1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
###############################################################################
# Top contributors (to current version):
# Yoni Zohar, Aina Niemetz, Alex Ozdemir
#
# This file is part of the cvc5 project.
#
# Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
# in the top-level source directory and their institutional affiliations.
# All rights reserved. See the file COPYING in the top-level source
# directory for licensing information.
# #############################################################################
#
# Two tests to validate the use of the separation logic API.
#
# First test validates that we cannot use the API if not using separation
# logic.
#
# Second test validates that the expressions returned from the API are
# correct and can be interrogated.
##
import cvc5
from cvc5 import Kind
# Test function to validate that we *cannot* obtain the heap/nil expressions
# when *not* using the separation logic theory
def validate_exception():
tm = cvc5.TermManager()
slv = cvc5.Solver(tm)
# Setup some options for cvc5 -- we explictly want to use a simplistic
# theory (e.g., QF_IDL)
slv.setLogic("QF_IDL")
slv.setOption("produce-models", "true")
slv.setOption("incremental", "false")
# Our integer type
integer = tm.getIntegerSort()
# we intentionally do not set the separation logic heap
# Our SMT constants
x = tm.mkConst(integer, "x")
y = tm.mkConst(integer, "y")
# y > x
y_gt_x = tm.mkTerm(Kind.GT, y, x)
# assert it
slv.assertFormula(y_gt_x)
# check
r = slv.checkSat()
# If this is UNSAT, we have an issue so bail-out
if not r.isSat():
return False
# We now try to obtain our separation logic expressions from the solver --
# we want to validate that we get our expected exceptions.
caught_on_heap = False
caught_on_nil = False
# The exception message we expect to obtain
expected = \
"cannot obtain separation logic expressions if not using the separation " \
"logic theory."
# test the heap expression
try:
heap_expr = slv.getValueSepHeap()
except RuntimeError as e:
caught_on_heap = True
# Check we get the correct exception string
if str(e) != expected:
return False
# test the nil expression
try:
nil_expr = slv.getValueSepNil()
except RuntimeError as e:
caught_on_nil = True
# Check we get the correct exception string
if str(e) != expected:
return False
if not caught_on_heap or not caught_on_nil:
return False
# All tests pass!
return True
# Test function to demonstrate the use of, and validate the capability, of
# obtaining the heap/nil expressions when using separation logic.
def validate_getters():
tm = cvc5.TermManager()
slv = cvc5.Solver(tm)
# Setup some options for cvc5
slv.setLogic("QF_ALL")
slv.setOption("produce-models", "true")
slv.setOption("incremental", "false")
# Our integer type
integer = tm.getIntegerSort()
#* Declare the separation logic heap types
slv.declareSepHeap(integer, integer)
# A "random" constant
random_constant = tm.mkInteger(0xDEAD)
# Another random constant
expr_nil_val = tm.mkInteger(0xFBAD)
# Our nil term
nil = tm.mkSepNil(integer)
# Our SMT constants
x = tm.mkConst(integer, "x")
y = tm.mkConst(integer, "y")
p1 = tm.mkConst(integer, "p1")
p2 = tm.mkConst(integer, "p2")
# Constraints on x and y
x_equal_const = tm.mkTerm(Kind.EQUAL, x, random_constant)
y_gt_x = tm.mkTerm(Kind.GT, y, x)
# Points-to expressions
p1_to_x = tm.mkTerm(Kind.SEP_PTO, p1, x)
p2_to_y = tm.mkTerm(Kind.SEP_PTO, p2, y)
# Heap -- the points-to have to be "starred"!
heap = tm.mkTerm(Kind.SEP_STAR, p1_to_x, p2_to_y)
# Constain "nil" to be something random
fix_nil = tm.mkTerm(Kind.EQUAL, nil, expr_nil_val)
# Add it all to the solver!
slv.assertFormula(x_equal_const)
slv.assertFormula(y_gt_x)
slv.assertFormula(heap)
slv.assertFormula(fix_nil)
# Incremental is disabled due to using separation logic, so don't query
# twice!
r = (slv.checkSat())
# If this is UNSAT, we have an issue so bail-out
if not r.isSat():
return False
# Obtain our separation logic terms from the solver
heap_expr = slv.getValueSepHeap()
nil_expr = slv.getValueSepNil()
# If the heap is not a separating conjunction, bail-out
if (heap_expr.getKind() != Kind.SEP_STAR):
return False
# If nil is not a direct equality, bail-out
if (nil_expr.getKind() != Kind.EQUAL):
return False
# Obtain the values for our "pointers"
val_for_p1 = slv.getValue(p1)
val_for_p2 = slv.getValue(p2)
# We need to make sure we find both pointers in the heap
checked_p1 = False
checked_p2 = False
# Walk all the children
for child in heap_expr:
# If we don't have a PTO operator, bail-out
if (child.getKind() != Kind.SEP_PTO):
return False
# Find both sides of the PTO operator
addr = slv.getValue(child[0])
value = slv.getValue(child[1])
# If the current address is the value for p1
if (addr == val_for_p1):
checked_p1 = True
# If it doesn't match the random constant, we have a problem
if value != random_constant:
return False
continue
if (addr == val_for_p2):
checked_p2 = True
# Our earlier constraint was that what p2 points to must be *greater*
# than the random constant -- if we get a value that is LTE, then
# something has gone wrong!
if int(str(value)) <= int(str(random_constant)):
return False
continue
# We should only have two addresses in heap, so if we haven't hit the
# "continue" for p1 or p2, then bail-out
return True
# If we complete the loop and we haven't validated both p1 and p2, then we
# have a problem
if (not checked_p1 or not checked_p2):
return False
# We now get our value for what nil is
value_for_nil = slv.getValue(nil_expr[1])
# The value for nil from the solver should be the value we originally tied
# nil to
if (value_for_nil != expr_nil_val):
return False
# All tests pass!
return True
# check that we get an exception when we should
assert validate_exception()
# check the getters
assert validate_getters()
|