File: coneprog.rst

package info (click to toggle)
cvxopt 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, trixie
  • size: 2,800 kB
  • sloc: ansic: 23,229; python: 11,991; makefile: 75; sh: 7
file content (2161 lines) | stat: -rw-r--r-- 77,236 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
.. _c-coneprog:

****************
Cone Programming
****************

In this chapter we consider convex optimization problems of the form

.. math:: 

    \begin{array}{ll}
    \mbox{minimize}   & (1/2) x^TPx + q^T x \\
    \mbox{subject to} & G x \preceq h \\ 
                      & Ax = b.
    \end{array}

The linear inequality is a generalized inequality with respect to a 
proper convex cone.  It may include componentwise vector inequalities, 
second-order cone inequalities, and linear matrix inequalities.  

The main solvers are :func:`conelp <cvxopt.solvers.conelp>` and 
:func:`coneqp <cvxopt.solvers.coneqp>`, described in the
sections :ref:`s-conelp` and :ref:`s-coneqp`.  The function 
:func:`conelp` is restricted to problems with linear cost functions, and 
can detect primal and dual infeasibility.  The function :func:`coneqp` 
solves the general quadratic problem, but requires the problem to be 
strictly primal and dual feasible.  For convenience (and backward 
compatibility), simpler interfaces to these function are also provided 
that handle pure linear programs, quadratic programs, second-order cone 
programs, and semidefinite programs.  These are described in the sections
:ref:`s-lpsolver`, :ref:`s-qp`, :ref:`s-socpsolver`, :ref:`s-sdpsolver`.  
In the section :ref:`s-conelp-struct` we explain how custom solvers can 
be implemented that exploit structure in cone programs.  The last two 
sections describe optional interfaces to external solvers, and the 
algorithm parameters that control the cone programming solvers.


.. _s-conelp:

Linear Cone Programs 
====================

.. function:: cvxopt.solvers.conelp(c, G, h[, dims[, A, b[, primalstart[, dualstart[, kktsolver]]]]])

    Solves a pair of primal and dual cone programs

    .. math::
    
        \begin{array}[t]{ll}
        \mbox{minimize}   & c^T x \\
        \mbox{subject to} & G x + s = h \\ 
                          & Ax = b \\ 
                          & s \succeq 0
        \end{array}
        \qquad\qquad
        \begin{array}[t]{ll}
        \mbox{maximize}   & -h^T z - b^T y \\
        \mbox{subject to} & G^T z + A^T y + c = 0 \\
                          & z \succeq 0.
        \end{array}
   
    The primal variables are :math:`x` and :math:`s`.  The dual variables  
    are :math:`y`, :math:`z`.  The inequalities are interpreted as 
    :math:`s \in C`, :math:`z\in C`, where :math:`C` is a cone defined as 
    a Cartesian product of a nonnegative orthant, a number of second-order
    cones, and a number of positive semidefinite cones:

    .. math::

        C = C_0 \times C_1 \times \cdots \times C_M \times C_{M+1} \times
            \cdots \times C_{M+N}

    with

    .. math::

        \newcommand{\reals}{{\mbox{\bf R}}}
        \newcommand{\svec}{\mathop{\mathbf{vec}}}
        \newcommand{\symm}{{\mbox{\bf S}}}
        \begin{split}
            C_0 & = 
                \{ u \in \reals^l \;| \; u_k \geq 0, \; k=1, \ldots,l\}, \\
            C_{k+1} & = \{ (u_0, u_1) \in \reals \times \reals^{r_{k}-1} 
                \; | \; u_0 \geq \|u_1\|_2 \},  \quad k=0,\ldots, M-1, \\
            C_{k+M+1} &= \left\{ \svec(u) \; | \; u \in \symm^{t_k}_+ 
                \right\}, \quad k=0,\ldots,N-1.
        \end{split}

    In this definition, :math:`\mathbf{vec}(u)` denotes a symmetric matrix
    :math:`u` stored as a vector in column major order.  The structure of 
    :math:`C` is specified by ``dims``.  This argument is a dictionary with
    three fields. 
   
    ``dims['l']``: 
        :math:`l`, the dimension of the nonnegative orthant (a nonnegative
        integer).

    ``dims['q']``: 
        :math:`[r_0, \ldots, r_{M-1}]`, a list with the dimensions of the 
        second-order cones (positive integers).

    ``dims['s']``: 
        :math:`[t_0, \ldots, t_{N-1}]`, a list with the dimensions of the 
        positive semidefinite cones (nonnegative integers).
    
    The default value of ``dims`` is 
    ``{'l': G.size[0], 'q': [], 's': []}``, 
    i.e., by default the 
    inequality is interpreted as a componentwise vector inequality. 

    The arguments ``c``, ``h``, and ``b`` are real single-column dense 
    matrices.  ``G`` and ``A`` are real dense or sparse matrices.  The 
    number of rows of ``G`` and ``h`` is equal to

    .. math::
    
        K = l + \sum_{k=0}^{M-1} r_k + \sum_{k=0}^{N-1} t_k^2.
   
    The columns of ``G`` and ``h`` are vectors in

    .. math::

        \newcommand{\reals}{{\mbox{\bf R}}}
        \reals^l \times \reals^{r_0} \times \cdots \times 
        \reals^{r_{M-1}} \times \reals^{t_0^2}  \times \cdots \times 
        \reals^{t_{N-1}^2},

    where the last :math:`N` components represent symmetric matrices 
    stored in column major order.  The strictly upper triangular entries 
    of these matrices are not accessed (i.e.,  the symmetric matrices are 
    stored in the :const:`'L'`-type column major order used in the 
    :mod:`blas` and :mod:`lapack` modules).  The default values for ``A`` 
    and ``b`` are matrices with zero rows, meaning that there are no 
    equality constraints.  

    ``primalstart`` is a dictionary with keys :const:`'x'` and 
    :const:`'s'`, used as an optional primal starting point.   
    ``primalstart['x']`` and ``primalstart['s']`` are real dense 
    matrices of size (:math:`n`, 1) and (:math:`K`, 1), respectively, 
    where :math:`n` is the length of ``c``.  The vector 
    ``primalstart['s']`` must be strictly positive with respect
    to the cone :math:`C`.

    ``dualstart`` is a dictionary with keys :const:`'y'` and :const:`'z'`, 
    used as an optional dual starting point.  ``dualstart['y']`` and 
    ``dualstart['z']`` are real dense matrices of size (:math:`p`, 1) 
    and (:math:`K`, 1), respectively, where :math:`p` is the number of 
    rows in ``A``.  The vector ``dualstart['s']`` must be strictly 
    positive with respect to the cone :math:`C`.

    The role of the optional argument ``kktsolver`` is explained in 
    the section :ref:`s-conelp-struct`.  

    :func:`conelp` returns a dictionary that contains the result and 
    information about the accuracy of the solution.  The most important 
    fields have keys :const:`'status'`, :const:`'x'`, :const:`'s'`, 
    :const:`'y'`, :const:`'z'`.  The :const:`'status'` field  is a string 
    with possible values :const:`'optimal'`, :const:`'primal infeasible'`,
    :const:`'dual infeasible'`, and :const:`'unknown'`.  The meaning of 
    the :const:`'x'`, :const:`'s'`, :const:`'y'`, :const:`'z'` fields 
    depends on the value of :const:`'status'`.


    :const:`'optimal'` 
        In this case the :const:`'x'`, :const:`'s'`, :const:`'y'`, and 
        :const:`'z'` entries contain the primal and dual solutions, which 
        approximately satisfy

        .. math::
        
            Gx + s = h, \qquad Ax = b, \qquad G^T z  + A^T y + c = 0,
         
            s \succeq 0, \qquad z \succeq 0, \qquad  s^T z = 0.

        The other entries in the output dictionary summarize the accuracy
        with which these optimality conditions are satisfied.  The fields 
        :const:`'primal objective'`, :const:`'dual objective'`, and
        :const:`'gap'` give the primal objective :math:`c^Tx`, dual 
        objective :math:`-h^Tz - b^Ty`, and the gap :math:`s^Tz`.  The 
        field :const:`'relative gap'` is the relative gap, defined as
        
        .. math::

            \frac{ s^Tz }{ \max\{ -c^Tx, -h^Tz-b^Ty \} } 
            \quad \mbox{if} \quad \max\{ -c^Tx, -h^Tz-b^Ty \} > 0
        
        and :const:`None` otherwise.  The fields 
        :const:`'primal infeasibility'` and :const:`'dual infeasibility'` 
        are the residuals in the primal and dual equality constraints, 
        defined as

        .. math::
        
            \max\{ \frac{ \|Gx+s-h\|_2 }{ \max\{1, \|h\|_2\} }, 
                \frac{ \|Ax-b\|_2 }{ \max\{1,\|b\|_2\} } \}, \qquad
            \frac{ \|G^Tz + A^Ty + c\|_2 }{ \max\{1, \|c\|_2\} }, 
        
        respectively.

    :const:`'primal infeasible'`
        The :const:`'x'` and :const:`'s'` entries are :const:`None`, and 
        the :const:`'y'`, :const:`'z'` entries provide an approximate 
        certificate of infeasibility, i.e., vectors that approximately 
        satisfy

        .. math::
        
            G^T z + A^T y = 0, \qquad h^T z + b^T y = -1, \qquad 
            z \succeq 0.
        
        The field :const:`'residual as primal infeasibility certificate'` 
        gives the residual 

        .. math::
        
            \frac{ \|G^Tz + A^Ty\|_2 }{ \max\{1, \|c\|_2\} }.
        

    :const:`'dual infeasible'`  
        The :const:`'y'` and :const:`'z'` entries are :const:`None`, and 
        the :const:`'x'` and :const:`'s'` entries contain an approximate 
        certificate of dual infeasibility 

        .. math::
        
            Gx + s = 0, \qquad Ax=0, \qquad  c^T x = -1, \qquad 
            s \succeq 0.
        
        The field :const:`'residual as dual infeasibility certificate'` 
        gives the residual 

        .. math::
        
            \max\{ \frac{ \|Gx + s\|_2 }{ \max\{1, \|h\|_2\} },
            \frac{ \|Ax\|_2 }{ \max\{1, \|b\|_2\} } \}.
        

    :const:`'unknown'` 
        This indicates that the algorithm terminated early due to 
        numerical difficulties or because the maximum number of iterations 
        was reached.  The :const:`'x'`, :const:`'s'`, :const:`'y'`, 
        :const:`'z'` entries contain the iterates when the algorithm 
        terminated.  Whether these entries are useful, as approximate 
        solutions or certificates of primal and dual infeasibility, can be
        determined from the other fields in the dictionary.

        The fields :const:`'primal objective'`, :const:`'dual objective'`, 
        :const:`'gap'`, :const:`'relative gap'`, 
        :const:`'primal infeasibility'`,
        :const:`'dual infeasibility'` are defined as when :const:`'status'`
        is :const:`'optimal'`.  The field 
        :const:`'residual as primal infeasibility certificate'` is defined
        as
        
        .. math::

            \frac{ \|G^Tz+A^Ty\|_2 }{ -(h^Tz + b^Ty) \max\{1, \|h\|_2 \} }.
        
        if :math:`h^Tz+b^Ty < 0`, and :const:`None` otherwise.  A small 
        value of this residual indicates that :math:`y` and :math:`z`, 
        divided by :math:`-h^Tz-b^Ty`, are an approximate proof of primal 
        infeasibility.  The field 
        :const:`'residual as dual infeasibility certificate'` is defined as

        .. math::
        
            \max\{ \frac{ \|Gx+s\|_2 }{ -c^Tx \max\{ 1, \|h\|_2 \} }, 
            \frac{ \|Ax\|_2 }{ -c^Tx \max\{1,\|b\|_2\} }\}
        
        if :math:`c^Tx < 0`, and as :const:`None` otherwise.  A small value
        indicates that :math:`x` and :math:`s`, divided by :math:`-c^Tx` 
        are an approximate proof of dual infeasibility.  

    It is required that 

    .. math::
    
        \newcommand{\Rank}{\mathop{\bf rank}}
        \Rank(A) = p, \qquad 
        \Rank(\left[\begin{array}{c} G \\ A \end{array}\right]) = n,
   
    where :math:`p` is the number or rows of :math:`A` and :math:`n` is 
    the number of columns of :math:`G` and :math:`A`.


As an example we solve the problem

.. math::

    \begin{array}{ll}
    \mbox{minimize}   &  -6x_1 - 4x_2 - 5x_3 \\*[1ex]
    \mbox{subject to} 
        & 16x_1 - 14x_2 + 5x_3 \leq -3 \\*[1ex]
        & 7x_1 + 2x_2 \leq 5 \\*[1ex]
        & \left\| \left[ \begin{array}{c}
             8x_1 + 13x_2 - 12x_3 - 2  \\
            -8x_1 + 18x_2 +  6x_3 - 14 \\
              x_1 -  3x_2 - 17x_3 - 13 \end{array}\right] \right\|_2
            \leq -24x_1 - 7x_2 + 15x_3 + 12 \\*[3ex]
        & \left\| \left[ 
          \begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}
          \right] \right\|_2 \leq 10 \\*[3ex]
        & \left[\begin{array}{ccc}
           7x_1 +  3x_2 + 9x_3 & -5x_1 + 13x_2 + 6x_3 &   
               x_1 - 6x_2 - 6x_3\\
          -5x_1 + 13x_2 + 6x_3 &   x_1 + 12x_2 - 7x_3 & 
              -7x_1 -10x_2 - 7x_3\\
           x_1 - 6x_2 -6x_3 & -7x_1 -10x_2 -7 x_3 & 
              -4x_1 -28 x_2 -11x_3 
           \end{array}\right]  
    \preceq \left[\begin{array}{ccc}
        68  & -30 & -19 \\
       -30 & 99  &  23 \\
       -19 & 23  & 10 \end{array}\right].
    \end{array} 


>>> from cvxopt import matrix, solvers
>>> c = matrix([-6., -4., -5.])
>>> G = matrix([[ 16., 7.,  24.,  -8.,   8.,  -1.,  0., -1.,  0.,  0.,   
                   7.,  -5.,   1.,  -5.,   1.,  -7.,   1.,   -7.,  -4.], 
                [-14., 2.,   7., -13., -18.,   3.,  0.,  0., -1.,  0.,   
                   3.,  13.,  -6.,  13.,  12., -10.,  -6.,  -10., -28.],
                [  5., 0., -15.,  12.,  -6.,  17.,  0.,  0.,  0., -1.,   
                   9.,   6.,  -6.,   6.,  -7.,  -7.,  -6.,   -7., -11.]])
>>> h = matrix( [ -3., 5.,  12.,  -2., -14., -13., 10.,  0.,  0.,  0.,  
                  68., -30., -19., -30.,  99.,  23., -19.,   23.,  10.] )
>>> dims = {'l': 2, 'q': [4, 4], 's': [3]}
>>> sol = solvers.conelp(c, G, h, dims)
>>> sol['status']
'optimal'
>>> print(sol['x'])
[-1.22e+00]
[ 9.66e-02]
[ 3.58e+00]
>>> print(sol['z'])
[ 9.30e-02]
[ 2.04e-08]
[ 2.35e-01]
[ 1.33e-01]
[-4.74e-02]
[ 1.88e-01]
[ 2.79e-08]
[ 1.85e-09]
[-6.32e-10]
[-7.59e-09]
[ 1.26e-01]
[ 8.78e-02]
[-8.67e-02]
[ 8.78e-02]
[ 6.13e-02]
[-6.06e-02]
[-8.67e-02]
[-6.06e-02]
[ 5.98e-02]


Only the entries of ``G`` and ``h`` defining the lower triangular portions
of the coefficients in the linear matrix inequalities are accessed.  We 
obtain the same result if we define ``G`` and ``h`` as below. 


>>> G = matrix([[ 16., 7.,  24.,  -8.,   8.,  -1.,  0., -1.,  0.,  0.,   
                   7.,  -5.,   1.,  0.,   1.,  -7.,  0.,  0.,  -4.], 
                [-14., 2.,   7., -13., -18.,   3.,  0.,  0., -1.,  0.,   
                   3.,  13.,  -6.,  0.,  12., -10.,  0.,  0., -28.],
                [  5., 0., -15.,  12.,  -6.,  17.,  0.,  0.,  0., -1.,   
                   9.,   6.,  -6.,  0.,  -7.,  -7.,  0.,  0., -11.]])
>>> h = matrix( [ -3., 5.,  12.,  -2., -14., -13., 10.,  0.,  0.,  0.,  
                  68., -30., -19.,  0.,  99.,  23.,  0.,  0.,  10.] )


.. _s-coneqp: 

Quadratic Cone Programs 
=======================

.. function:: cvxopt.solvers.coneqp(P, q[, G, h[, dims[, A, b[, initvals[, kktsolver]]]]])

    Solves a pair of primal and dual quadratic cone programs

    .. math::

        \begin{array}[t]{ll}
        \mbox{minimize}   & (1/2) x^T Px + q^T x \\
        \mbox{subject to} & G x + s = h \\ 
                          & Ax = b \\ 
                          & s \succeq 0
        \end{array}

    and
        
    .. math::

        \newcommand{\Range}{\mbox{\textrm{range}}}
        \begin{array}[t]{ll}
        \mbox{maximize}   & -(1/2) (q+G^Tz+A^Ty)^T P^\dagger
                           (q+G^Tz+A^Ty) -h^T z - b^T y \\
        \mbox{subject to} & q + G^T z + A^T y \in \Range(P) \\ 
                          & z \succeq 0.
        \end{array}

    The primal variables are :math:`x` and the slack variable :math:`s`.  
    The dual variables are :math:`y` and :math:`z`.  The inequalities are
    interpreted as :math:`s \in C`, :math:`z\in C`, where :math:`C` is a 
    cone defined as a Cartesian product of a nonnegative orthant, a number
    of second-order cones, and a number of positive semidefinite cones:

    .. math::

        C = C_0 \times C_1 \times \cdots \times C_M \times C_{M+1} \times
            \cdots \times C_{M+N}

    with

    .. math::

        \newcommand{\reals}{{\mbox{\bf R}}}
        \newcommand{\svec}{\mathop{\mathbf{vec}}}
        \newcommand{\symm}{{\mbox{\bf S}}}
        \begin{split}
            C_0 & = 
                \{ u \in \reals^l \;| \; u_k \geq 0, \; k=1, \ldots,l\}, \\
            C_{k+1} & = \{ (u_0, u_1) \in \reals \times \reals^{r_{k}-1} 
                \; | \; u_0 \geq \|u_1\|_2 \},  \quad k=0,\ldots, M-1, \\
            C_{k+M+1} &= \left\{ \svec(u) \; | \; u \in \symm^{t_k}_+ 
                \right\}, \quad k=0,\ldots,N-1.
        \end{split}


    In this definition, :math:`\mathbf{vec}(u)` denotes a symmetric matrix
    :math:`u` stored as a vector in column major order.  The structure of 
    :math:`C` is specified by ``dims``.  This argument is a dictionary with
    three fields. 

    ``dims['l']``:
        :math:`l`, the dimension of the nonnegative orthant (a nonnegative
        integer).

    ``dims['q']``: 
        :math:`[r_0, \ldots, r_{M-1}]`, a list with the dimensions of the 
        second-order cones (positive integers).

    ``dims['s']``: 
        :math:`[t_0, \ldots, t_{N-1}]`, a list with the dimensions of the 
        positive semidefinite cones (nonnegative integers).

    The default value of ``dims`` is ``{'l': G.size[0], 'q': [], 
    's': []}``, i.e., by default the inequality is interpreted as a 
    componentwise vector inequality. 

    ``P`` is a square dense or sparse real matrix, representing a positive 
    semidefinite symmetric matrix in :const:`'L'` storage, i.e., only the 
    lower triangular part of ``P`` is referenced.  ``q`` is a real 
    single-column dense matrix.

    The arguments ``h`` and ``b`` are real single-column dense matrices.  
    ``G`` and ``A`` are real dense or sparse matrices.  The number of rows
    of ``G`` and ``h`` is equal to

    .. math::
    
        K = l + \sum_{k=0}^{M-1} r_k + \sum_{k=0}^{N-1} t_k^2.
    
    The columns of ``G`` and ``h`` are vectors in
    
    .. math::

        \newcommand{\reals}{{\mbox{\bf R}}}
        \reals^l \times \reals^{r_0} \times \cdots \times 
        \reals^{r_{M-1}} \times \reals^{t_0^2}  \times \cdots \times 
        \reals^{t_{N-1}^2},
    
    where the last :math:`N` components represent symmetric matrices stored
    in column major order.  The strictly upper triangular entries of these 
    matrices are not accessed (i.e.,  the symmetric matrices are stored
    in the :const:`'L'`-type column major order used in the :mod:`blas` and
    :mod:`lapack` modules).  The default values for ``G``, ``h``, ``A``,
    and ``b`` are matrices with zero rows, meaning that there are no 
    inequality or equality constraints.  

    ``initvals`` is a dictionary with keys :const:`'x'`, :const:`'s'`, 
    :const:`'y'`, :const:`'z'` used as an optional starting point.  The 
    vectors ``initvals['s']`` and ``initvals['z']`` must be 
    strictly positive with respect to the cone :math:`C`.  If the argument
    ``initvals`` or any the four entries in it are missing, default 
    starting points are used for the corresponding variables.

    The role of the optional argument ``kktsolver`` is explained in the
    section :ref:`s-conelp-struct`.  

    :func:`coneqp` returns a dictionary that contains the result and 
    information about the accuracy of the solution.  The most important 
    fields have keys :const:`'status'`, :const:`'x'`, :const:`'s'`, 
    :const:`'y'`, :const:`'z'`.  The :const:`'status'` field  is a string 
    with possible values :const:`'optimal'` and :const:`'unknown'`.  

    :const:`'optimal'` 
        In this case the :const:`'x'`, :const:`'s'`, :const:`'y'`, and 
        :const:`'z'` entries contain primal and dual solutions, which 
        approximately satisfy

        .. math::
        
            Gx+s = h, \qquad Ax = b, \qquad Px + G^Tz + A^T y + q = 0,

            s \succeq 0, \qquad z \succeq 0, \qquad s^T z  = 0.
  

    :const:`'unknown'` 
        This indicates that the algorithm terminated early due to numerical
        difficulties or because the maximum number of iterations was 
        reached.  The :const:`'x'`, :const:`'s'`, :const:`'y'`, 
        :const:`'z'` entries contain the iterates when the algorithm 
        terminated.

    The other entries in the output dictionary summarize the accuracy
    with which the optimality conditions are satisfied.  The fields 
    :const:`'primal objective'`, :const:`'dual objective'`, and
    :const:`'gap'` give the primal objective :math:`c^Tx`, the dual 
    objective calculated as 

    .. math::

        (1/2) x^TPx + q^T x + z^T(Gx-h) + y^T(Ax-b)
    
    and the gap :math:`s^Tz`.  The field :const:`'relative gap'` is the 
    relative gap, defined as

    .. math::
    
        \frac{s^Tz}{-\mbox{primal objective}}
        \quad \mbox{if\ } \mbox{primal objective} < 0, \qquad
        \frac{s^Tz}{\mbox{dual objective}}
        \quad \mbox{if\ } \mbox{dual objective} > 0, \qquad

    and :const:`None` otherwise.  The fields 
    :const:`'primal infeasibility'` and :const:`'dual infeasibility'` are 
    the residuals in the primal and dual equality constraints, defined as

    .. math::

        \max\{ \frac{\|Gx+s-h\|_2}{\max\{1, \|h\|_2\}}, 
        \frac{\|Ax-b\|_2}{\max\{1,\|b\|_2\}} \}, \qquad
        \frac{\|Px + G^Tz + A^Ty + q\|_2}{\max\{1, \|q\|_2\}}, 

    respectively.

    It is required that the problem is solvable and that 

    .. math::

        \newcommand{\Rank}{\mathop{\bf rank}}
        \Rank(A) = p, \qquad 
        \Rank(\left[\begin{array}{c} P \\ G \\ A \end{array}\right]) = n,
    
    where :math:`p` is the number or rows of :math:`A` and :math:`n` is the
    number of columns of :math:`G` and :math:`A`.


As an example, we solve a constrained least-squares problem

.. math::

    \begin{array}{ll}
    \mbox{minimize}   & \|Ax - b\|_2^2 \\
    \mbox{subject to} &  x \succeq 0 \\
                      & \|x\|_2 \leq 1 
    \end{array}

with 

.. math::
    A = \left[ \begin{array}{rrr}
        0.3 &  0.6 & -0.3 \\
       -0.4 &  1.2 &  0.0 \\
       -0.2 & -1.7 &  0.6 \\
       -0.4 &  0.3 & -1.2 \\
        1.3 & -0.3 & -2.0 
       \end{array} \right], \qquad 
    b = \left[ \begin{array}{r} 1.5 \\ 0.0 \\ -1.2 \\ -0.7 \\ 0.0 
        \end{array} \right]. 

>>> from cvxopt import matrix, solvers
>>> A = matrix([ [ .3, -.4,  -.2,  -.4,  1.3 ], 
                 [ .6, 1.2, -1.7,   .3,  -.3 ],
                 [-.3,  .0,   .6, -1.2, -2.0 ] ])
>>> b = matrix([ 1.5, .0, -1.2, -.7, .0])
>>> m, n = A.size
>>> I = matrix(0.0, (n,n))
>>> I[::n+1] = 1.0
>>> G = matrix([-I, matrix(0.0, (1,n)), I])
>>> h = matrix(n*[0.0] + [1.0] + n*[0.0])
>>> dims = {'l': n, 'q': [n+1], 's': []}
>>> x = solvers.coneqp(A.T*A, -A.T*b, G, h, dims)['x']
>>> print(x)
[ 7.26e-01]
[ 6.18e-01]
[ 3.03e-01]


.. _s-lpsolver:

Linear Programming
==================

The function :func:`lp <cvxopt.solvers.lp>` is an interface to 
:func:`conelp <cvxopt.solvers.conelp>` for linear 
programs.  It also provides the option of using the linear programming 
solvers from GLPK or MOSEK.

.. function:: cvxopt.solvers.lp(c, G, h[, A, b[, solver[, primalstart[, dualstart]]]])

    Solves the pair of primal and dual linear programs

    .. math::
    
        \begin{array}[t]{ll}
        \mbox{minimize}   & c^T x \\
        \mbox{subject to} & G x + s = h \\ 
                          & Ax = b \\ 
                          & s \succeq 0
        \end{array}
        \qquad\qquad
        \begin{array}[t]{ll}
        \mbox{maximize}   & -h^T z - b^T y \\
        \mbox{subject to} & G^T z + A^T y + c = 0 \\
                          & z \succeq 0.
        \end{array}
   
    The inequalities are componentwise vector inequalities.

    The ``solver`` argument is used to choose among three solvers.  When 
    it is omitted or :const:`None`, the CVXOPT function 
    :func:`conelp <cvxopt.solvers.conelp>` is 
    used.  The external solvers GLPK and MOSEK (if installed) can be 
    selected by setting ``solver`` to :const:`'glpk'` or :const:`'mosek'`; 
    see the section :ref:`s-external`.  The meaning of the other 
    arguments and the return value are the same as for 
    :func:`conelp` called with 
    ``dims`` equal to ``{'l': G.size[0], 'q': [], 's': []}``. 

    The initial values are ignored when ``solver`` is :const:`'mosek'` or 
    :const:`'glpk'`.  With the GLPK option, the solver does not return 
    certificates of primal or dual infeasibility: if the status is
    :const:`'primal infeasible'` or :const:`'dual infeasible'`, all entries
    of the output dictionary are :const:`None`.  If the GLPK or MOSEK 
    solvers are used, and the code returns with status :const:`'unknown'`, 
    all the other fields in the output dictionary are :const:`None`.

As a simple example we solve the LP

.. math::

    \begin{array}[t]{ll}
    \mbox{minimize}   & -4x_1 - 5x_2 \\
    \mbox{subject to} &  2x_1 + x_2 \leq 3 \\
                      & x_1 + 2x_2 \leq 3 \\
                      & x_1 \geq 0, \quad x_2 \geq 0.
    \end{array} 


>>> from cvxopt import matrix, solvers
>>> c = matrix([-4., -5.])
>>> G = matrix([[2., 1., -1., 0.], [1., 2., 0., -1.]])
>>> h = matrix([3., 3., 0., 0.])
>>> sol = solvers.lp(c, G, h)
>>> print(sol['x'])
[ 1.00e+00]
[ 1.00e+00]


.. _s-qp:

Quadratic Programming
=====================

The function :func:`qp <cvxopt.solvers.qp>` is an interface to 
:func:`coneqp <cvxopt.solvers.coneqp>` for quadratic 
programs.  It also provides the option of using the quadratic programming 
solver from MOSEK.

.. function:: cvxopt.solvers.qp(P, q[, G, h[, A, b[, solver[, initvals]]]])

    Solves the pair of primal and dual convex quadratic programs 

    .. math::
    
        \begin{array}[t]{ll}
        \mbox{minimize} & (1/2) x^TPx + q^T x \\
        \mbox{subject to} & Gx \preceq h \\ & Ax = b
        \end{array}

    and

    .. math::
    
        \newcommand{\Range}{\mbox{\textrm{range}}}
        \begin{array}[t]{ll}
        \mbox{maximize}   & -(1/2) (q+G^Tz+A^Ty)^T P^\dagger
                             (q+G^Tz+A^Ty) -h^T z - b^T y \\
        \mbox{subject to} & q + G^T z + A^T y \in \Range(P) \\ 
                          & z \succeq 0.
        \end{array}
  
    The inequalities are componentwise vector inequalities.

    The default CVXOPT solver is used when the ``solver`` argument is 
    absent or :const:`None`.  The MOSEK solver (if installed) can be 
    selected by setting ``solver`` to :const:`'mosek'`; see the 
    section :ref:`s-external`.  The meaning of the other arguments and the
    return value is the same as for 
    :func:`coneqp <cvxopt.solvers.coneqp>` called with `dims` 
    equal to ``{'l': G.size[0], 'q': [], 's': []}``.

    When ``solver`` is :const:`'mosek'`, the initial values are ignored,
    and the :const:`'status'` string in the solution dictionary can take 
    four possible values: :const:`'optimal'`, :const:`'unknown'`.
    :const:`'primal infeasible'`, :const:`'dual infeasible'`. 

    :const:`'primal infeasible'`  
        This means that a certificate of primal infeasibility has been 
        found.  The :const:`'x'` and :const:`'s'` entries are 
        :const:`None`, and the :const:`'z'` and :const:`'y'` entries are 
        vectors that approximately satisfy

        .. math:: 
        
            G^Tz + A^T y = 0, \qquad h^Tz + b^Ty = -1, \qquad z \succeq 0.
        

    :const:`'dual infeasible'`  
        This means that a certificate of dual infeasibility has been found.
        The :const:`'z'` and :const:`'y'` entries are :const:`None`, and 
        the :const:`'x'` and :const:`'s'` entries are vectors that 
        approximately satisfy

        .. math:: 
        
            Px = 0, \qquad q^Tx = -1, \qquad Gx + s = 0, \qquad Ax=0, 
            \qquad s \succeq  0.
        

As an example we compute the trade-off curve on page 187 of the book 
`Convex Optimization <http://www.stanford.edu/~boyd/cvxbook>`_,
by solving the quadratic program 

.. math::

    \newcommand{\ones}{{\bf 1}}
    \begin{array}{ll}
    \mbox{minimize}   & -\bar p^T x + \mu x^T S x \\
    \mbox{subject to} & \ones^T x = 1, \quad x \succeq 0
    \end{array}

for a sequence of positive values of :math:`\mu`.  The code below computes 
the trade-off curve and produces two figures using the 
`Matplotlib <http://matplotlib.sourceforge.net>`_ package.

.. image:: portfolio2.png
   :width: 400px

.. image:: portfolio1.png
   :width: 400px

::

    from math import sqrt
    from cvxopt import matrix
    from cvxopt.blas import dot 
    from cvxopt.solvers import qp
    import pylab

    # Problem data.
    n = 4
    S = matrix([[ 4e-2,  6e-3, -4e-3,    0.0 ], 
                [ 6e-3,  1e-2,  0.0,     0.0 ],
                [-4e-3,  0.0,   2.5e-3,  0.0 ],
                [ 0.0,   0.0,   0.0,     0.0 ]])
    pbar = matrix([.12, .10, .07, .03])
    G = matrix(0.0, (n,n))
    G[::n+1] = -1.0
    h = matrix(0.0, (n,1))
    A = matrix(1.0, (1,n))
    b = matrix(1.0)

    # Compute trade-off.
    N = 100
    mus = [ 10**(5.0*t/N-1.0) for t in range(N) ]
    portfolios = [ qp(mu*S, -pbar, G, h, A, b)['x'] for mu in mus ]
    returns = [ dot(pbar,x) for x in portfolios ]
    risks = [ sqrt(dot(x, S*x)) for x in portfolios ]

    # Plot trade-off curve and optimal allocations.
    pylab.figure(1, facecolor='w')
    pylab.plot(risks, returns)
    pylab.xlabel('standard deviation')
    pylab.ylabel('expected return')
    pylab.axis([0, 0.2, 0, 0.15])
    pylab.title('Risk-return trade-off curve (fig 4.12)')
    pylab.yticks([0.00, 0.05, 0.10, 0.15])

    pylab.figure(2, facecolor='w')
    c1 = [ x[0] for x in portfolios ] 
    c2 = [ x[0] + x[1] for x in portfolios ]
    c3 = [ x[0] + x[1] + x[2] for x in portfolios ] 
    c4 = [ x[0] + x[1] + x[2] + x[3] for x in portfolios ]
    pylab.fill(risks + [.20], c1 + [0.0], '#F0F0F0') 
    pylab.fill(risks[-1::-1] + risks, c2[-1::-1] + c1, facecolor = '#D0D0D0') 
    pylab.fill(risks[-1::-1] + risks, c3[-1::-1] + c2, facecolor = '#F0F0F0') 
    pylab.fill(risks[-1::-1] + risks, c4[-1::-1] + c3, facecolor = '#D0D0D0') 
    pylab.axis([0.0, 0.2, 0.0, 1.0])
    pylab.xlabel('standard deviation')
    pylab.ylabel('allocation')
    pylab.text(.15,.5,'x1')
    pylab.text(.10,.7,'x2')
    pylab.text(.05,.7,'x3')
    pylab.text(.01,.7,'x4')
    pylab.title('Optimal allocations (fig 4.12)')
    pylab.show()



.. _s-socpsolver:

Second-Order Cone Programming
=============================

The function :func:`socp <cvxopt.solvers.socp>` is a simpler interface to 
:func:`conelp <cvxopt.solvers.conelp>` for 
cone programs with no linear matrix inequality constraints.

.. function:: cvxopt.solvers.socp(c[, Gl, hl[, Gq, hq[, A, b[, solver[, primalstart[, dualstart]]]]]])

    Solves the pair of primal and dual second-order cone programs
    
    .. math::

        \begin{array}[t]{ll}
        \mbox{minimize}   & c^T x \\
        \mbox{subject to} & G_k x + s_k = h_k, \quad k = 0, \ldots, M  \\ 
                          & Ax = b \\ 
                          & s_0 \succeq 0 \\
                          & s_{k0} \geq \|s_{k1}\|_2, \quad k = 1,\ldots,M
        \end{array}
     
    and

    .. math::

        \begin{array}[t]{ll}
        \mbox{maximize}   & - \sum_{k=0}^M h_k^Tz_k - b^T y \\
        \mbox{subject to} & \sum_{k=0}^M G_k^T z_k + A^T y + c = 0 \\
                          & z_0 \succeq 0 \\
                          & z_{k0} \geq \|z_{k1}\|_2, \quad k=1,\ldots,M.
        \end{array}

    The inequalities 

    .. math::

        s_0 \succeq 0, \qquad z_0 \succeq 0

    are componentwise vector inequalities.  In the other inequalities, it 
    is assumed that the variables are partitioned as

    .. math::
    
        \newcommand{\reals}{{\mbox{\bf R}}}
        s_k = (s_{k0}, s_{k1}) \in\reals\times\reals^{r_{k}-1}, \qquad 
        z_k = (z_{k0}, z_{k1}) \in\reals\times\reals^{r_{k}-1}, \qquad
        k=1,\ldots,M.

    The input argument ``c`` is a real single-column dense matrix.  The 
    arguments ``Gl`` and ``hl`` are the coefficient matrix :math:`G_0` and 
    the right-hand side :math:`h_0` of the componentwise inequalities.
    ``Gl`` is a real dense or sparse matrix; ``hl`` is a real single-column
    dense matrix.  The default values for ``Gl`` and ``hl`` are matrices 
    with zero rows.

    The argument ``Gq`` is a list of :math:`M` dense or sparse matrices 
    :math:`G_1`, ..., :math:`G_M`.  The argument ``hq`` is a list of 
    :math:`M` dense single-column matrices :math:`h_1, \ldots, h_M`.
    The elements of ``Gq`` and ``hq`` must have at least one
    row.  The default values of ``Gq`` and ``hq`` are empty lists.

    ``A`` is dense or sparse matrix and ``b`` is a single-column dense 
    matrix.  The default values for ``A`` and ``b`` are matrices with 
    zero rows. 

    The ``solver`` argument is used to choose between two solvers: the 
    CVXOPT :func:`conelp <cvxopt.solvers.conelp>` solver (used when 
    ``solver`` is absent or equal 
    to :const:`None` and the external solver MOSEK (``solver`` is 
    :const:`'mosek'`); see the section :ref:`s-external`.  With the 
    :const:`'mosek'` option the code does not accept problems with equality
    constraints.

    ``primalstart`` and ``dualstart`` are dictionaries with optional 
    primal, respectively, dual starting points.  ``primalstart`` has 
    elements :const:`'x'`, :const:`'sl'`, :const:`'sq'`.  
    ``primalstart['x']`` and ``primalstart['sl']`` are 
    single-column dense matrices with the initial values of :math:`x` and 
    :math:`s_0`;  ``primalstart['sq']`` is a list of single-column 
    matrices with the initial values of :math:`s_1, \ldots, s_M`.
    The initial values must satisfy the inequalities in the primal problem 
    strictly, but not necessarily the equality constraints.

    ``dualstart`` has elements :const:`'y'`, :const:`'zl'`, :const:`'zq'`.
    ``dualstart['y']`` and ``dualstart['zl']`` are single-column 
    dense matrices with the initial values of :math:`y` and :math:`z_0`.
    ``dualstart['zq']`` is a list of single-column matrices with the 
    initial values of :math:`z_1, \ldots, z_M`.  These values must
    satisfy the dual inequalities strictly, but not necessarily the 
    equality constraint.

    The arguments ``primalstart`` and ``dualstart`` are ignored when the 
    MOSEK solver is used.

    :func:`socp` returns a dictionary that include entries with keys 
    :const:`'status'`, :const:`'x'`, :const:`'sl'`, :const:`'sq'`, 
    :const:`'y'`, :const:`'zl'`, :const:`'zq'`.  The :const:`'sl'` and 
    :const:`'zl'` fields are matrices with the primal slacks and dual 
    variables associated with the componentwise linear inequalities.
    The :const:`'sq'` and :const:`'zq'` fields are lists with the primal 
    slacks and dual variables associated with the second-order cone 
    inequalities.  The other entries in the output dictionary have the 
    same meaning as in the output of 
    :func:`conelp <cvxopt.solvers.conelp>`.


As an example, we solve  the second-order cone program

.. math::
    \begin{array}{ll}
    \mbox{minimize}   & -2x_1 + x_2 + 5x_3 \\*[2ex]
    \mbox{subject to} & \left\| \left[\begin{array}{c}
        -13 x_1 +  3 x_2 + 5 x_3 - 3 \\ 
        -12 x_1 + 12 x_2 - 6 x_3 - 2 \end{array}\right] \right\|_2 
         \leq -12 x_1 - 6 x_2 + 5x_3 - 12  \\*[2ex]
                       & \left\| \left[\begin{array}{c}
         -3 x_1 +  6 x_2 + 2 x_3    \\ 
            x_1 +  9 x_2 + 2 x_3 + 3 \\ 
           -x_1 - 19 x_2 + 3 x_3 - 42 \end{array}\right] \right\|_2 
         \leq -3x_1 + 6x_2 - 10x_3 + 27.
    \end{array}


>>> from cvxopt import matrix, solvers
>>> c = matrix([-2., 1., 5.])
>>> G = [ matrix( [[12., 13., 12.], [6., -3., -12.], [-5., -5., 6.]] ) ]
>>> G += [ matrix( [[3., 3., -1., 1.], [-6., -6., -9., 19.], [10., -2., -2., -3.]] ) ]
>>> h = [ matrix( [-12., -3., -2.] ),  matrix( [27., 0., 3., -42.] ) ]
>>> sol = solvers.socp(c, Gq = G, hq = h)
>>> sol['status']
optimal
>>> print(sol['x'])
[-5.02e+00]
[-5.77e+00]
[-8.52e+00]
>>> print(sol['zq'][0])
[ 1.34e+00]
[-7.63e-02]
[-1.34e+00]
>>> print(sol['zq'][1])
[ 1.02e+00]
[ 4.02e-01]
[ 7.80e-01]
[-5.17e-01]


.. _s-sdpsolver:

Semidefinite Programming
========================

The function :func:`sdp <cvxopt.solvers.sdp>` is a simple interface to 
:func:`conelp <cvxopt.solvers.conelp>` for cone 
programs with no second-order cone constraints.  It also provides the 
option of using the DSDP semidefinite programming solver.

.. function:: cvxopt.solvers.sdp(c[, Gl, hl[, Gs, hs[, A, b[, solver[, primalstart[, dualstart]]]]]])

    Solves the pair of primal and dual semidefinite programs

    .. math::
    
        \newcommand{\svec}{\mathop{\mathbf{vec}}}
        \begin{array}[t]{ll}
        \mbox{minimize}   & c^T x \\
        \mbox{subject to} & G_0 x + s_0 = h_0 \\
                          & G_k x + \svec{(s_k)} = \svec{(h_k)}, 
                            \quad k = 1, \ldots, N  \\ 
                          & Ax = b \\ 
                          & s_0 \succeq 0 \\
                          & s_k \succeq 0, \quad k=1,\ldots,N
        \end{array}

    and

    .. math::

        \newcommand{\Tr}{\mathop{\mathbf{tr}}}
        \newcommand{\svec}{\mathop{\mathbf{vec}}}
        \begin{array}[t]{ll}
        \mbox{maximize}   & -h_0^Tz_0 - \sum_{k=1}^N \Tr(h_kz_k) - b^Ty \\
        \mbox{subject to} & G_0^Tz_0 + \sum_{k=1}^N G_k^T \svec(z_k) + 
                             A^T y + c = 0 \\
                          & z_0 \succeq 0 \\
                          & z_k \succeq 0, \quad k=1,\ldots,N.
        \end{array}

    The inequalities 
    
    .. math::
       
        s_0 \succeq 0, \qquad z_0 \succeq 0

    are componentwise vector inequalities.  The other inequalities are 
    matrix inequalities (\ie, the require the left-hand sides to be 
    positive semidefinite).  We use the notation :math:`\mathbf{vec}(z)` 
    to denote a symmetric matrix :math:`z` stored in column major order 
    as a column vector.

    The input argument ``c`` is a real single-column dense matrix.  The 
    arguments ``Gl`` and ``hl`` are the coefficient matrix :math:`G_0` and
    the right-hand side :math:`h_0` of the componentwise inequalities.
    ``Gl`` is a real dense or sparse matrix;  ``hl`` is a real 
    single-column dense matrix.   The default values for ``Gl`` and ``hl``
    are matrices with zero rows.

    ``Gs`` and ``hs`` are lists of length :math:`N` that specify the 
    linear matrix inequality constraints.  ``Gs`` is a list of :math:`N` 
    dense or sparse real matrices :math:`G_1, \ldots, G_M`.  The 
    columns of these matrices can be interpreted as symmetric matrices 
    stored in column major order, using the BLAS :const:`'L'`-type storage
    (i.e., only the entries corresponding to lower triangular positions
    are accessed).  ``hs`` is a list of :math:`N` dense symmetric matrices
    :math:`h_1, \ldots, h_N`.  Only the lower triangular elements 
    of these matrices are accessed.  The default values for ``Gs`` and 
    ``hs`` are empty lists.

    ``A`` is a dense or sparse matrix and ``b`` is a single-column dense 
    matrix.  The default values for ``A`` and ``b`` are matrices with zero 
    rows. 

    The ``solver`` argument is used to choose between two solvers: the 
    CVXOPT :func:`conelp <cvxopt.solvers.conelp>` solver 
    (used when ``solver`` is absent or equal 
    to :const:`None`) and the external solver DSDP5 (``solver`` is 
    :const:`'dsdp'`); see the section :ref:`s-external`.  With the 
    :const:`'dsdp'` option the code does not accept problems with equality
    constraints.

    The optional argument ``primalstart`` is a dictionary with keys 
    :const:`'x'`, :const:`'sl'`, and :const:`'ss'`, used as an optional 
    primal starting point.  ``primalstart['x']`` and 
    ``primalstart['sl']`` are single-column dense matrices with the 
    initial values of :math:`x` and :math:`s_0`; 
    ``primalstart['ss']`` is a list of square matrices with the initial
    values of :math:`s_1, \ldots, s_N`.  The initial values must 
    satisfy the inequalities in the primal problem strictly, but not 
    necessarily the equality constraints.

    ``dualstart`` is a dictionary with keys :const:`'y'`, :const:`'zl'`, 
    :const:`'zs'`, used as an optional dual starting point.  
    ``dualstart['y']`` and ``dualstart['zl']`` are single-column 
    dense matrices with the initial values of :math:`y` and :math:`z_0`.
    ``dualstart['zs']`` is a list of square matrices with the initial 
    values of :math:`z_1, \ldots, z_N`.  These values must satisfy
    the dual inequalities strictly, but not necessarily the equality 
    constraint.

    The arguments ``primalstart`` and ``dualstart`` are ignored when the 
    DSDP solver is used.

    :func:`sdp` returns a dictionary that includes entries with keys 
    :const:`'status'`, :const:`'x'`, :const:`'sl'`, :const:`'ss'`, 
    :const:`'y'`, :const:`'zl'`, :const:`'ss'`.  The :const:`'sl'` and 
    :const:`'zl'` fields are matrices with the primal slacks and dual  
    variables associated with the componentwise linear inequalities.
    The :const:`'ss'` and :const:`'zs'` fields are lists with the primal 
    slacks and dual variables associated with the second-order cone 
    inequalities.  The other entries in the output dictionary have the 
    same meaning as in the output of 
    :func:`conelp <cvxopt.solvers.conelp>`.

We illustrate the calling sequence with a small example.

    .. math::

        \begin{array}{ll}
        \mbox{minimize}   & x_1 - x_2 + x_3 \\
        \mbox{subject to} 
            & x_1 \left[ \begin{array}{cc} 
                      -7 &  -11 \\ -11 &  3
                  \end{array}\right] + 
              x_2 \left[ \begin{array}{cc}
                      7 & -18 \\ -18 & 8 
                  \end{array}\right] + 
              x_3 \left[ \begin{array}{cc}
                      -2 & -8 \\ -8 & 1 
                  \end{array}\right] \preceq  
              \left[ \begin{array}{cc} 
                      33 & -9 \\ -9 & 26 
                  \end{array}\right] \\*[1ex]
              & x_1 \left[ \begin{array}{ccc} 
                      -21 & -11 & 0 \\ 
                      -11 &  10 & 8 \\ 
                        0 &   8 & 5
                  \end{array}\right] + 
              x_2 \left[ \begin{array}{ccc} 
                        0 &  10 &  16 \\
                       10 & -10 & -10 \\
                       16 & -10 & 3 
                  \end{array}\right] + 
              x_3 \left[ \begin{array}{ccc} 
                       -5  & 2 & -17 \\
                        2  & -6 & 8 \\
                       -17 & 8 & 6 
                   \end{array}\right]  \preceq  
              \left[ \begin{array}{ccc}
                       14 &  9 & 40 \\
                        9  & 91 & 10 \\
                       40 & 10 & 15
                  \end{array} \right] 
        \end{array}

>>> from cvxopt import matrix, solvers
>>> c = matrix([1.,-1.,1.])
>>> G = [ matrix([[-7., -11., -11., 3.], 
                  [ 7., -18., -18., 8.], 
                  [-2.,  -8.,  -8., 1.]]) ]
>>> G += [ matrix([[-21., -11.,   0., -11.,  10.,   8.,   0.,   8., 5.], 
                   [  0.,  10.,  16.,  10., -10., -10.,  16., -10., 3.], 
                   [ -5.,   2., -17.,   2.,  -6.,   8., -17.,  8., 6.]]) ]
>>> h = [ matrix([[33., -9.], [-9., 26.]]) ]
>>> h += [ matrix([[14., 9., 40.], [9., 91., 10.], [40., 10., 15.]]) ]
>>> sol = solvers.sdp(c, Gs=G, hs=h)  
>>> print(sol['x'])
[-3.68e-01]
[ 1.90e+00]
[-8.88e-01]
>>> print(sol['zs'][0])
[ 3.96e-03 -4.34e-03]
[-4.34e-03  4.75e-03]
>>> print(sol['zs'][1])
[ 5.58e-02 -2.41e-03  2.42e-02]
[-2.41e-03  1.04e-04 -1.05e-03]
[ 2.42e-02 -1.05e-03  1.05e-02]

Only the entries in ``Gs`` and ``hs`` that correspond to lower triangular 
entries need to be provided, so in the example ``h`` and ``G`` may also be
defined as follows.

>>> G = [ matrix([[-7., -11., 0., 3.], 
                  [ 7., -18., 0., 8.], 
                  [-2.,  -8., 0., 1.]]) ]
>>> G += [ matrix([[-21., -11.,   0., 0.,  10.,   8., 0., 0., 5.], 
                   [  0.,  10.,  16., 0., -10., -10., 0., 0., 3.], 
                   [ -5.,   2., -17., 0.,  -6.,   8., 0., 0., 6.]]) ]
>>> h = [ matrix([[33., -9.], [0., 26.]]) ]
>>> h += [ matrix([[14., 9., 40.], [0., 91., 10.], [0., 0., 15.]]) ]


.. _s-conelp-struct:

Exploiting Structure
====================

By default, the functions 
:func:`conelp <cvxopt.solvers.conelp>` and 
:func:`coneqp <cvxopt.solvers.coneqp>` exploit no 
problem structure except (to some limited extent) sparsity.  Two mechanisms
are provided for implementing customized solvers that take advantage of 
problem structure.


**Providing a function for solving KKT equations**
    The most expensive step of each iteration of 
    :func:`conelp <cvxopt.solvers.conelp>` or 
    :func:`coneqp <cvxopt.solvers.coneqp>` is the solution of a set of  
    linear equations (*KKT equations*) of the form

    .. math::
        :label: e-conelp-kkt

        \left[\begin{array}{ccc}
            P & A^T & G^T \\
            A & 0   & 0  \\
            G & 0   & -W^T W 
        \end{array}\right]
        \left[\begin{array}{c} u_x \\ u_y \\ u_z \end{array}\right]
        = 
        \left[\begin{array}{c} b_x \\ b_y \\ b_z \end{array}\right]
    
    (with :math:`P = 0` in :func:`conelp`).  The matrix :math:`W` depends 
    on the current iterates and is defined as follows.  We use the notation
    of the sections :ref:`s-conelp` and :ref:`s-coneqp`.  Let 

    .. math::

        \newcommand{\svec}{\mathop{\mathbf{vec}}}
        u = \left(u_\mathrm{l}, \; u_{\mathrm{q},0}, \; \ldots, \; 
            u_{\mathrm{q},M-1}, \; \svec{(u_{\mathrm{s},0})}, \; 
            \ldots, \; \svec{(u_{\mathrm{s},N-1})}\right), \qquad

        \newcommand{\reals}{{\mbox{\bf R}}}
        \newcommand{\symm}{{\mbox{\bf S}}}
        u_\mathrm{l} \in\reals^l, \qquad 
        u_{\mathrm{q},k} \in\reals^{r_k}, \quad k = 0,\ldots,M-1, \qquad 
        u_{\mathrm{s},k} \in\symm^{t_k},  \quad k = 0,\ldots,N-1.

    Then :math:`W` is a block-diagonal matrix, 
  
    .. math::
    
        \newcommand{\svec}{\mathop{\mathbf{vec}}}
        Wu = \left( W_\mathrm{l} u_\mathrm{l}, \;
            W_{\mathrm{q},0} u_{\mathrm{q},0}, \; \ldots, \;
            W_{\mathrm{q},M-1} u_{\mathrm{q},M-1},\; 
            W_{\mathrm{s},0} \svec{(u_{\mathrm{s},0})}, \; \ldots, \;
            W_{\mathrm{s},N-1} \svec{(u_{\mathrm{s},N-1})} \right)

    with the following diagonal blocks.

    * The first block is a *positive diagonal scaling* with a vector 
      :math:`d`:

      .. math::
    
          \newcommand{\diag}{\mbox{\bf diag}\,}
          W_\mathrm{l} = \diag(d), \qquad 
          W_\mathrm{l}^{-1} = \diag(d)^{-1}.
    
      This transformation is symmetric:

      .. math::

          W_\mathrm{l}^T = W_\mathrm{l}. 

    * The next :math:`M` blocks are positive multiples of *hyperbolic 
      Householder transformations*:

      .. math::
    
          W_{\mathrm{q},k} = \beta_k ( 2 v_k v_k^T - J), \qquad
          W_{\mathrm{q},k}^{-1} = \frac{1}{\beta_k} ( 2 Jv_k v_k^T J - J),
          \qquad k = 0,\ldots,M-1,
    
      where

      .. math::

          \beta_k > 0, \qquad v_{k0} > 0, \qquad v_k^T Jv_k = 1, \qquad 
          J = \left[\begin{array}{cc} 1 & 0 \\ 0 & -I \end{array}\right].
    
      These transformations are also symmetric:

      .. math::
    
          W_{\mathrm{q},k}^T = W_{\mathrm{q},k}. 

    * The last :math:`N` blocks are *congruence transformations* with 
      nonsingular matrices:

      .. math::

          \newcommand{\svec}{\mathop{\mathbf{vec}}}
          W_{\mathrm{s},k} \svec{(u_{\mathrm{s},k})} = 
              \svec{(r_k^T u_{\mathrm{s},k} r_k)}, \qquad
          W_{\mathrm{s},k}^{-1} \svec{(u_{\mathrm{s},k})} = 
              \svec{(r_k^{-T} u_{\mathrm{s},k} r_k^{-1})}, \qquad
          k = 0,\ldots,N-1.

      In  general, this operation is not symmetric: 
 
      .. math::

          \newcommand{\svec}{\mathop{\mathbf{vec}}}
          W_{\mathrm{s},k}^T \svec{(u_{\mathrm{s},k})} = 
              \svec{(r_k u_{\mathrm{s},k} r_k^T)}, \qquad \qquad
          W_{\mathrm{s},k}^{-T} \svec{(u_{\mathrm{s},k})} = 
              \svec{(r_k^{-1} u_{\mathrm{s},k} r_k^{-T})}, \qquad \qquad
          k = 0,\ldots,N-1.

    It is often possible to exploit problem structure to solve 
    :eq:`e-conelp-kkt` faster than by standard methods.  The last argument
    ``kktsolver`` of :func:`conelp <cvxopt.solvers.conelp>` and 
    :func:`coneqp <cvxopt.solvers.coneqp>` allows the user to 
    supply a Python  function for solving the KKT equations.  This 
    function will be called as ``f = kktsolver(W)``, where ``W`` is a 
    dictionary that contains the parameters of the scaling:

    * ``W['d']`` is the positive vector that defines the diagonal
      scaling.   ``W['di']`` is its componentwise inverse.

    * ``W['beta']`` and ``W['v']`` are lists of length :math:`M` 
      with the coefficients and vectors that define the hyperbolic 
      Householder transformations.

    * ``W['r']`` is a list of length :math:`N` with the matrices that
      define the the congruence transformations.  ``W['rti']`` is a 
      list of length :math:`N` with the transposes of the inverses of the 
      matrices in ``W['r']``.

    The function call ``f = kktsolver(W)`` should return a routine for
    solving the KKT system :eq:`e-conelp-kkt` defined by ``W``.  It will 
    be called as ``f(bx, by, bz)``.  On entry, ``bx``, ``by``, ``bz`` 
    contain the right-hand side.  On exit, they should contain the solution
    of the KKT system, with the last component scaled, i.e., on exit,
    
    .. math::

        b_x := u_x, \qquad b_y := u_y, \qquad b_z := W u_z.

    In other words, the function returns the solution of

    .. math::

        \left[\begin{array}{ccc}
            P & A^T & G^TW^{-1} \\
            A & 0   & 0  \\
            G & 0   & -W^T 
        \end{array}\right]
        \left[\begin{array}{c} 
            \hat u_x \\ \hat u_y \\ \hat u_z 
        \end{array}\right]
        = 
        \left[\begin{array}{c} 
            b_x \\ b_y \\ b_z 
        \end{array}\right].


**Specifying constraints via Python functions**
    In the default use of :func:`conelp <cvxopt.solvers.conelp>` and 
    :func:`coneqp <cvxopt.solvers.coneqp>`, the linear 
    constraints and the quadratic term in the objective are parameterized 
    by CVXOPT matrices ``G``, ``A``, ``P``.  It is possible to specify 
    these parameters via Python functions that evaluate the corresponding 
    matrix-vector products and their adjoints.

    * If the argument ``G`` of :func:`conelp` or :func:`coneqp` is a 
      Python function, then 
      ``G(x, y[, alpha = 1.0, beta = 0.0, trans = 'N'])`` 
      should evaluate the matrix-vector products

        .. math::

            y := \alpha Gx + \beta y \quad 
                (\mathrm{trans} = \mathrm{'N'}), \qquad
            y := \alpha G^T x + \beta y \quad 
                (\mathrm{trans} = \mathrm{'T'}).

    * Similarly, if the argument ``A`` is a Python function, then 
      ``A(x, y[, alpha = 1.0, beta = 0.0, trans = 'N'])`` 
      should evaluate the matrix-vector products

        .. math::

            y := \alpha Ax + \beta y \quad 
                (\mathrm{trans} = \mathrm{'N'}), \qquad
            y := \alpha A^T x + \beta y \quad 
                (\mathrm{trans} = \mathrm{'T'}).

    * If the argument ``P`` of :func:`coneqp` is a Python function, then 
      ``P(x, y[, alpha = 1.0, beta = 0.0])`` 
      should evaluate the matrix-vector products

        .. math::

            y := \alpha Px + \beta y.

    If ``G``, ``A``, or ``P`` are Python functions, then the argument 
    ``kktsolver`` must also be provided.


We illustrate these features with three applications.

**Example: 1-norm approximation**

    The optimization problem

    .. math::

        \begin{array}{ll}
        \mbox{minimize} & \|Pu-q\|_1
        \end{array}

    can be formulated as a linear program

    .. math::

        \newcommand{\ones}{{\bf 1}}
        \begin{array}{ll}
        \mbox{minimize} & \ones^T v \\
        \mbox{subject to} & -v \preceq Pu - q  \preceq v.
        \end{array}

    By exploiting the structure in the inequalities, the cost of an 
    iteration of an interior-point method can be reduced to the cost of 
    least-squares problem of the same dimensions.  (See section 11.8.2 in 
    the book 
    `Convex Optimization <http://www.stanford.edu/~boyd/cvxbook>`_.) 
    The code below takes advantage of this fact.

    :: 

        from cvxopt import blas, lapack, solvers, matrix, spmatrix, mul, div

        def l1(P, q):
            """

            Returns the solution u, w of the l1 approximation problem

                (primal) minimize    ||P*u - q||_1       
            
                (dual)   maximize    q'*w
                         subject to  P'*w = 0
                                     ||w||_infty <= 1.
            """

            m, n = P.size

            # Solve the equivalent LP 
            #
            #     minimize    [0; 1]' * [u; v]
            #     subject to  [P, -I; -P, -I] * [u; v] <= [q; -q]
            #
            #     maximize    -[q; -q]' * z 
            #     subject to  [P', -P']*z  = 0
            #                 [-I, -I]*z + 1 = 0 
            #                 z >= 0.
            
            c = matrix(n*[0.0] + m*[1.0])

            def G(x, y, alpha = 1.0, beta = 0.0, trans = 'N'):    

                if trans=='N':
                    # y := alpha * [P, -I; -P, -I] * x + beta*y
                    u = P*x[:n]
                    y[:m] = alpha * ( u - x[n:]) + beta * y[:m]
                    y[m:] = alpha * (-u - x[n:]) + beta * y[m:]

                else:
                    # y := alpha * [P', -P'; -I, -I] * x + beta*y
                    y[:n] =  alpha * P.T * (x[:m] - x[m:]) + beta * y[:n]
                    y[n:] = -alpha * (x[:m] + x[m:]) + beta * y[n:]

            h = matrix([q, -q])
            dims = {'l': 2*m, 'q': [], 's': []}

            def F(W): 

                """
                Returns a function f(x, y, z) that solves
               
                    [ 0  0  P'      -P'      ] [ x[:n] ]   [ bx[:n] ]
                    [ 0  0 -I       -I       ] [ x[n:] ]   [ bx[n:] ]
                    [ P -I -D1^{-1}  0       ] [ z[:m] ] = [ bz[:m] ]
                    [-P -I  0       -D2^{-1} ] [ z[m:] ]   [ bz[m:] ]
                
                where D1 = diag(di[:m])^2, D2 = diag(di[m:])^2 and di = W['di'].
                """
                
                # Factor A = 4*P'*D*P where D = d1.*d2 ./(d1+d2) and 
                # d1 = di[:m].^2, d2 = di[m:].^2.

                di = W['di']
                d1, d2 = di[:m]**2, di[m:]**2
                D = div( mul(d1,d2), d1+d2 )  
                A = P.T * spmatrix(4*D, range(m), range(m)) * P
                lapack.potrf(A)

                def f(x, y, z):

                    """
                    On entry bx, bz are stored in x, z.  On exit x, z contain the solution, 
                    with z scaled: z./di is returned instead of z. 
                    """"

                    # Solve for x[:n]:
                    #
                    #    A*x[:n] = bx[:n] + P' * ( ((D1-D2)*(D1+D2)^{-1})*bx[n:]
                    #              + (2*D1*D2*(D1+D2)^{-1}) * (bz[:m] - bz[m:]) ).

                    x[:n] += P.T * ( mul(div(d1-d2, d1+d2), x[n:]) + mul(2*D, z[:m]-z[m:]) )
                    lapack.potrs(A, x)

                    # x[n:] := (D1+D2)^{-1} * (bx[n:] - D1*bz[:m] - D2*bz[m:] + (D1-D2)*P*x[:n])

                    u = P*x[:n]
                    x[n:] =  div(x[n:] - mul(d1, z[:m]) - mul(d2, z[m:]) + mul(d1-d2, u), d1+d2)

                    # z[:m] := d1[:m] .* ( P*x[:n] - x[n:] - bz[:m])
                    # z[m:] := d2[m:] .* (-P*x[:n] - x[n:] - bz[m:]) 

                    z[:m] = mul(di[:m],  u - x[n:] - z[:m])
                    z[m:] = mul(di[m:], -u - x[n:] - z[m:])

                return f

            sol = solvers.conelp(c, G, h, dims, kktsolver = F) 
            return sol['x'][:n],  sol['z'][m:] - sol['z'][:m]    


**Example: SDP with diagonal linear term**

    The SDP

    .. math::

        \newcommand{\diag}{\mbox{\bf diag}\,}
        \newcommand{\ones}{{\bf 1}}
        \begin{array}{ll}
        \mbox{minimize} & \ones^T x \\
        \mbox{subject to} & W + \diag(x) \succeq 0 
        \end{array} 

    can be solved efficiently by exploiting properties of the diag 
    operator.

    :: 

        from cvxopt import blas, lapack, solvers, matrix

        def mcsdp(w):
            """
            Returns solution x, z to 

                (primal)  minimize    sum(x)
                          subject to  w + diag(x) >= 0

                (dual)    maximize    -tr(w*z)
                          subject to  diag(z) = 1
                                      z >= 0.
            """

            n = w.size[0]
            c = matrix(1.0, (n,1))

            def G(x, y, alpha = 1.0, beta = 0.0, trans = 'N'):
                """
                    y := alpha*(-diag(x)) + beta*y.   
                """

                if trans=='N':
                    # x is a vector; y is a symmetric matrix in column major order.
                    y *= beta
                    y[::n+1] -= alpha * x

                else:   
                    # x is a symmetric matrix in column major order; y is a vector.
                    y *= beta
                    y -= alpha * x[::n+1] 
                 

            def cngrnc(r, x, alpha = 1.0):
                """
                Congruence transformation

                    x := alpha * r'*x*r.

                r and x are square matrices.
                """

                # Scale diagonal of x by 1/2.  
                x[::n+1] *= 0.5
            
                # a := tril(x)*r 
                a = +r
                tx = matrix(x, (n,n))
                blas.trmm(tx, a, side = 'L')

                # x := alpha*(a*r' + r*a') 
                blas.syr2k(r, a, tx, trans = 'T', alpha = alpha)
                x[:] = tx[:]

            dims = {'l': 0, 'q': [], 's': [n]}

            def F(W):
                """
                Returns a function f(x, y, z) that solves 

                              -diag(z)     = bx
                    -diag(x) - r*r'*z*r*r' = bz

                where r = W['r'][0] = W['rti'][0]^{-T}.
                """
           
                rti = W['rti'][0]

                # t = rti*rti' as a nonsymmetric matrix.
                t = matrix(0.0, (n,n))
                blas.gemm(rti, rti, t, transB = 'T') 

                # Cholesky factorization of tsq = t.*t.
                tsq = t**2
                lapack.potrf(tsq)

                def f(x, y, z):
                    """
                    On entry, x contains bx, y is empty, and z contains bz stored 
                    in column major order.
                    On exit, they contain the solution, with z scaled 
                    (vec(r'*z*r) is returned instead of z).

                    We first solve 
                    
                       ((rti*rti') .* (rti*rti')) * x = bx - diag(t*bz*t)
                   
                    and take z = - rti' * (diag(x) + bz) * rti.
                    """

                    # tbst := t * bz * t
                    tbst = +z
                    cngrnc(t, tbst) 

                    # x := x - diag(tbst) = bx - diag(rti*rti' * bz * rti*rti')
                    x -= tbst[::n+1]

                    # x := (t.*t)^{-1} * x = (t.*t)^{-1} * (bx - diag(t*bz*t))
                    lapack.potrs(tsq, x)

                    # z := z + diag(x) = bz + diag(x)
                    z[::n+1] += x 

                    # z := -vec(rti' * z * rti) 
                    #    = -vec(rti' * (diag(x) + bz) * rti 
                    cngrnc(rti, z, alpha = -1.0)

                return f

            sol = solvers.conelp(c, G, w[:], dims, kktsolver = F) 
            return sol['x'], sol['z']


**Example: Minimizing 1-norm subject to a 2-norm constraint**
    In the second example, we use a similar trick to solve the problem

    .. math::

        \begin{array}{ll}
        \mbox{minimize}   & \|u\|_1 \\
        \mbox{subject to} & \|Au - b\|_2 \leq 1.
        \end{array}

    The code below is efficient, if we assume that the number of rows in 
    :math:`A` is greater than or equal to the number of columns.

    ::

        def qcl1(A, b):
            """
            Returns the solution u, z of

                (primal)  minimize    || u ||_1       
                          subject to  || A * u - b ||_2  <= 1

                (dual)    maximize    b^T z - ||z||_2
                          subject to  || A'*z ||_inf <= 1.

            Exploits structure, assuming A is m by n with m >= n. 
            """

            m, n = A.size

            # Solve equivalent cone LP with variables x = [u; v].
            #
            #     minimize    [0; 1]' * x 
            #     subject to  [ I  -I ] * x <=  [  0 ]   (componentwise)
            #                 [-I  -I ] * x <=  [  0 ]   (componentwise)
            #                 [ 0   0 ] * x <=  [  1 ]   (SOC)
            #                 [-A   0 ]         [ -b ]
            #
            #     maximize    -t + b' * w
            #     subject to  z1 - z2 = A'*w
            #                 z1 + z2 = 1
            #                 z1 >= 0,  z2 >=0,  ||w||_2 <= t.
             
            c = matrix(n*[0.0] + n*[1.0])
            h = matrix( 0.0, (2*n + m + 1, 1))
            h[2*n] = 1.0
            h[2*n+1:] = -b

            def G(x, y, alpha = 1.0, beta = 0.0, trans = 'N'):    
                y *= beta
                if trans=='N':
                    # y += alpha * G * x 
                    y[:n] += alpha * (x[:n] - x[n:2*n]) 
                    y[n:2*n] += alpha * (-x[:n] - x[n:2*n]) 
                    y[2*n+1:] -= alpha * A*x[:n] 

                else:
                    # y += alpha * G'*x 
                    y[:n] += alpha * (x[:n] - x[n:2*n] - A.T * x[-m:])  
                    y[n:] -= alpha * (x[:n] + x[n:2*n]) 


            def Fkkt(W): 
                """
                Returns a function f(x, y, z) that solves
                
                    [ 0   G'   ] [ x ] = [ bx ]
                    [ G  -W'*W ] [ z ]   [ bz ].
                """

                # First factor 
                #
                #     S = G' * W**-1 * W**-T * G
                #       = [0; -A]' * W3^-2 * [0; -A] + 4 * (W1**2 + W2**2)**-1 
                #
                # where
                #
                #     W1 = diag(d1) with d1 = W['d'][:n] = 1 ./ W['di'][:n]  
                #     W2 = diag(d2) with d2 = W['d'][n:] = 1 ./ W['di'][n:]  
                #     W3 = beta * (2*v*v' - J),  W3^-1 = 1/beta * (2*J*v*v'*J - J)  
                #        with beta = W['beta'][0], v = W['v'][0], J = [1, 0; 0, -I].
          
                # As = W3^-1 * [ 0 ; -A ] = 1/beta * ( 2*J*v * v' - I ) * [0; A]
                beta, v = W['beta'][0], W['v'][0]
                As = 2 * v * (v[1:].T * A)
                As[1:,:] *= -1.0
                As[1:,:] -= A
                As /= beta
              
                # S = As'*As + 4 * (W1**2 + W2**2)**-1
                S = As.T * As 
                d1, d2 = W['d'][:n], W['d'][n:]       
                d = 4.0 * (d1**2 + d2**2)**-1
                S[::n+1] += d
                lapack.potrf(S)

                def f(x, y, z):

                    # z := - W**-T * z 
                    z[:n] = -div( z[:n], d1 )
                    z[n:2*n] = -div( z[n:2*n], d2 )
                    z[2*n:] -= 2.0*v*( v[0]*z[2*n] - blas.dot(v[1:], z[2*n+1:]) ) 
                    z[2*n+1:] *= -1.0
                    z[2*n:] /= beta

                    # x := x - G' * W**-1 * z
                    x[:n] -= div(z[:n], d1) - div(z[n:2*n], d2) + As.T * z[-(m+1):]
                    x[n:] += div(z[:n], d1) + div(z[n:2*n], d2) 

                    # Solve for x[:n]:
                    #
                    #    S*x[:n] = x[:n] - (W1**2 - W2**2)(W1**2 + W2**2)^-1 * x[n:]
                    
                    x[:n] -= mul( div(d1**2 - d2**2, d1**2 + d2**2), x[n:]) 
                    lapack.potrs(S, x)
                    
                    # Solve for x[n:]:
                    #
                    #    (d1**-2 + d2**-2) * x[n:] = x[n:] + (d1**-2 - d2**-2)*x[:n]
                     
                    x[n:] += mul( d1**-2 - d2**-2, x[:n])
                    x[n:] = div( x[n:], d1**-2 + d2**-2)

                    # z := z + W^-T * G*x 
                    z[:n] += div( x[:n] - x[n:2*n], d1) 
                    z[n:2*n] += div( -x[:n] - x[n:2*n], d2) 
                    z[2*n:] += As*x[:n]

                return f

            dims = {'l': 2*n, 'q': [m+1], 's': []}
            sol = solvers.conelp(c, G, h, dims, kktsolver = Fkkt)
            if sol['status'] == 'optimal':
                return sol['x'][:n],  sol['z'][-m:]
            else:
                return None, None


**Example: 1-norm regularized least-squares** 
    As an example that illustrates how structure can be exploited in 
    :func:`coneqp <cvxopt.solvers.coneqp>`, we consider the 1-norm 
    regularized least-squares problem

    .. math::

        \begin{array}{ll}
        \mbox{minimize} & \|Ax - y\|_2^2 + \|x\|_1
        \end{array}

    with variable :math:`x`.  The problem is equivalent to the quadratic 
    program

    .. math::

        \newcommand{\ones}{{\bf 1}}
        \begin{array}{ll}
        \mbox{minimize} & \|Ax - y\|_2^2 + \ones^T u \\
        \mbox{subject to} & -u \preceq x \preceq u
        \end{array}

    with variables :math:`x` and :math:`u`.  The implementation below is 
    efficient when :math:`A` has many more columns than rows. 

    ::

        from cvxopt import matrix, spdiag, mul, div, blas, lapack, solvers, sqrt
        import math

        def l1regls(A, y):
            """
            
            Returns the solution of l1-norm regularized least-squares problem
          
                minimize || A*x - y ||_2^2  + || x ||_1.

            """

            m, n = A.size
            q = matrix(1.0, (2*n,1))
            q[:n] = -2.0 * A.T * y

            def P(u, v, alpha = 1.0, beta = 0.0 ):
                """
                    v := alpha * 2.0 * [ A'*A, 0; 0, 0 ] * u + beta * v 
                """
                v *= beta
                v[:n] += alpha * 2.0 * A.T * (A * u[:n])


            def G(u, v, alpha=1.0, beta=0.0, trans='N'):
                """
                    v := alpha*[I, -I; -I, -I] * u + beta * v  (trans = 'N' or 'T')
                """

                v *= beta
                v[:n] += alpha*(u[:n] - u[n:])
                v[n:] += alpha*(-u[:n] - u[n:])

            h = matrix(0.0, (2*n,1))


            # Customized solver for the KKT system 
            #
            #     [  2.0*A'*A  0    I      -I     ] [x[:n] ]     [bx[:n] ]
            #     [  0         0   -I      -I     ] [x[n:] ]  =  [bx[n:] ].
            #     [  I        -I   -D1^-1   0     ] [zl[:n]]     [bzl[:n]]
            #     [ -I        -I    0      -D2^-1 ] [zl[n:]]     [bzl[n:]]
            #
            # where D1 = W['di'][:n]**2, D2 = W['di'][n:]**2.
            #    
            # We first eliminate zl and x[n:]:
            #
            #     ( 2*A'*A + 4*D1*D2*(D1+D2)^-1 ) * x[:n] = 
            #         bx[:n] - (D2-D1)*(D1+D2)^-1 * bx[n:] + 
            #         D1 * ( I + (D2-D1)*(D1+D2)^-1 ) * bzl[:n] - 
            #         D2 * ( I - (D2-D1)*(D1+D2)^-1 ) * bzl[n:]           
            #
            #     x[n:] = (D1+D2)^-1 * ( bx[n:] - D1*bzl[:n]  - D2*bzl[n:] ) 
            #         - (D2-D1)*(D1+D2)^-1 * x[:n]         
            #
            #     zl[:n] = D1 * ( x[:n] - x[n:] - bzl[:n] )
            #     zl[n:] = D2 * (-x[:n] - x[n:] - bzl[n:] ).
            #
            # The first equation has the form
            #
            #     (A'*A + D)*x[:n]  =  rhs
            #
            # and is equivalent to
            #
            #     [ D    A' ] [ x:n] ]  = [ rhs ]
            #     [ A   -I  ] [ v    ]    [ 0   ].
            #
            # It can be solved as 
            #
            #     ( A*D^-1*A' + I ) * v = A * D^-1 * rhs
            #     x[:n] = D^-1 * ( rhs - A'*v ).

            S = matrix(0.0, (m,m))
            Asc = matrix(0.0, (m,n))
            v = matrix(0.0, (m,1))

            def Fkkt(W):

                # Factor 
                #
                #     S = A*D^-1*A' + I 
                #
                # where D = 2*D1*D2*(D1+D2)^-1, D1 = d[:n]**-2, D2 = d[n:]**-2.

                d1, d2 = W['di'][:n]**2, W['di'][n:]**2

                # ds is square root of diagonal of D
                ds = math.sqrt(2.0) * div( mul( W['di'][:n], W['di'][n:]), sqrt(d1+d2) )
                d3 =  div(d2 - d1, d1 + d2)
             
                # Asc = A*diag(d)^-1/2
                Asc = A * spdiag(ds**-1)

                # S = I + A * D^-1 * A'
                blas.syrk(Asc, S)
                S[::m+1] += 1.0 
                lapack.potrf(S)

                def g(x, y, z):

                    x[:n] = 0.5 * ( x[:n] - mul(d3, x[n:]) + 
                        mul(d1, z[:n] + mul(d3, z[:n])) - mul(d2, z[n:] - 
                        mul(d3, z[n:])) )
                    x[:n] = div( x[:n], ds) 

                    # Solve
                    #
                    #     S * v = 0.5 * A * D^-1 * ( bx[:n] - 
                    #         (D2-D1)*(D1+D2)^-1 * bx[n:] + 
                    #         D1 * ( I + (D2-D1)*(D1+D2)^-1 ) * bzl[:n] - 
                    #         D2 * ( I - (D2-D1)*(D1+D2)^-1 ) * bzl[n:] )
                        
                    blas.gemv(Asc, x, v)
                    lapack.potrs(S, v)
                    
                    # x[:n] = D^-1 * ( rhs - A'*v ).
                    blas.gemv(Asc, v, x, alpha=-1.0, beta=1.0, trans='T')
                    x[:n] = div(x[:n], ds)

                    # x[n:] = (D1+D2)^-1 * ( bx[n:] - D1*bzl[:n]  - D2*bzl[n:] ) 
                    #         - (D2-D1)*(D1+D2)^-1 * x[:n]         
                    x[n:] = div( x[n:] - mul(d1, z[:n]) - mul(d2, z[n:]), d1+d2 )\
                        - mul( d3, x[:n] )
                        
                    # zl[:n] = D1^1/2 * (  x[:n] - x[n:] - bzl[:n] )
                    # zl[n:] = D2^1/2 * ( -x[:n] - x[n:] - bzl[n:] ).
                    z[:n] = mul( W['di'][:n],  x[:n] - x[n:] - z[:n] ) 
                    z[n:] = mul( W['di'][n:], -x[:n] - x[n:] - z[n:] ) 

                return g

            return solvers.coneqp(P, q, G, h, kktsolver = Fkkt)['x'][:n]


.. _s-external:

Optional Solvers
================

CVXOPT includes optional interfaces to several other optimization 
libraries.

**GLPK** 
    :func:`lp <cvxopt.solvers.lp>` with the ``solver`` option set to 
    :const:`'glpk'` uses the 
    simplex algorithm in `GLPK (GNU Linear Programming Kit) 
    <http://www.gnu.org/software/glpk/glpk.html>`_.

**MOSEK** 
    :func:`lp <cvxopt.solvers.lp>`, :func:`socp <cvxopt.solvers.socp>`,
    and :func:`qp <cvxopt.solvers.qp>` with the ``solver`` option
    set to :const:`'mosek'` option use `MOSEK <http://www.mosek.com>`_
    version 5.

**DSDP** 
    :func:`sdp <cvxopt.solvers.sdp>` with the ``solver`` option set to 
    :const:`'dsdp'` uses 
    the `DSDP5.8 <http://www-unix.mcs.anl.gov/DSDP>`_.  

GLPK, MOSEK and DSDP are not included in the CVXOPT distribution and 
need to be installed separately.  


.. _s-parameters:

Algorithm Parameters
====================

In this section we list some algorithm control parameters that can be 
modified without editing the source code.  These control parameters are 
accessible via the dictionary :attr:`solvers.options`.  By default the 
dictionary is empty and the default values of the parameters are
used. 

One can change the parameters in the default solvers by 
adding entries with the following key values.  

:const:`'show_progress'`  
    :const:`True` or :const:`False`; turns the output to the screen on or 
    off (default: :const:`True`).

:const:`'maxiters'` 
    maximum number of iterations (default: :const:`100`).

:const:`'abstol'` 
    absolute accuracy (default: :const:`1e-7`).

:const:`'reltol'` 
    relative accuracy (default: :const:`1e-6`).

:const:`'feastol'`
    tolerance for feasibility conditions (default: :const:`1e-7`).

:const:`'refinement'` 
    number of iterative refinement steps when solving KKT equations 
    (default: :const:`0` if the problem has no second-order cone or matrix 
    inequality constraints; :const:`1` otherwise).

For example the command

>>> from cvxopt import solvers
>>> solvers.options['show_progress'] = False

turns off the screen output during calls to the solvers.

The tolerances :const:`'abstol'`, :const:`'reltol'` and :const:`'feastol'` 
have the following meaning.  :func:`conelp <cvxopt.solvers.conelp>` 
terminates with status :const:`'optimal'` if

.. math::

    s \succeq 0, \qquad 
    \frac{\|Gx + s - h\|_2} {\max\{1,\|h\|_2\}} \leq 
        \epsilon_\mathrm{feas}, \qquad 
    \frac{\|Ax-b\|_2}{\max\{1,\|b\|_2\}} \leq \epsilon_\mathrm{feas}, 
        \qquad

and

.. math::

    z \succeq 0, \qquad
    \frac{\|G^Tz +  A^Ty + c\|_2}{\max\{1,\|c\|_2\}} \leq 
        \epsilon_\mathrm{feas}, 

and

.. math::

    s^T z \leq \epsilon_\mathrm{abs} \qquad \mbox{or} \qquad
    \left( \min\left\{c^Tx,  h^T z + b^Ty \right\} < 0 \quad 
        \mbox{and} \quad
    \frac{s^Tz} {-\min\{c^Tx, h^Tz + b^T y\}} \leq \epsilon_\mathrm{rel} 
    \right).

It returns with status :const:`'primal infeasible'` if 

.. math::

    z \succeq 0, \qquad \qquad 
    \frac{\|G^Tz +A^Ty\|_2}{\max\{1, \|c\|_2\}} \leq 
        \epsilon_\mathrm{feas}, \qquad 
    h^Tz +b^Ty = -1.

It returns with status :const:`'dual infeasible'` if 

.. math::

    s \succeq 0, \qquad \qquad
    \frac{\|Gx+s\|_2}{\max\{1, \|h\|_2\}} \leq \epsilon_\mathrm{feas}, 
    \qquad
    \frac{\|Ax\|_2}{\max\{1, \|b\|_2\}} \leq \epsilon_\mathrm{feas}, 
    \qquad c^Tx = -1.

The functions :func:`lp <cvxopt.solvers.lp`, 
:func:`socp <cvxopt.solvers.socp>` and 
:func:`sdp <cvxopt.solvers.sdp>` call :func:`conelp` 
and hence use the same stopping criteria.

The function :func:`coneqp <cvxopt.solvers.coneqp>` terminates with 
status :const:`'optimal'` if

.. math::

    s \succeq 0, \qquad 
    \frac{\|Gx + s - h\|_2} {\max\{1,\|h\|_2\}} \leq 
        \epsilon_\mathrm{feas}, \qquad 
    \frac{\|Ax-b\|_2}{\max\{1,\|b\|_2\}} \leq \epsilon_\mathrm{feas}, 

and

.. math::
    z \succeq 0, \qquad 
    \frac{\|Px + G^Tz +  A^Ty + q\|_2}{\max\{1,\|q\|_2\}} \leq 
        \epsilon_\mathrm{feas}, 

and at least one of the following three conditions is satisfied:

.. math:: 

    s^T z \leq \epsilon_\mathrm{abs} 

or

.. math::

    \left( \frac{1}{2}x^TPx + q^Tx < 0, \quad 
    \mbox{and}\quad \frac{s^Tz} {-(1/2)x^TPx - q^Tx} \leq 
        \epsilon_\mathrm{rel} \right) 

or

.. math::
    \left( L(x,y,z) > 0 \quad \mbox{and} \quad \frac{s^Tz}
        {L(x,y,z)} \leq \epsilon_\mathrm{rel} \right).

Here

.. math::

    L(x,y,z) = \frac{1}{2}x^TPx + q^Tx  + z^T (Gx-h) + y^T(Ax-b).

The function :func:`qp <cvxopt.solvers.qp>` calls 
:func:`coneqp` and hence uses the same 
stopping criteria.

The control parameters listed in the GLPK documentation are set 
to their default values and can be customized by making an entry
in :attr:`solvers.options['glpk']`.  The entry must be a 
dictionary in which the key/value pairs are GLPK parameter names 
and values.  For example, the command 

>>> from cvxopt import solvers 
>>> solvers.options['glpk'] = {'msg_lev' : 'GLP_MSG_OFF'}

turns off the screen output in subsequent 
:func:`lp <cvxopt.solvers.lp>` calls with the :const:`'glpk'` option.

The MOSEK interior-point algorithm parameters are set to their default 
values.  They can be modified by adding an entry 
:attr:`solvers.options['mosek']`.  This entry is a dictionary with 
MOSEK parameter/value pairs, with the parameter names imported from
:mod:`mosek`.  For details see Section 15 of the MOSEK Python API Manual.

For example, the commands

>>> from cvxopt import solvers 
>>> import mosek
>>> solvers.options['mosek'] = {mosek.iparam.log: 0}

turn off the screen output during calls of 
:func:`lp` or :func:`socp` with
the :const:`'mosek'` option.

The following control parameters in :attr:`solvers.options['dsdp']` affect the 
execution of the DSDP algorithm:

:const:`'DSDP_Monitor'` 
    the interval (in number of iterations) at which output is printed to 
    the screen (default: :const:`0`).

:const:`'DSDP_MaxIts'` 
    maximum number of iterations.

:const:`'DSDP_GapTolerance'` 
    relative accuracy (default: :const:`1e-5`).

It is also possible to override the options specified in the
dictionary :attr:`solvers.options` by passing a dictionary with
options as a keyword argument. For example, the commands

>>> from cvxopt import solvers
>>> opts = {'maxiters' : 50}
>>> solvers.conelp(c, G, h, options = opts)

override the options specified in the dictionary
:attr:`solvers.options` and use the options in the dictionary
:attr:`opts` instead. This is useful e.g. when several problem
instances should be solved in parallel, but using different options.