, x)
noSelfAncestor = tm.mkTerm(Kind.FORALL, quantifiedVariables, notMember)
# formulas
solver.assertFormula(peopleAreTheUniverse)
solver.assertFormula(maleSetIsNotEmpty)
solver.assertFormula(femaleSetIsNotEmpty)
solver.assertFormula(malesAndFemalesAreDisjoint)
solver.assertFormula(fatherIsNotEmpty)
solver.assertFormula(motherIsNotEmpty)
solver.assertFormula(fathersAreMales)
solver.assertFormula(mothersAreFemales)
solver.assertFormula(parentIsFatherOrMother)
solver.assertFormula(descendantFormula)
solver.assertFormula(ancestorFormula)
solver.assertFormula(noSelfAncestor)
# check sat
result = solver.checkSat()
# output
print("Result = {}".format(result))
print("people = {}".format(solver.getValue(people)))
print("males = {}".format(solver.getValue(males)))
print("females = {}".format(solver.getValue(females)))
print("father = {}".format(solver.getValue(father)))
print("mother = {}".format(solver.getValue(mother)))
print("parent = {}".format(solver.getValue(parent)))
print("descendant = {}".format(solver.getValue(descendant)))
print("ancestor = {}".format(solver.getValue(ancestor)))
|