1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/******************************************************************************
* Top contributors (to current version):
* Aina Niemetz, Andres Noetzli, Gereon Kremer
*
* This file is part of the cvc5 project.
*
* Copyright (c) 2009-2025 by the authors listed in the file AUTHORS
* in the top-level source directory and their institutional affiliations.
* All rights reserved. See the file COPYING in the top-level source
* directory for licensing information.
* ****************************************************************************
*
* Black box testing of the Op class.
*/
#include "test_api.h"
namespace cvc5::internal {
namespace test {
class TestApiBlackOp : public TestApi
{
};
TEST_F(TestApiBlackOp, hash)
{
std::hash<Op> h;
ASSERT_EQ(h(d_tm.mkOp(Kind::BITVECTOR_EXTRACT, {31, 1})),
h(d_tm.mkOp(Kind::BITVECTOR_EXTRACT, {31, 1})));
ASSERT_NE(h(d_tm.mkOp(Kind::BITVECTOR_EXTRACT, {31, 1})),
h(d_tm.mkOp(Kind::BITVECTOR_EXTRACT, {31, 2})));
(void)std::hash<Op>{}(Op());
}
TEST_F(TestApiBlackOp, getKind)
{
Op x = d_tm.mkOp(Kind::BITVECTOR_EXTRACT, {31, 1});
ASSERT_EQ(x.getKind(), Kind::BITVECTOR_EXTRACT);
}
TEST_F(TestApiBlackOp, isNull)
{
Op x;
ASSERT_TRUE(x.isNull());
Op y = d_tm.mkOp(Kind::BITVECTOR_EXTRACT, {31, 1});
ASSERT_FALSE(y.isNull());
ASSERT_NE(x, y);
}
TEST_F(TestApiBlackOp, opFromKind)
{
ASSERT_NO_THROW(d_tm.mkOp(Kind::ADD));
ASSERT_THROW(d_tm.mkOp(Kind::BITVECTOR_EXTRACT), CVC5ApiException);
}
TEST_F(TestApiBlackOp, getNumIndices)
{
// Operators with 0 indices
Op plus = d_tm.mkOp(Kind::ADD);
ASSERT_EQ(0, plus.getNumIndices());
// Operators with 1 index
Op divisible = d_tm.mkOp(Kind::DIVISIBLE, {4});
Op bvRepeat = d_tm.mkOp(Kind::BITVECTOR_REPEAT, {5});
Op bvZeroExtend = d_tm.mkOp(Kind::BITVECTOR_ZERO_EXTEND, {6});
Op bvSignExtend = d_tm.mkOp(Kind::BITVECTOR_SIGN_EXTEND, {7});
Op bvRotateLeft = d_tm.mkOp(Kind::BITVECTOR_ROTATE_LEFT, {8});
Op bvRotateRight = d_tm.mkOp(Kind::BITVECTOR_ROTATE_RIGHT, {9});
Op intToBv = d_tm.mkOp(Kind::INT_TO_BITVECTOR, {10});
Op iand = d_tm.mkOp(Kind::IAND, {11});
Op fpToUbv = d_tm.mkOp(Kind::FLOATINGPOINT_TO_UBV, {12});
Op fpToSbv = d_tm.mkOp(Kind::FLOATINGPOINT_TO_SBV, {13});
ASSERT_EQ(1, divisible.getNumIndices());
ASSERT_EQ(1, bvRepeat.getNumIndices());
ASSERT_EQ(1, bvZeroExtend.getNumIndices());
ASSERT_EQ(1, bvSignExtend.getNumIndices());
ASSERT_EQ(1, bvRotateLeft.getNumIndices());
ASSERT_EQ(1, bvRotateRight.getNumIndices());
ASSERT_EQ(1, intToBv.getNumIndices());
ASSERT_EQ(1, iand.getNumIndices());
ASSERT_EQ(1, fpToUbv.getNumIndices());
ASSERT_EQ(1, fpToSbv.getNumIndices());
// Operators with 2 indices
Op bvExtract = d_tm.mkOp(Kind::BITVECTOR_EXTRACT, {1, 0});
Op toFpFromIeeeBv = d_tm.mkOp(Kind::FLOATINGPOINT_TO_FP_FROM_IEEE_BV, {3, 2});
Op toFpFromFp = d_tm.mkOp(Kind::FLOATINGPOINT_TO_FP_FROM_FP, {5, 4});
Op toFpFromReal = d_tm.mkOp(Kind::FLOATINGPOINT_TO_FP_FROM_REAL, {7, 6});
Op toFpFromSbv = d_tm.mkOp(Kind::FLOATINGPOINT_TO_FP_FROM_SBV, {9, 8});
Op toFpFromUbv = d_tm.mkOp(Kind::FLOATINGPOINT_TO_FP_FROM_UBV, {11, 10});
Op regexpLoop = d_tm.mkOp(Kind::REGEXP_LOOP, {15, 14});
ASSERT_EQ(2, bvExtract.getNumIndices());
ASSERT_EQ(2, toFpFromIeeeBv.getNumIndices());
ASSERT_EQ(2, toFpFromFp.getNumIndices());
ASSERT_EQ(2, toFpFromReal.getNumIndices());
ASSERT_EQ(2, toFpFromSbv.getNumIndices());
ASSERT_EQ(2, toFpFromUbv.getNumIndices());
ASSERT_EQ(2, regexpLoop.getNumIndices());
// Operators with n indices
std::vector<uint32_t> indices = {0, 3, 2, 0, 1, 2};
Op tupleProject = d_tm.mkOp(Kind::TUPLE_PROJECT, indices);
ASSERT_EQ(indices.size(), tupleProject.getNumIndices());
Op relationProject = d_tm.mkOp(Kind::RELATION_PROJECT, indices);
ASSERT_EQ(indices.size(), relationProject.getNumIndices());
Op tableProject = d_tm.mkOp(Kind::TABLE_PROJECT, indices);
ASSERT_EQ(indices.size(), tableProject.getNumIndices());
}
TEST_F(TestApiBlackOp, subscriptOperator)
{
// Operators with 0 indices
Op plus = d_tm.mkOp(Kind::ADD);
ASSERT_THROW(plus[0], CVC5ApiException);
// Operators with 1 index
Op divisible = d_tm.mkOp(Kind::DIVISIBLE, {4});
Op bvRepeat = d_tm.mkOp(Kind::BITVECTOR_REPEAT, {5});
Op bvZeroExtend = d_tm.mkOp(Kind::BITVECTOR_ZERO_EXTEND, {6});
Op bvSignExtend = d_tm.mkOp(Kind::BITVECTOR_SIGN_EXTEND, {7});
Op bvRotateLeft = d_tm.mkOp(Kind::BITVECTOR_ROTATE_LEFT, {8});
Op bvRotateRight = d_tm.mkOp(Kind::BITVECTOR_ROTATE_RIGHT, {9});
Op intToBv = d_tm.mkOp(Kind::INT_TO_BITVECTOR, {10});
Op iand = d_tm.mkOp(Kind::IAND, {11});
Op fpToUbv = d_tm.mkOp(Kind::FLOATINGPOINT_TO_UBV, {12});
Op fpToSbv = d_tm.mkOp(Kind::FLOATINGPOINT_TO_SBV, {13});
Op regexpRepeat = d_tm.mkOp(Kind::REGEXP_REPEAT, {14});
ASSERT_EQ(4, divisible[0].getUInt32Value());
ASSERT_EQ(5, bvRepeat[0].getUInt32Value());
ASSERT_EQ(6, bvZeroExtend[0].getUInt32Value());
ASSERT_EQ(7, bvSignExtend[0].getUInt32Value());
ASSERT_EQ(8, bvRotateLeft[0].getUInt32Value());
ASSERT_EQ(9, bvRotateRight[0].getUInt32Value());
ASSERT_EQ(10, intToBv[0].getUInt32Value());
ASSERT_EQ(11, iand[0].getUInt32Value());
ASSERT_EQ(12, fpToUbv[0].getUInt32Value());
ASSERT_EQ(13, fpToSbv[0].getUInt32Value());
ASSERT_EQ(14, regexpRepeat[0].getUInt32Value());
// Operators with 2 indices
Op bvExtract = d_tm.mkOp(Kind::BITVECTOR_EXTRACT, {1, 0});
Op toFpFromIeeeBv = d_tm.mkOp(Kind::FLOATINGPOINT_TO_FP_FROM_IEEE_BV, {3, 2});
Op toFpFromFp = d_tm.mkOp(Kind::FLOATINGPOINT_TO_FP_FROM_FP, {5, 4});
Op toFpFromReal = d_tm.mkOp(Kind::FLOATINGPOINT_TO_FP_FROM_REAL, {7, 6});
Op toFpFromSbv = d_tm.mkOp(Kind::FLOATINGPOINT_TO_FP_FROM_SBV, {9, 8});
Op toFpFromUbv = d_tm.mkOp(Kind::FLOATINGPOINT_TO_FP_FROM_UBV, {11, 10});
Op regexpLoop = d_tm.mkOp(Kind::REGEXP_LOOP, {15, 14});
ASSERT_EQ(1, bvExtract[0].getUInt32Value());
ASSERT_EQ(0, bvExtract[1].getUInt32Value());
ASSERT_EQ(3, toFpFromIeeeBv[0].getUInt32Value());
ASSERT_EQ(2, toFpFromIeeeBv[1].getUInt32Value());
ASSERT_EQ(5, toFpFromFp[0].getUInt32Value());
ASSERT_EQ(4, toFpFromFp[1].getUInt32Value());
ASSERT_EQ(7, toFpFromReal[0].getUInt32Value());
ASSERT_EQ(6, toFpFromReal[1].getUInt32Value());
ASSERT_EQ(9, toFpFromSbv[0].getUInt32Value());
ASSERT_EQ(8, toFpFromSbv[1].getUInt32Value());
ASSERT_EQ(11, toFpFromUbv[0].getUInt32Value());
ASSERT_EQ(10, toFpFromUbv[1].getUInt32Value());
ASSERT_EQ(15, regexpLoop[0].getUInt32Value());
ASSERT_EQ(14, regexpLoop[1].getUInt32Value());
// Operators with n indices
std::vector<uint32_t> indices = {0, 3, 2, 0, 1, 2};
Op tupleProject = d_tm.mkOp(Kind::TUPLE_PROJECT, indices);
for (size_t i = 0, size = tupleProject.getNumIndices(); i < size; i++)
{
ASSERT_EQ(indices[i], tupleProject[i].getUInt32Value());
}
}
TEST_F(TestApiBlackOp, opScopingToString)
{
Op bitvector_repeat_ot = d_tm.mkOp(Kind::BITVECTOR_REPEAT, {5});
std::string op_repr = bitvector_repeat_ot.toString();
ASSERT_EQ(bitvector_repeat_ot.toString(), op_repr);
{
std::stringstream ss;
ss << bitvector_repeat_ot;
ASSERT_EQ(ss.str(), op_repr);
}
}
} // namespace test
} // namespace cvc5::internal
|