1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
# The 1-norm regularized least-squares example of section 8.7 (Exploiting
# structure).
from cvxopt import matrix, spdiag, mul, div, sqrt, normal, setseed
from cvxopt import blas, lapack, solvers
import math
def l1regls(A, y):
"""
Returns the solution of l1-norm regularized least-squares problem
minimize || A*x - y ||_2^2 + || x ||_1.
"""
m, n = A.size
q = matrix(1.0, (2*n,1))
q[:n] = -2.0 * A.T * y
def P(u, v, alpha = 1.0, beta = 0.0 ):
"""
v := alpha * 2.0 * [ A'*A, 0; 0, 0 ] * u + beta * v
"""
v *= beta
v[:n] += alpha * 2.0 * A.T * (A * u[:n])
def G(u, v, alpha=1.0, beta=0.0, trans='N'):
"""
v := alpha*[I, -I; -I, -I] * u + beta * v (trans = 'N' or 'T')
"""
v *= beta
v[:n] += alpha*(u[:n] - u[n:])
v[n:] += alpha*(-u[:n] - u[n:])
h = matrix(0.0, (2*n,1))
# Customized solver for the KKT system
#
# [ 2.0*A'*A 0 I -I ] [x[:n] ] [bx[:n] ]
# [ 0 0 -I -I ] [x[n:] ] = [bx[n:] ].
# [ I -I -D1^-1 0 ] [zl[:n]] [bzl[:n]]
# [ -I -I 0 -D2^-1 ] [zl[n:]] [bzl[n:]]
#
# where D1 = W['di'][:n]**2, D2 = W['di'][n:]**2.
#
# We first eliminate zl and x[n:]:
#
# ( 2*A'*A + 4*D1*D2*(D1+D2)^-1 ) * x[:n] =
# bx[:n] - (D2-D1)*(D1+D2)^-1 * bx[n:] +
# D1 * ( I + (D2-D1)*(D1+D2)^-1 ) * bzl[:n] -
# D2 * ( I - (D2-D1)*(D1+D2)^-1 ) * bzl[n:]
#
# x[n:] = (D1+D2)^-1 * ( bx[n:] - D1*bzl[:n] - D2*bzl[n:] )
# - (D2-D1)*(D1+D2)^-1 * x[:n]
#
# zl[:n] = D1 * ( x[:n] - x[n:] - bzl[:n] )
# zl[n:] = D2 * (-x[:n] - x[n:] - bzl[n:] ).
#
# The first equation has the form
#
# (A'*A + D)*x[:n] = rhs
#
# and is equivalent to
#
# [ D A' ] [ x:n] ] = [ rhs ]
# [ A -I ] [ v ] [ 0 ].
#
# It can be solved as
#
# ( A*D^-1*A' + I ) * v = A * D^-1 * rhs
# x[:n] = D^-1 * ( rhs - A'*v ).
S = matrix(0.0, (m,m))
Asc = matrix(0.0, (m,n))
v = matrix(0.0, (m,1))
def Fkkt(W):
# Factor
#
# S = A*D^-1*A' + I
#
# where D = 2*D1*D2*(D1+D2)^-1, D1 = d[:n]**-2, D2 = d[n:]**-2.
d1, d2 = W['di'][:n]**2, W['di'][n:]**2
# ds is square root of diagonal of D
ds = math.sqrt(2.0) * div( mul( W['di'][:n], W['di'][n:]),
sqrt(d1+d2) )
d3 = div(d2 - d1, d1 + d2)
# Asc = A*diag(d)^-1/2
Asc = A * spdiag(ds**-1)
# S = I + A * D^-1 * A'
blas.syrk(Asc, S)
S[::m+1] += 1.0
lapack.potrf(S)
def g(x, y, z):
x[:n] = 0.5 * ( x[:n] - mul(d3, x[n:]) +
mul(d1, z[:n] + mul(d3, z[:n])) - mul(d2, z[n:] -
mul(d3, z[n:])) )
x[:n] = div( x[:n], ds)
# Solve
#
# S * v = 0.5 * A * D^-1 * ( bx[:n] -
# (D2-D1)*(D1+D2)^-1 * bx[n:] +
# D1 * ( I + (D2-D1)*(D1+D2)^-1 ) * bzl[:n] -
# D2 * ( I - (D2-D1)*(D1+D2)^-1 ) * bzl[n:] )
blas.gemv(Asc, x, v)
lapack.potrs(S, v)
# x[:n] = D^-1 * ( rhs - A'*v ).
blas.gemv(Asc, v, x, alpha=-1.0, beta=1.0, trans='T')
x[:n] = div(x[:n], ds)
# x[n:] = (D1+D2)^-1 * ( bx[n:] - D1*bzl[:n] - D2*bzl[n:] )
# - (D2-D1)*(D1+D2)^-1 * x[:n]
x[n:] = div( x[n:] - mul(d1, z[:n]) - mul(d2, z[n:]), d1+d2 )\
- mul( d3, x[:n] )
# zl[:n] = D1^1/2 * ( x[:n] - x[n:] - bzl[:n] )
# zl[n:] = D2^1/2 * ( -x[:n] - x[n:] - bzl[n:] ).
z[:n] = mul( W['di'][:n], x[:n] - x[n:] - z[:n] )
z[n:] = mul( W['di'][n:], -x[:n] - x[n:] - z[n:] )
return g
return solvers.coneqp(P, q, G, h, kktsolver = Fkkt)['x'][:n]
m, n = 100, 1000
setseed()
A = normal(m,n)
b = normal(m)
x = l1regls(A, b)
|