1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
|
.. _c-blas:
******************
The BLAS Interface
******************
The :mod:`cvxopt.blas` module provides an interface to the double-precision
real and complex Basic Linear Algebra Subprograms (BLAS). The names and
calling sequences of the Python functions in the interface closely match
the corresponding Fortran BLAS routines (described in the references below)
and their functionality is exactly the same. Many of the operations
performed by the BLAS routines can be implemented in a more straightforward
way by using the matrix arithmetic of the section :ref:`s-arithmetic`,
combined with the slicing and indexing of the section :ref:`s-indexing`.
As an example, ``C = A * B`` gives the same result as the BLAS call
``gemm(A, B, C)``. The BLAS interface offers two advantages. First,
some of the functions it includes are not easily implemented using the
basic matrix arithmetic. For example, BLAS includes functions that
efficiently exploit symmetry or triangular matrix structure. Second, there
is a performance difference that can be significant for large matrices.
Although our implementation of the basic matrix arithmetic makes internal
calls to BLAS, it also often requires creating temporary matrices to store
intermediate results. The BLAS functions on the other hand always operate
directly on their matrix arguments and never require any copying to
temporary matrices. Thus they can be viewed as generalizations of the
in-place matrix addition and scalar multiplication of the section
:ref:`s-arithmetic` to more complicated operations.
.. seealso::
* C. L. Lawson, R. J. Hanson, D. R. Kincaid, F. T. Krogh,
Basic Linear Algebra Subprograms for Fortran Use,
ACM Transactions on Mathematical Software, 5(3), 309-323, 1975.
* J. J. Dongarra, J. Du Croz, S. Hammarling, R. J. Hanson,
An Extended Set of Fortran Basic Linear Algebra Subprograms,
ACM Transactions on Mathematical Software, 14(1), 1-17, 1988.
* J. J. Dongarra, J. Du Croz, S. Hammarling, I. Duff,
A Set of Level 3 Basic Linear Algebra Subprograms,
ACM Transactions on Mathematical Software, 16(1), 1-17, 1990.
.. _s-conventions:
Matrix Classes
==============
The BLAS exploit several types of matrix structure: symmetric, Hermitian,
triangular, and banded. We represent all these matrix classes by dense
real or complex :class:`matrix <cvxopt.matrix>` objects, with additional
arguments that specify the structure.
**Vector**
A real or complex :math:`n`-vector is represented by a :class:`matrix`
of type :const:`'d'` or :const:`'z'` and length :math:`n`, with the
entries of the vector stored in column-major order.
**General matrix**
A general real or complex :math:`m` by :math:`n` matrix is represented
by a real or complex :class:`matrix` of size (:math:`m`, :math:`n`).
**Symmetric matrix**
A real or complex symmetric matrix of order :math:`n` is represented
by a real or complex :class:`matrix` of size (:math:`n`, :math:`n`),
and a character argument ``uplo`` with two possible values:
:const:`'L'` and :const:`'U'`. If ``uplo`` is :const:`'L'`, the lower
triangular part of the symmetric matrix is stored; if ``uplo`` is
:const:`'U'`, the upper triangular part is stored. A square
:class:`matrix` ``X`` of size (:math:`n`, :math:`n`) can therefore be
used to represent the symmetric matrices
.. math::
\left[\begin{array}{ccccc}
X[0,0] & X[1,0] & X[2,0] & \cdots & X[n-1,0] \\
X[1,0] & X[1,1] & X[2,1] & \cdots & X[n-1,1] \\
X[2,0] & X[2,1] & X[2,2] & \cdots & X[n-1,2] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X[n-1,0] & X[n-1,1] & X[n-1,2] & \cdots & X[n-1,n-1]
\end{array}\right] \quad \mbox{(uplo = 'L')},
\left[\begin{array}{ccccc}
X[0,0] & X[0,1] & X[0,2] & \cdots & X[0,n-1] \\
X[0,1] & X[1,1] & X[1,2] & \cdots & X[1,n-1] \\
X[0,2] & X[1,2] & X[2,2] & \cdots & X[2,n-1] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X[0,n-1] & X[1,n-1] & X[2,n-1] & \cdots & X[n-1,n-1]
\end{array}\right] \quad \mbox{(uplo = U')}.
**Complex Hermitian matrix**
A complex Hermitian matrix of order :math:`n` is represented by a
:class:`matrix` of type :const:`'z'` and size (:math:`n`, :math:`n`),
and a character argument ``uplo`` with the same meaning as for
symmetric matrices. A complex :class:`matrix` ``X`` of size
(:math:`n`, :math:`n`) can represent the Hermitian matrices
.. math::
\left[\begin{array}{ccccc}
\Re X[0,0] & \bar X[1,0] & \bar X[2,0] & \cdots &
\bar X[n-1,0] \\
X[1,0] & \Re X[1,1] & \bar X[2,1] & \cdots &
\bar X[n-1,1] \\
X[2,0] & X[2,1] & \Re X[2,2] & \cdots & \bar X[n-1,2] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X[n-1,0] & X[n-1,1] & X[n-1,2] & \cdots & \Re X[n-1,n-1]
\end{array}\right] \quad \mbox{(uplo = 'L')},
\left[\begin{array}{ccccc}
\Re X[0,0] & X[0,1] & X[0,2] & \cdots & X[0,n-1] \\
\bar X[0,1] & \Re X[1,1] & X[1,2] & \cdots & X[1,n-1] \\
\bar X[0,2] & \bar X[1,2] & \Re X[2,2] & \cdots &
X[2,n-1] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\bar X[0,n-1] & \bar X[1,n-1] & \bar X[2,n-1] & \cdots &
\Re X[n-1,n-1]
\end{array}\right] \quad \mbox{(uplo = 'U')}.
**Triangular matrix**
A real or complex triangular matrix of order :math:`n` is represented
by a real or complex :class:`matrix` of size (:math:`n`, :math:`n`),
and two character arguments: an argument ``uplo`` with possible values
:const:`'L'` and :const:`'U'` to distinguish between lower and upper
triangular matrices, and an argument ``diag`` with possible values
:const:`'U'` and :const:`'N'` to distinguish between unit and non-unit
triangular matrices. A square :class:`matrix` ``X`` of size
(:math:`n`, :math:`n`) can represent the triangular matrices
.. math::
\left[\begin{array}{ccccc}
X[0,0] & 0 & 0 & \cdots & 0 \\
X[1,0] & X[1,1] & 0 & \cdots & 0 \\
X[2,0] & X[2,1] & X[2,2] & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X[n-1,0] & X[n-1,1] & X[n-1,2] & \cdots & X[n-1,n-1]
\end{array}\right] \quad \mbox{(uplo = 'L', diag = 'N')},
\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
X[1,0] & 1 & 0 & \cdots & 0 \\
X[2,0] & X[2,1] & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
X[n-1,0] & X[n-1,1] & X[n-1,2] & \cdots & 1
\end{array}\right] \quad \mbox{(uplo = 'L', diag = 'U')},
\left[\begin{array}{ccccc}
X[0,0] & X[0,1] & X[0,2] & \cdots & X[0,n-1] \\
0 & X[1,1] & X[1,2] & \cdots & X[1,n-1] \\
0 & 0 & X[2,2] & \cdots & X[2,n-1] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & X[n-1,n-1]
\end{array}\right] \quad \mbox{(uplo = 'U', diag = 'N')},
\left[\begin{array}{ccccc}
1 & X[0,1] & X[0,2] & \cdots & X[0,n-1] \\
0 & 1 & X[1,2] & \cdots & X[1,n-1] \\
0 & 0 & 1 & \cdots & X[2,n-1] \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 1
\end{array}\right] \quad \mbox{(uplo = 'U', diag = 'U')}.
**General band matrix**
A general real or complex :math:`m` by :math:`n` band matrix with
:math:`k_l` subdiagonals and :math:`k_u` superdiagonals is represented
by a real or complex :class:`matrix` ``X`` of size
(:math:`k_l + k_u + 1`, :math:`n`), and the two integers :math:`m` and
:math:`k_l`. The diagonals of the band matrix are stored in the rows
of ``X``, starting at the top diagonal, and shifted horizontally so that
the entries of column :math:`k` of the band matrix are stored in column
:math:`k` of ``X``. A :class:`matrix` ``X`` of size
(:math:`k_l + k_u + 1`, :math:`n`) therefore represents the :math:`m`
by :math:`n` band matrix
.. math::
\left[ \begin{array}{ccccccc}
X[k_u,0] & X[k_u-1,1] & X[k_u-2,2] & \cdots &
X[0,k_u] & 0 & \cdots \\
X[k_u+1,0] & X[k_u,1] & X[k_u-1,2] & \cdots &
X[1,k_u] & X[0,k_u+1] & \cdots \\
X[k_u+2,0] & X[k_u+1,1] & X[k_u,2] & \cdots &
X[2,k_u] & X[1,k_u+1] & \cdots \\
\vdots & \vdots & \vdots & \ddots &
\vdots & \vdots & \ddots \\
X[k_u+k_l,0] & X[k_u+k_l-1,1] & X[k_u+k_l-2,2] & \cdots &
& & \\
0 & X[k_u+k_l,1] & X[k_u+k_l-1,2] & \cdots &
& & \\
\vdots & \vdots & \vdots & \ddots &
& &
\end{array}\right].
**Symmetric band matrix**
A real or complex symmetric band matrix of order :math:`n` with
:math:`k` subdiagonals, is represented by a real or complex matrix ``X``
of size (:math:`k+1`, :math:`n`), and an argument ``uplo`` to indicate
whether the subdiagonals (``uplo`` is :const:`'L'`) or superdiagonals
(``uplo`` is :const:`'U'`) are stored. The :math:`k+1` diagonals are
stored as rows of ``X``, starting at the top diagonal (i.e., the main
diagonal if ``uplo`` is :const:`'L'`, or the :math:`k`-th superdiagonal
if ``uplo`` is :const:`'U'`) and shifted horizontally so that the
entries of the :math:`k`-th column of the band matrix are stored in
column :math:`k` of ``X``. A :class:`matrix` ``X`` of size
(:math:`k+1`, :math:`n`) can therefore represent the band matrices
.. math::
\left[ \begin{array}{ccccccc}
X[0,0] & X[1,0] & X[2,0] & \cdots & X[k,0] & 0
& \cdots \\
X[1,0] & X[0,1] & X[1,1] & \cdots & X[k-1,1] & X[k,1]
& \cdots \\
X[2,0] & X[1,1] & X[0,2] & \cdots & X[k-2,2] & X[k-1,2]
& \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots
& \ddots \\
X[k,0] & X[k-1,1] & X[k-2,2] & \cdots & & & \\
0 & X[k,1] & X[k-1,2] & \cdots & & & \\
\vdots & \vdots & \vdots & \ddots & & &
\end{array}\right] \quad \mbox{(uplo = 'L')},
\left[ \begin{array}{ccccccc}
X[k,0] & X[k-1,1] & X[k-2,2] & \cdots & X[0,k] & 0
& \cdots \\
X[k-1,1] & X[k,1] & X[k-1,2] & \cdots & X[1,k] & X[0,k+1]
& \cdots \\
X[k-2,2] & X[k-1,2] & X[k,2] & \cdots & X[2,k] & X[1,k+1]
& \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots
& \ddots \\
X[0,k] & X[1,k] & X[2,k] & \cdots & & & \\
0 & X[0,k+1] & X[1,k+1] & \cdots & & & \\
\vdots & \vdots & \vdots & \ddots & & &
\end{array}\right] \quad \mbox{(uplo='U')}.
**Hermitian band matrix**
A complex Hermitian band matrix of order :math:`n` with :math:`k`
subdiagonals is represented by a complex matrix of size
(:math:`k+1`, :math:`n`) and an argument ``uplo``, with the same meaning
as for symmetric band matrices. A :class:`matrix` ``X`` of size
(:math:`k+1`, :math:`n`) can represent the band matrices
.. math::
\left[ \begin{array}{ccccccc}
\Re X[0,0] & \bar X[1,0] & \bar X[2,0] & \cdots &
\bar X[k,0] & 0 & \cdots \\
X[1,0] & \Re X[0,1] & \bar X[1,1] & \cdots &
\bar X[k-1,1] & \bar X[k,1] & \cdots \\
X[2,0] & X[1,1] & \Re X[0,2] & \cdots &
\bar X[k-2,2] & \bar X[k-1,2] & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots
& \vdots & \ddots \\
X[k,0] & X[k-1,1] & X[k-2,2] & \cdots & & & \\
0 & X[k,1] & X[k-1,2] & \cdots & & & \\
\vdots & \vdots & \vdots & \ddots & & &
\end{array}\right] \quad \mbox{(uplo = 'L')},
\left[ \begin{array}{ccccccc}
\Re X[k,0] & X[k-1,1] & X[k-2,2] & \cdots & X[0,k] &
0 & \cdots \\
\bar X[k-1,1] & \Re X[k,1] & X[k-1,2] & \cdots &
X[1,k] & X[0,k+1] & \cdots \\
\bar X[k-2,2] & \bar X[k-1,2] & \Re X[k,2] & \cdots &
X[2,k] & X[1,k+1] & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots &
\vdots & \ddots \\
\bar X[0,k] & \bar X[1,k] & \bar X[2,k] & \cdots &
& & \\
0 & \bar X[0,k+1] & \bar X[1,k+1] & \cdots & & & \\
\vdots & \vdots & \vdots & \ddots & & &
\end{array}\right] \quad \mbox{(uplo='U')}.
**Triangular band matrix**
A triangular band matrix of order :math:`n` with :math:`k` subdiagonals
or superdiagonals is represented by a real complex matrix of size
(:math:`k+1`, :math:`n`) and two character arguments ``uplo`` and
``diag``, with similar conventions as for symmetric band matrices.
A :class:`matrix` ``X`` of size (:math:`k+1`, :math:`n`) can represent
the band matrices
.. math::
\left[ \begin{array}{cccc}
X[0,0] & 0 & 0 & \cdots \\
X[1,0] & X[0,1] & 0 & \cdots \\
X[2,0] & X[1,1] & X[0,2] & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
X[k,0] & X[k-1,1] & X[k-2,2] & \cdots \\
0 & X[k,1] & X[k-1,1] & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \quad \mbox{(uplo = 'L', diag = 'N')},
\left[ \begin{array}{cccc}
1 & 0 & 0 & \cdots \\
X[1,0] & 1 & 0 & \cdots \\
X[2,0] & X[1,1] & 1 & \cdots \\
\vdots & \vdots & \vdots & \ddots \\
X[k,0] & X[k-1,1] & X[k-2,2] & \cdots \\
0 & X[k,1] & X[k-1,2] & \cdots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right] \quad \mbox{(uplo = 'L', diag = 'U')},
\left[ \begin{array}{ccccccc}
X[k,0] & X[k-1,1] & X[k-2,3] & \cdots & X[0,k] &
0 & \cdots\\
0 & X[k,1] & X[k-1,2] & \cdots & X[1,k] &
X[0,k+1] & \cdots \\
0 & 0 & X[k,2] & \cdots & X[2,k] &
X[1,k+1] & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots &
\vdots & \ddots
\end{array}\right] \quad \mbox{(uplo = 'U', diag = 'N')},
\left[ \begin{array}{ccccccc}
1 & X[k-1,1] & X[k-2,3] & \cdots & X[0,k] &
0 & \cdots\\
0 & 1 & X[k-1,2] & \cdots & X[1,k] &
X[0,k+1] & \cdots \\
0 & 0 & 1 & \cdots & X[2,k] &
X[1,k+1] & \cdots \\
\vdots & \vdots & \vdots & \ddots & \vdots &
\vdots & \ddots
\end{array}\right] \quad \mbox{(uplo = 'U', diag = 'U')}.
When discussing BLAS functions in the following sections we will omit
several less important optional arguments that can be used to select
submatrices for in-place operations. The complete specification is
documented in the docstrings of the source code, and can be viewed with the
:program:`pydoc` help program.
.. _s-blas-1:
Level 1 BLAS
============
The level 1 functions implement vector operations.
.. function:: cvxopt.blas.scal(alpha, x)
Scales a vector by a constant:
.. math::
x := \alpha x.
If ``x`` is a real :class:`matrix`, the scalar argument ``alpha`` must
be a Python integer or float. If ``x`` is complex, ``alpha`` can be an
integer, float, or complex.
.. function:: cvxopt.blas.nrm2(x)
Euclidean norm of a vector: returns
.. math::
\|x\|_2.
.. function:: cvxopt.blas.asum(x)
1-Norm of a vector: returns
.. math::
\|x\|_1 \quad \mbox{($x$ real)}, \qquad
\|\Re x\|_1 + \|\Im x\|_1 \quad \mbox{($x$ complex)}.
.. function:: cvxopt.blas.iamax(x)
Returns
.. math::
\mathop{\rm argmax}_{k=0,\ldots,n-1} |x_k| \quad \mbox{($x$ real)},
\qquad
\mathop{\rm argmax}_{k=0,\ldots,n-1} |\Re x_k| + |\Im x_k| \quad
\mbox{($x$ complex)}.
If more than one coefficient achieves the maximum, the index of the
first :math:`k` is returned.
.. function:: cvxopt.blas.swap(x, y)
Interchanges two vectors:
.. math::
x \leftrightarrow y.
``x`` and ``y`` are matrices of the same type (:const:`'d'` or
:const:`'z'`).
.. function:: cvxopt.blas.copy(x, y)
Copies a vector to another vector:
.. math::
y := x.
``x`` and ``y`` are matrices of the same type (:const:`'d'` or
:const:`'z'`).
.. function:: cvxopt.blas.axpy(x, y[, alpha = 1.0])
Constant times a vector plus a vector:
.. math::
y := \alpha x + y.
``x`` and ``y`` are matrices of the same type (:const:`'d'` or
:const:`'z'`). If ``x`` is real, the scalar argument ``alpha`` must be
a Python integer or float. If ``x`` is complex, ``alpha`` can be an
integer, float, or complex.
.. function:: cvxopt.blas.dot(x, y)
Returns
.. math::
x^Hy.
``x`` and ``y`` are matrices of the same type (:const:`'d'` or
:const:`'z'`).
.. function:: cvxopt.blas.dotu(x, y)
Returns
.. math::
x^Ty.
``x`` and ``y`` are matrices of the same type (:const:`'d'` or
:const:`'z'`).
.. _s-blas-2:
Level 2 BLAS
============
The level 2 functions implement matrix-vector products and rank-1 and
rank-2 matrix updates. Different types of matrix structure can be exploited
using the conventions of the section :ref:`s-conventions`.
.. function:: cvxopt.blas.gemv(A, x, y[, trans = 'N', alpha = 1.0, beta = 0.0])
Matrix-vector product with a general matrix:
.. math::
y & := \alpha Ax + \beta y \quad
(\mathrm{trans} = \mathrm{'N'}), \\
y & := \alpha A^T x + \beta y \quad
(\mathrm{trans} = \mathrm{'T'}), \\
y & := \alpha A^H x + \beta y \quad
(\mathrm{trans} = \mathrm{'C'}).
The arguments ``A``, ``x``, and ``y`` must have the same type
(:const:`'d'` or :const:`'z'`). Complex values of ``alpha`` and
``beta`` are only allowed if ``A`` is complex.
.. function:: cvxopt.blas.symv(A, x, y[, uplo = 'L', alpha = 1.0, beta = 0.0])
Matrix-vector product with a real symmetric matrix:
.. math::
y := \alpha A x + \beta y,
where :math:`A` is a real symmetric matrix. The arguments ``A``,
``x``, and ``y`` must have type :const:`'d'`, and ``alpha`` and
``beta`` must be real.
.. function:: cvxopt.blas.hemv(A, x, y[, uplo = 'L', alpha = 1.0, beta = 0.0])
Matrix-vector product with a real symmetric or complex Hermitian
matrix:
.. math::
y := \alpha A x + \beta y,
where :math:`A` is real symmetric or complex Hermitian. The arguments
``A``, ``x``, ``y`` must have the same type (:const:`'d'` or
:const:`'z'`). Complex values of ``alpha`` and ``beta`` are only
allowed if ``A`` is complex.
.. function:: cvxopt.blas.trmv(A, x[, uplo = 'L', trans = 'N', diag = 'N'])
Matrix-vector product with a triangular matrix:
.. math::
x & := Ax \quad (\mathrm{trans} = \mathrm{'N'}), \\
x & := A^T x \quad (\mathrm{trans} = \mathrm{'T'}), \\
x & := A^H x \quad (\mathrm{trans} = \mathrm{'C'}),
where :math:`A` is square and triangular. The arguments ``A`` and
``x`` must have the same type (:const:`'d'` or :const:`'z'`).
.. function:: cvxopt.blas.trsv(A, x[, uplo = 'L', trans = 'N', diag = 'N'])
Solution of a nonsingular triangular set of linear equations:
.. math::
x & := A^{-1}x \quad (\mathrm{trans} = \mathrm{'N'}), \\
x & := A^{-T}x \quad (\mathrm{trans} = \mathrm{'T'}), \\
x & := A^{-H}x \quad (\mathrm{trans} = \mathrm{'C'}),
where :math:`A` is square and triangular with nonzero diagonal elements.
The arguments ``A`` and ``x`` must have the same type (:const:`'d'` or
:const:`'z'`).
.. function:: cvxopt.blas.gbmv(A, m, kl, x, y[, trans = 'N', alpha = 1.0, beta = 0.0])
Matrix-vector product with a general band matrix:
.. math::
y & := \alpha Ax + \beta y \quad
(\mathrm{trans} = \mathrm{'N'}), \\
y & := \alpha A^T x + \beta y \quad
(\mathrm{trans} = \mathrm{'T'}), \\
y & := \alpha A^H x + \beta y \quad
(\mathrm{trans} = \mathrm{'C'}),
where :math:`A` is a rectangular band matrix with :math:`m` rows and
:math:`k_l` subdiagonals. The arguments ``A``, ``x``, ``y`` must have
the same type (:const:`'d'` or :const:`'z'`). Complex values of
``alpha`` and ``beta`` are only allowed if ``A`` is complex.
.. function:: cvxopt.blas.sbmv(A, x, y[, uplo = 'L', alpha = 1.0, beta = 0.0])
Matrix-vector product with a real symmetric band matrix:
.. math::
y := \alpha Ax + \beta y,
where :math:`A` is a real symmetric band matrix. The arguments
``A``, ``x``, ``y`` must have type :const:`'d'`, and ``alpha`` and
``beta`` must be real.
.. function:: cvxopt.blas.hbmv(A, x, y[, uplo = 'L', alpha = 1.0, beta = 0.0])
Matrix-vector product with a real symmetric or complex Hermitian band
matrix:
.. math::
y := \alpha Ax + \beta y,
where :math:`A` is a real symmetric or complex Hermitian band matrix.
The arguments ``A``, ``x``, ``y`` must have the same type
(:const:`'d'` or :const:`'z'`). Complex values of ``alpha`` and
``beta`` are only allowed if ``A`` is complex.
.. function:: cvxopt.blas.tbmv(A, x[, uplo = 'L', trans = 'N', diag = 'N'])
Matrix-vector product with a triangular band matrix:
.. math::
x & := Ax \quad (\mathrm{trans} = \mathrm{'N'}), \\
x & := A^T x \quad (\mathrm{trans} = \mathrm{'T'}), \\
x & := A^H x \quad (\mathrm{trans} = \mathrm{'C'}).
The arguments ``A`` and ``x`` must have the same type (:const:`'d'` or
:const:`'z'`).
.. function:: cvxopt.blas.tbsv(A, x[, uplo = 'L', trans = 'N', diag = 'N'])
Solution of a triangular banded set of linear equations:
.. math::
x & := A^{-1}x \quad (\mathrm{trans} = \mathrm{'N'}), \\
x & := A^{-T} x \quad (\mathrm{trans} = \mathrm{'T'}), \\
x & := A^{-H} x \quad (\mathrm{trans} = \mathrm{'T'}),
where :math:`A` is a triangular band matrix of with nonzero diagonal
elements. The arguments ``A`` and ``x`` must have the same type
(:const:`'d'` or :const:`'z'`).
.. function:: cvxopt.blas.ger(x, y, A[, alpha = 1.0])
General rank-1 update:
.. math::
A := A + \alpha x y^H,
where :math:`A` is a general matrix. The arguments ``A``, ``x``, and
``y`` must have the same type (:const:`'d'` or :const:`'z'`). Complex
values of ``alpha`` are only allowed if ``A`` is complex.
.. function:: cvxopt.blas.geru(x, y, A[, alpha = 1.0])
General rank-1 update:
.. math::
A := A + \alpha x y^T,
where :math:`A` is a general matrix. The arguments ``A``, ``x``, and
``y`` must have the same type (:const:`'d'` or :const:`'z'`). Complex
values of ``alpha`` are only allowed if ``A`` is complex.
.. function:: cvxopt.blas.syr(x, A[, uplo = 'L', alpha = 1.0])
Symmetric rank-1 update:
.. math::
A := A + \alpha xx^T,
where :math:`A` is a real symmetric matrix. The arguments ``A`` and
``x`` must have type :const:`'d'`. ``alpha`` must be a real number.
.. function:: cvxopt.blas.her(x, A[, uplo = 'L', alpha = 1.0])
Hermitian rank-1 update:
.. math::
A := A + \alpha xx^H,
where :math:`A` is a real symmetric or complex Hermitian matrix. The
arguments ``A`` and ``x`` must have the same type (:const:`'d'` or
:const:`'z'`). ``alpha`` must be a real number.
.. function:: cvxopt.blas.syr2(x, y, A[, uplo = 'L', alpha = 1.0])
Symmetric rank-2 update:
.. math::
A := A + \alpha (xy^T + yx^T),
where :math:`A` is a real symmetric matrix. The arguments ``A``, ``x``,
and ``y`` must have type :const:`'d'`. ``alpha`` must be real.
.. function:: cvxopt.blas.her2(x, y, A[, uplo = 'L', alpha = 1.0])
Symmetric rank-2 update:
.. math::
A := A + \alpha xy^H + \bar \alpha yx^H,
where :math:`A` is a a real symmetric or complex Hermitian matrix.
The arguments ``A``, ``x``, and ``y`` must have the same type
(:const:`'d'` or :const:`'z'`). Complex values of ``alpha`` are only
allowed if ``A`` is complex.
As an example, the following code multiplies the tridiagonal matrix
.. math::
A = \left[\begin{array}{rrrr}
1 & 6 & 0 & 0 \\
2 & -4 & 3 & 0 \\
0 & -3 & -1 & 1
\end{array}\right]
with the vector :math:`x = (1,-1,2,-2)`.
>>> from cvxopt import matrix
>>> from cvxopt.blas import gbmv
>>> A = matrix([[0., 1., 2.], [6., -4., -3.], [3., -1., 0.], [1., 0., 0.]])
>>> x = matrix([1., -1., 2., -2.])
>>> y = matrix(0., (3,1))
>>> gbmv(A, 3, 1, x, y)
>>> print(y)
[-5.00e+00]
[ 1.20e+01]
[-1.00e+00]
The following example illustrates the use of
:func:`tbsv <cvxopt.blas.tbsv>`.
>>> from cvxopt import matrix
>>> from cvxopt.blas import tbsv
>>> A = matrix([-6., 5., -1., 2.], (1,4))
>>> x = matrix(1.0, (4,1))
>>> tbsv(A, x) # x := diag(A)^{-1}*x
>>> print(x)
[-1.67e-01]
[ 2.00e-01]
[-1.00e+00]
[ 5.00e-01]
.. _s-blas-3:
Level 3 BLAS
============
The level 3 BLAS include functions for matrix-matrix multiplication.
.. function:: cvxopt.blas.gemm(A, B, C[, transA = 'N', transB = 'N', alpha = 1.0, beta = 0.0])
Matrix-matrix product of two general matrices:
.. math::
\newcommand{\op}{\mathop{\mathrm{op}}}
C := \alpha \op(A) \op(B) + \beta C
where
.. math::
\newcommand{\op}{\mathop{\mathrm{op}}}
\op(A) = \left\{ \begin{array}{ll}
A & \mathrm{transA} = \mathrm{'N'} \\
A^T & \mathrm{transA} = \mathrm{'T'} \\
A^H & \mathrm{transA} = \mathrm{'C'} \end{array} \right.
\qquad
\op(B) = \left\{ \begin{array}{ll}
B & \mathrm{transB} = \mathrm{'N'} \\
B^T & \mathrm{transB} = \mathrm{'T'} \\
B^H & \mathrm{transB} = \mathrm{'C'}. \end{array} \right.
The arguments ``A``, ``B``, and ``C`` must have the same type
(:const:`'d'` or :const:`'z'`). Complex values of ``alpha`` and
``beta`` are only allowed if ``A`` is complex.
.. function:: cvxopt.blas.symm(A, B, C[, side = 'L', uplo = 'L', alpha =1.0, beta = 0.0])
Product of a real or complex symmetric matrix :math:`A` and a general
matrix :math:`B`:
.. math::
C & := \alpha AB + \beta C \quad (\mathrm{side} = \mathrm{'L'}), \\
C & := \alpha BA + \beta C \quad (\mathrm{side} = \mathrm{'R'}).
The arguments ``A``, ``B``, and ``C`` must have the same type
(:const:`'d'` or :const:`'z'`). Complex values of ``alpha`` and
``beta`` are only allowed if ``A`` is complex.
.. function:: cvxopt.blas.hemm(A, B, C[, side = 'L', uplo = 'L', alpha = 1.0, beta = 0.0])
Product of a real symmetric or complex Hermitian matrix :math:`A` and a
general matrix :math:`B`:
.. math::
C & := \alpha AB + \beta C \quad (\mathrm{side} = \mathrm{'L'}), \\
C & := \alpha BA + \beta C \quad (\mathrm{side} = \mathrm{'R'}).
The arguments ``A``, ``B``, and ``C`` must have the same type
(:const:`'d'` or :const:`'z'`). Complex values of ``alpha`` and
``beta`` are only allowed if ``A`` is complex.
.. function:: cvxopt.blas.trmm(A, B[, side = 'L', uplo = 'L', transA = 'N', diag = 'N', alpha = 1.0])
Product of a triangular matrix :math:`A` and a general matrix :math:`B`:
.. math::
\newcommand{\op}{\mathop{\mathrm{op}}}
\begin{split}
B & := \alpha\op(A)B \quad (\mathrm{side} = \mathrm{'L'}), \\
B & := \alpha B\op(A) \quad (\mathrm{side} = \mathrm{'R'})
\end{split}
where
.. math::
\newcommand{\op}{\mathop{\mathrm{op}}}
\op(A) = \left\{ \begin{array}{ll}
A & \mathrm{transA} = \mathrm{'N'} \\
A^T & \mathrm{transA} = \mathrm{'T'} \\
A^H & \mathrm{transA} = \mathrm{'C'}. \end{array} \right.
The arguments ``A`` and ``B`` must have the same type (:const:`'d'` or
:const:`'z'`). Complex values of ``alpha`` are only allowed if ``A``
is complex.
.. function:: cvxopt.blas.trsm(A, B[, side = 'L', uplo = 'L', transA = 'N', diag = 'N', alpha = 1.0])
Solution of a nonsingular triangular system of equations:
.. math::
\newcommand{\op}{\mathop{\mathrm{op}}}
\begin{split}
B & := \alpha \op(A)^{-1}B \quad (\mathrm{side} = \mathrm{'L'}), \\
B & := \alpha B\op(A)^{-1} \quad (\mathrm{side} = \mathrm{'R'}),
\end{split}
where
.. math::
\newcommand{\op}{\mathop{\mathrm{op}}}
\op(A) = \left\{ \begin{array}{ll}
A & \mathrm{transA} = \mathrm{'N'} \\
A^T & \mathrm{transA} = \mathrm{'T'} \\
A^H & \mathrm{transA} = \mathrm{'C'}, \end{array} \right.
:math:`A` is triangular and :math:`B` is a general matrix. The
arguments ``A`` and ``B`` must have the same type (:const:`'d'` or
:const:`'z'`). Complex values of ``alpha`` are only allowed if ``A``
is complex.
.. function:: cvxopt.blas.syrk(A, C[, uplo = 'L', trans = 'N', alpha = 1.0, beta = 0.0])
Rank-:math:`k` update of a real or complex symmetric matrix :math:`C`:
.. math::
C & := \alpha AA^T + \beta C \quad
(\mathrm{trans} = \mathrm{'N'}), \\
C & := \alpha A^TA + \beta C \quad
(\mathrm{trans} = \mathrm{'T'}),
where :math:`A` is a general matrix. The arguments ``A`` and ``C``
must have the same type (:const:`'d'` or :const:`'z'`). Complex values
of ``alpha`` and ``beta`` are only allowed if ``A`` is complex.
.. function:: cvxopt.blas.herk(A, C[, uplo = 'L', trans = 'N', alpha = 1.0, beta = 0.0])
Rank-:math:`k` update of a real symmetric or complex Hermitian matrix
:math:`C`:
.. math::
C & := \alpha AA^H + \beta C \quad
(\mathrm{trans} = \mathrm{'N'}), \\
C & := \alpha A^HA + \beta C \quad
(\mathrm{trans} = \mathrm{'C'}),
where :math:`A` is a general matrix. The arguments ``A`` and ``C``
must have the same type (:const:`'d'` or :const:`'z'`). ``alpha`` and
``beta`` must be real.
.. function:: cvxopt.blas.syr2k(A, B, C[, uplo = 'L', trans = 'N', alpha = 1.0, beta = 0.0])
Rank-:math:`2k` update of a real or complex symmetric matrix :math:`C`:
.. math::
C & := \alpha (AB^T + BA^T) + \beta C \quad
(\mathrm{trans} = \mathrm{'N'}), \\
C & := \alpha (A^TB + B^TA) + \beta C \quad
(\mathrm{trans} = \mathrm{'T'}).
:math:`A` and :math:`B` are general real or complex matrices. The
arguments ``A``, ``B``, and ``C`` must have the same type. Complex
values of ``alpha`` and ``beta`` are only allowed if ``A`` is complex.
.. function:: cvxopt.blas.her2k(A, B, C[, uplo = 'L', trans = 'N', alpha = 1.0, beta = 0.0])
Rank-:math:`2k` update of a real symmetric or complex Hermitian matrix
:math:`C`:
.. math::
C & := \alpha AB^H + \bar \alpha BA^H + \beta C \quad
(\mathrm{trans} = \mathrm{'N'}), \\
C & := \alpha A^HB + \bar\alpha B^HA + \beta C \quad
(\mathrm{trans} = \mathrm{'C'}),
where :math:`A` and :math:`B` are general matrices. The arguments
``A``, ``B``, and ``C`` must have the same type (:const:`'d'` or
:const:`'z'`). Complex values of ``alpha`` are only allowed if ``A``
is complex. ``beta`` must be real.
|