1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
|
# The quadratically constrained 1-norm minimization example of section 8.7
# (Exploiting structure).
from cvxopt import blas, lapack, solvers, matrix, mul, div, setseed, normal
from math import sqrt
def qcl1(A, b):
"""
Returns the solution u, z of
(primal) minimize || u ||_1
subject to || A * u - b ||_2 <= 1
(dual) maximize b^T z - ||z||_2
subject to || A'*z ||_inf <= 1.
Exploits structure, assuming A is m by n with m >= n.
"""
m, n = A.size
# Solve equivalent cone LP with variables x = [u; v]:
#
# minimize [0; 1]' * x
# subject to [ I -I ] * x <= [ 0 ] (componentwise)
# [-I -I ] * x <= [ 0 ] (componentwise)
# [ 0 0 ] * x <= [ 1 ] (SOC)
# [-A 0 ] [ -b ].
#
# maximize -t + b' * w
# subject to z1 - z2 = A'*w
# z1 + z2 = 1
# z1 >= 0, z2 >=0, ||w||_2 <= t.
c = matrix(n*[0.0] + n*[1.0])
h = matrix( 0.0, (2*n + m + 1, 1))
h[2*n] = 1.0
h[2*n+1:] = -b
def G(x, y, alpha = 1.0, beta = 0.0, trans = 'N'):
y *= beta
if trans=='N':
# y += alpha * G * x
y[:n] += alpha * (x[:n] - x[n:2*n])
y[n:2*n] += alpha * (-x[:n] - x[n:2*n])
y[2*n+1:] -= alpha * A*x[:n]
else:
# y += alpha * G'*x
y[:n] += alpha * (x[:n] - x[n:2*n] - A.T * x[-m:])
y[n:] -= alpha * (x[:n] + x[n:2*n])
def Fkkt(W):
# Returns a function f(x, y, z) that solves
#
# [ 0 G' ] [ x ] = [ bx ]
# [ G -W'*W ] [ z ] [ bz ].
# First factor
#
# S = G' * W**-1 * W**-T * G
# = [0; -A]' * W3^-2 * [0; -A] + 4 * (W1**2 + W2**2)**-1
#
# where
#
# W1 = diag(d1) with d1 = W['d'][:n] = 1 ./ W['di'][:n]
# W2 = diag(d2) with d2 = W['d'][n:] = 1 ./ W['di'][n:]
# W3 = beta * (2*v*v' - J), W3^-1 = 1/beta * (2*J*v*v'*J - J)
# with beta = W['beta'][0], v = W['v'][0], J = [1, 0; 0, -I].
# As = W3^-1 * [ 0 ; -A ] = 1/beta * ( 2*J*v * v' - I ) * [0; A]
beta, v = W['beta'][0], W['v'][0]
As = 2 * v * (v[1:].T * A)
As[1:,:] *= -1.0
As[1:,:] -= A
As /= beta
# S = As'*As + 4 * (W1**2 + W2**2)**-1
S = As.T * As
d1, d2 = W['d'][:n], W['d'][n:]
d = 4.0 * (d1**2 + d2**2)**-1
S[::n+1] += d
lapack.potrf(S)
def f(x, y, z):
# z := - W**-T * z
z[:n] = -div( z[:n], d1 )
z[n:2*n] = -div( z[n:2*n], d2 )
z[2*n:] -= 2.0*v*( v[0]*z[2*n] - blas.dot(v[1:], z[2*n+1:]) )
z[2*n+1:] *= -1.0
z[2*n:] /= beta
# x := x - G' * W**-1 * z
x[:n] -= div(z[:n], d1) - div(z[n:2*n], d2) + As.T * z[-(m+1):]
x[n:] += div(z[:n], d1) + div(z[n:2*n], d2)
# Solve for x[:n]:
#
# S*x[:n] = x[:n] - (W1**2 - W2**2)(W1**2 + W2**2)^-1 * x[n:]
x[:n] -= mul( div(d1**2 - d2**2, d1**2 + d2**2), x[n:])
lapack.potrs(S, x)
# Solve for x[n:]:
#
# (d1**-2 + d2**-2) * x[n:] = x[n:] + (d1**-2 - d2**-2)*x[:n]
x[n:] += mul( d1**-2 - d2**-2, x[:n])
x[n:] = div( x[n:], d1**-2 + d2**-2)
# z := z + W^-T * G*x
z[:n] += div( x[:n] - x[n:2*n], d1)
z[n:2*n] += div( -x[:n] - x[n:2*n], d2)
z[2*n:] += As*x[:n]
return f
dims = {'l': 2*n, 'q': [m+1], 's': []}
sol = solvers.conelp(c, G, h, dims, kktsolver = Fkkt)
if sol['status'] == 'optimal':
return sol['x'][:n], sol['z'][-m:]
else:
return None, None
setseed()
m, n = 100, 100
A, b = normal(m,n), normal(m,1)
x, z = qcl1(A, b)
if x is None: print("infeasible")
|