File: qcl1.py

package info (click to toggle)
cvxopt 1.3.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, trixie
  • size: 2,800 kB
  • sloc: ansic: 23,229; python: 11,991; makefile: 75; sh: 7
file content (134 lines) | stat: -rwxr-xr-x 4,120 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# The quadratically constrained 1-norm minimization example of section 8.7
# (Exploiting structure).

from cvxopt import blas, lapack, solvers, matrix, mul, div, setseed, normal
from math import sqrt

def qcl1(A, b):

    """
    Returns the solution u, z of

        (primal)  minimize    || u ||_1       
                  subject to  || A * u - b ||_2  <= 1

        (dual)    maximize    b^T z - ||z||_2
                  subject to  || A'*z ||_inf <= 1.

    Exploits structure, assuming A is m by n with m >= n. 
    """

    m, n = A.size

    # Solve equivalent cone LP with variables x = [u; v]:
    #
    #     minimize    [0; 1]' * x 
    #     subject to  [ I  -I ] * x <=  [  0 ]   (componentwise)
    #                 [-I  -I ] * x <=  [  0 ]   (componentwise)
    #                 [ 0   0 ] * x <=  [  1 ]   (SOC)
    #                 [-A   0 ]         [ -b ].
    #
    #     maximize    -t + b' * w
    #     subject to  z1 - z2 = A'*w
    #                 z1 + z2 = 1
    #                 z1 >= 0,  z2 >=0,  ||w||_2 <= t.
     
    c = matrix(n*[0.0] + n*[1.0])
    h = matrix( 0.0, (2*n + m + 1, 1))
    h[2*n] = 1.0
    h[2*n+1:] = -b

    def G(x, y, alpha = 1.0, beta = 0.0, trans = 'N'):    
        y *= beta
        if trans=='N':
            # y += alpha * G * x 
            y[:n] += alpha * (x[:n] - x[n:2*n]) 
            y[n:2*n] += alpha * (-x[:n] - x[n:2*n]) 
            y[2*n+1:] -= alpha * A*x[:n] 

        else:
            # y += alpha * G'*x 
            y[:n] += alpha * (x[:n] - x[n:2*n] - A.T * x[-m:])  
            y[n:] -= alpha * (x[:n] + x[n:2*n]) 


    def Fkkt(W): 

        # Returns a function f(x, y, z) that solves
        #
        #     [ 0   G'   ] [ x ] = [ bx ]
        #     [ G  -W'*W ] [ z ]   [ bz ].

        # First factor 
        #
        #     S = G' * W**-1 * W**-T * G
        #       = [0; -A]' * W3^-2 * [0; -A] + 4 * (W1**2 + W2**2)**-1 
        #
        # where
        #
        #     W1 = diag(d1) with d1 = W['d'][:n] = 1 ./ W['di'][:n]  
        #     W2 = diag(d2) with d2 = W['d'][n:] = 1 ./ W['di'][n:]  
        #     W3 = beta * (2*v*v' - J),  W3^-1 = 1/beta * (2*J*v*v'*J - J)  
        #        with beta = W['beta'][0], v = W['v'][0], J = [1, 0; 0, -I].
  
        # As = W3^-1 * [ 0 ; -A ] = 1/beta * ( 2*J*v * v' - I ) * [0; A]
        beta, v = W['beta'][0], W['v'][0]
        As = 2 * v * (v[1:].T * A)
        As[1:,:] *= -1.0
        As[1:,:] -= A
        As /= beta
      
        # S = As'*As + 4 * (W1**2 + W2**2)**-1
        S = As.T * As 
        d1, d2 = W['d'][:n], W['d'][n:]       
        d = 4.0 * (d1**2 + d2**2)**-1
        S[::n+1] += d
        lapack.potrf(S)

        def f(x, y, z):

            # z := - W**-T * z 
            z[:n] = -div( z[:n], d1 )
            z[n:2*n] = -div( z[n:2*n], d2 )
            z[2*n:] -= 2.0*v*( v[0]*z[2*n] - blas.dot(v[1:], z[2*n+1:]) ) 
            z[2*n+1:] *= -1.0
            z[2*n:] /= beta

            # x := x - G' * W**-1 * z
            x[:n] -= div(z[:n], d1) - div(z[n:2*n], d2) + As.T * z[-(m+1):]
            x[n:] += div(z[:n], d1) + div(z[n:2*n], d2) 

            # Solve for x[:n]:
            #
            #    S*x[:n] = x[:n] - (W1**2 - W2**2)(W1**2 + W2**2)^-1 * x[n:]
            
            x[:n] -= mul( div(d1**2 - d2**2, d1**2 + d2**2), x[n:]) 
            lapack.potrs(S, x)
            
            # Solve for x[n:]:
            #
            #    (d1**-2 + d2**-2) * x[n:] = x[n:] + (d1**-2 - d2**-2)*x[:n]
             
            x[n:] += mul( d1**-2 - d2**-2, x[:n])
            x[n:] = div( x[n:], d1**-2 + d2**-2)

            # z := z + W^-T * G*x 
            z[:n] += div( x[:n] - x[n:2*n], d1) 
            z[n:2*n] += div( -x[:n] - x[n:2*n], d2) 
            z[2*n:] += As*x[:n]

        return f

    dims = {'l': 2*n, 'q': [m+1], 's': []}
    sol = solvers.conelp(c, G, h, dims, kktsolver = Fkkt)
    if sol['status'] == 'optimal':
        return sol['x'][:n],  sol['z'][-m:]
    else:
        return None, None

setseed()
m, n = 100, 100
A, b = normal(m,n), normal(m,1)

x, z = qcl1(A, b)
if x is None: print("infeasible")