1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528
|
/*
* Copyright 2012-2023 M. Andersen and L. Vandenberghe.
* Copyright 2010-2011 L. Vandenberghe.
* Copyright 2004-2009 J. Dahl and L. Vandenberghe.
*
* This file is part of CVXOPT.
*
* CVXOPT is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* CVXOPT is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "cvxopt.h"
#include "misc.h"
#include "dsdp5.h"
#include "math.h"
PyDoc_STRVAR(dsdp__doc__,"Interface to DSDP version 5.8.\n\n"
"Software for Semidefinite Programming.\n\n"
"Three control parameters can be modified by making an entry in \n"
"dictionary dsdp.options:\n"
" options['DSDP_Monitor']: set to k in order to show \n"
" progress after every kth iteration (default: 0). \n"
" options['DSDP_MaxIts']: maximum number of iterations\n"
" options['DSDP_GapTolerance']: the relative tolerance used\n"
" in the exit condition (default: 1e-5).\n\n"
"DSDSP is available from www-unix.mcs.anl.gov/DSDP.");
static PyObject *dsdp_module;
static char doc_dsdp[] =
"Solves a semidefinite program using DSDP.\n\n"
"(status, x, r, zl, zs) = sdp(c, Gl=None, hl=None, Gs=None, hs=None"
",\n"
" gamma=1e8, beta=1e7)"
"\n\n"
"PURPOSE\n"
"Solves the SDP\n\n"
" minimize c'*x + gamma*r\n"
" subject to Gl*x <= hl + r\n"
" mat(Gs[k]*x) <= hs[k] + r*I, k=1,...,L\n"
" -beta <= x <= beta, r >= 0\n\n"
"and its dual\n\n"
" maximize -hl'*zl - sum_k tr(hs[k]*zs[k]) - beta*||zb||_1\n"
" subject to Gl'*zl + sum_k Gs[k]'*vec(zs[k]) + zb + c = 0\n"
" sum(zl) + sum_k tr(zs[k]) <= gamma \n"
" zl >= 0, zs[k] >=0, k=1,...,L. \n\n"
"For an mxm matrix y, vec(y) denotes the m^2-vector with the\n"
"entries of y stored columnwise. mat(y) is the inverse\n"
"operation.\n\n"
"ARGUMENTS\n"
"c n by 1 dense 'd' matrix\n\n"
"Gl ml by n dense or sparse 'd' matrixi. The default\n"
" value is a matrix with zero rows.\n\n"
"hl ml by 1 dense 'd' matrix. The default value is a\n"
" vector of length zero.\n\n"
"Gs list of L dense or sparse 'd' matrices. If the kth\n"
" linear matrix inequality has size mk, then Gs[k] is a\n"
" matrix of size mk**2 by n, and mat(Gs[k][:,i]) is the\n"
" coefficient of the ith variable i in inequality k.\n"
" Only the lower triangular entries in mat(Gs[k][:,i])\n"
" are accessed. The default value of Gs is an empty list."
"\n\n"
"hs list of L square dense 'd' matrices. hs[k] is the\n"
" righthand side in the kth linear matrix inequality.\n"
" Only the lower triangular entries of hs[k] are\n"
" accessed. The default value of hs is an empty list.\n\n"
"beta positive double\n\n"
"gamma positive double\n\n"
"status the DSDP solution status: 'DSDP_PDFEASIBLE', \n"
" 'DSDP_UNBOUNDED', 'DSDP_INFEASIBLE', or\n"
" 'DSDP_UNKNOWN'.\n\n"
"x the primal solution, as a dense 'd' matrix of size\n"
" n by 1\n\n"
"r the optimal value of the variable r\n\n"
"zl the dual solution as a dense 'd' matrix of size\n"
" ml by 1\n\n"
"zs the dual solution as a list of L square dense 'd'\n"
" matrices. Each matrix represents a symmetric matrix\n"
" in unpacked lower triangular format.";
typedef struct { /* symmetric matrix X in DSDP packed storage */
int n; /* order of X */
char issparse;
double *val; /* lower triangular nonzeros of X. Stored in row
* major order as an n*(n+1)/2-array if X is dense,
* and in arbitrary order if X is sparse.*/
int *ind; /* NULL if X is dense; otherwise, the indices of
* the elements of val in the n*(n+1)/2 array of
* the lower triangular entries of X stored
* rowwise. */
int nnz; /* length of val */
} dsdp_matrix;
extern void dcopy_(int *n, double *x, int *incx, double *y, int *incy);
static PyObject* solvesdp(PyObject *self, PyObject *args,
PyObject *kwrds)
{
matrix *c, *hl=NULL, *hk, *x=NULL, *zl=NULL, *zsk=NULL;
PyObject *Gl=NULL, *Gs=NULL, *hs=NULL, *Gk, *t=NULL, *zs=NULL, *opts=NULL,
*param, *key, *value;
int i, j, k, n, ml, l, mk, nnz, *lp_colptr=NULL, *lp_rowind=NULL,
incx, incy, lngth, maxm;
int_t pos=0;
double *lp_values=NULL, *zlvals=NULL, *zk=NULL, r, beta=-1.0,
gamma=-1.0, tol;
dsdp_matrix **lmis=NULL;
div_t qr;
DSDP sdp;
LPCone lpcone;
SDPCone sdpcone;
DSDPTerminationReason info;
DSDPSolutionType status;
char err_str[100];
#if PY_MAJOR_VERSION >= 3
const char *keystr;
#else
char *keystr;
#endif
char *kwlist[] = {"c", "Gl", "hl", "Gs", "hs", "gamma", "beta", "options",
NULL};
if (!PyArg_ParseTupleAndKeywords(args, kwrds, "O|OOOOddO", kwlist,
&c, &Gl, &hl, &Gs, &hs, &gamma, &beta, &opts)) return NULL;
if (!Matrix_Check(c) || MAT_NCOLS(c) != 1 || MAT_ID(c) != DOUBLE)
PY_ERR_TYPE("c must be a dense 'd' matrix with one column");
n = MAT_NROWS(c);
if (Gl == Py_None) Gl = NULL;
if (Gl && ((!Matrix_Check(Gl) && !SpMatrix_Check(Gl)) ||
X_NCOLS(Gl) != n || X_ID(Gl) != DOUBLE))
PY_ERR_TYPE("invalid type or dimensions for Gl");
ml = Gl ? X_NROWS(Gl) : 0;
if ((PyObject *)hl == Py_None) hl = NULL;
if ((!hl && ml) || (hl && (!Matrix_Check(hl) || MAT_NCOLS(hl) != 1
|| MAT_NROWS(hl) != ml || MAT_ID(hl) != DOUBLE)))
PY_ERR_TYPE("invalid type or dimensions for hl");
if (Gs && !PyList_Check(Gs)) PY_ERR_TYPE("Gs must be a list");
l = Gs ? PyList_Size(Gs) : 0;
if (hs && !PyList_Check(hs)) PY_ERR_TYPE("hs must be a list");
if ((!hs && l) || (hs && PyList_Size(hs) != l))
PY_ERR_TYPE("Gs and hs must be lists of equal length");
for (maxm=0, k=0; k<l; k++) {
Gk = PyList_GetItem(Gs, k);
hk = (matrix *) PyList_GetItem(hs, k);
if ((!Matrix_Check(Gk) && !SpMatrix_Check(Gk)) ||
X_ID(Gk) != DOUBLE)
PY_ERR_TYPE("Gs must be a list of 'd' matrices with n "
"columns");
if (!Matrix_Check(hk) || MAT_ID(hk) != DOUBLE ||
((mk = MAT_NCOLS(hk)) != MAT_NROWS(hk)))
PY_ERR_TYPE("hs must be a list of square dense 'd' "
"matrices");
if (X_NROWS(Gk) != mk*mk || X_NCOLS(Gk) != n)
PY_ERR_TYPE("incompatible dimensions for elements of Gs");
maxm = MAX(mk, maxm);
}
if (DSDPCreate(n, &sdp) || DSDPCreateLPCone(sdp, &lpcone) ||
DSDPCreateSDPCone(sdp, l, &sdpcone)){
t = PyErr_NoMemory();
goto done;
}
if (opts && PyDict_Check(opts)) {
Py_INCREF(opts);
param = opts;
}
else
param = PyObject_GetAttrString(dsdp_module, "options");
if (!param || !PyDict_Check(param)){
PyErr_SetString(PyExc_AttributeError, "missing dsdp.options "
" dictionary");
t = NULL;
Py_XDECREF(param);
goto done;
}
while (PyDict_Next(param, &pos, &key, &value))
#if PY_MAJOR_VERSION >= 3
if (PyUnicode_Check(key)) {
keystr = _PyUnicode_AsString(key);
#else
if ((keystr = PyString_AsString(key))){
#endif
if (!strcmp(keystr, "DSDP_Monitor")){
#if PY_MAJOR_VERSION >= 3
if (!PyLong_Check(value)) {
#else
if (!PyInt_Check(value)) {
#endif
sprintf(err_str, "invalid value for integer "
"DSDP parameter: DSDP_Monitor");
PyErr_SetString(PyExc_ValueError, err_str);
t = NULL;
Py_DECREF(param);
goto done;
}
#if PY_MAJOR_VERSION >= 3
else DSDPSetStandardMonitor(sdp, PyLong_AsLong(value));
#else
else DSDPSetStandardMonitor(sdp, PyInt_AsLong(value));
#endif
}
if (!strcmp(keystr, "DSDP_MaxIts")){
#if PY_MAJOR_VERSION >= 3
if (!PyLong_Check(value) || (k = PyLong_AsLong(value)) < 0){
#else
if (!PyInt_Check(value) || (k = PyInt_AsLong(value)) < 0){
#endif
sprintf(err_str, "invalid value for nonnegative "
"integer DSDP parameter: DSDP_MaxIts");
PyErr_SetString(PyExc_ValueError, err_str);
t = NULL;
Py_DECREF(param);
goto done;
}
else DSDPSetMaxIts(sdp, k);
}
if (!strcmp(keystr, "DSDP_GapTolerance")){
#if PY_MAJOR_VERSION >= 3
if ((!PyFloat_Check(value) && !PyLong_Check(value)) ||
#else
if ((!PyFloat_Check(value) && !PyInt_Check(value)) ||
#endif
(tol = PyFloat_AsDouble(value)) <= 0.0) {
sprintf(err_str, "invalid value for float "
"DSDP parameter: DSDP_GapTolerance");
PyErr_SetString(PyExc_ValueError, err_str);
t = NULL;
Py_DECREF(param);
goto done;
}
else DSDPSetGapTolerance(sdp, tol);
}
}
Py_DECREF(param);
if (gamma > 0) DSDPSetPenaltyParameter(sdp, gamma);
if (beta > 0) DSDPSetYBounds(sdp, -beta, beta);
/* cost function */
for (k=0; k<n; k++) DSDPSetDualObjective(sdp, k+1, -MAT_BUFD(c)[k]);
/* linear inequalities: store [Gl, hl] in CCS format */
nnz = ml ? ml + (Matrix_Check(Gl) ? ml*n : SP_NNZ(Gl)) : 0;
if (!(lp_colptr = (int *) calloc(n+2, sizeof(int))) ||
!(lp_rowind = (int *) calloc(nnz, sizeof(int))) ||
!(lp_values = (double *) calloc(nnz, sizeof(double)))){
t = PyErr_NoMemory();
goto done;
}
lp_colptr[0] = 0;
if (ml){
if (Matrix_Check(Gl)){
memcpy(lp_values, MAT_BUFD(Gl), ml*n*sizeof(double));
for (k=0; k<n; k++){
for (j=0; j<ml; j++) lp_rowind[ml*k+j] = j;
lp_colptr[k+1] = lp_colptr[k] + ml;
}
}
else {
memcpy(lp_values, SP_VALD(Gl), SP_NNZ(Gl)*sizeof(double));
for (k=0; k<n; k++){
for (j=SP_COL(Gl)[k]; j<SP_COL(Gl)[k+1]; j++)
lp_rowind[j] = (int) SP_ROW(Gl)[j];
lp_colptr[k+1] = lp_colptr[k] + (int) (SP_COL(Gl)[k+1] -
SP_COL(Gl)[k]);
}
}
memcpy(lp_values+lp_colptr[n], MAT_BUFD(hl), ml*sizeof(double));
for (k=0; k<ml; k++) lp_rowind[lp_colptr[n]+k] = k;
lp_colptr[n+1] = lp_colptr[n] + ml;
}
if (LPConeSetData2(lpcone, ml, lp_colptr, lp_rowind, lp_values)){
t = PyErr_NoMemory();
goto done;
}
/* LPConeView(lpcone); */
/* linear matrix inequalities: store mat(hs[k]), mat(Gs[k][:,i])
* as an lx(n+1) array of dsdp matrices. */
if (!(lmis = (dsdp_matrix **) calloc(l, sizeof(dsdp_matrix *)))){
t = PyErr_NoMemory();
goto done;
}
for (k=0; k<l; k++) lmis[k] = NULL;
for (k=0; k<l; k++){
Gk = PyList_GetItem(Gs, k);
hk = (matrix *) PyList_GetItem(hs, k);
if (!(lmis[k] = (dsdp_matrix *) calloc(n+1,
sizeof(dsdp_matrix)))){
t = PyErr_NoMemory();
goto done;
}
/* lmis[k][0] is hs[k] as a dsdp matrix */
mk = MAT_NROWS(hk);
lmis[k][0].n = mk;
lmis[k][0].issparse = 0;
if (!(lmis[k][0].val = (double *) calloc(mk*(mk+1)/2,
sizeof(double)))){
t = PyErr_NoMemory();
goto done;
}
lmis[k][0].ind = NULL;
lmis[k][0].nnz = mk*(mk+1)/2;
for (j=0; j<mk; j++){
lngth = j+1; incx = mk; incy = 1;
dcopy_(&lngth, MAT_BUFD(hk)+j, &incx,
lmis[k][0].val+j*(j+1)/2, &incy);
}
/* lmis[k][i+1] is mat(Gs[k][i]) as a dsdp matrix */
for (i=0; i<n; i++){
lmis[k][i+1].n = mk;
if (Matrix_Check(Gk)){
lmis[k][i+1].issparse = 0;
if (!(lmis[k][i+1].val = (double *) calloc(mk*(mk+1)/2,
sizeof(double)))){
t = PyErr_NoMemory();
goto done;
}
lmis[k][i+1].ind = NULL;
lmis[k][i+1].nnz = mk*(mk+1)/2;
for (j=0; j<mk; j++){
lngth = j+1; incx = mk; incy = 1;
dcopy_(&lngth, MAT_BUFD(Gk)+i*mk*mk+j, &incx,
lmis[k][i+1].val+j*(j+1)/2, &incy);
}
} else {
lmis[k][i+1].issparse = 1;
/* nnz is number of lower triangular nonzeros in
* Gk[:,i] */
for (nnz=0, j=SP_COL(Gk)[i]; j<SP_COL(Gk)[i+1]; j++){
qr = div(SP_ROW(Gk)[j], mk);
if (qr.quot <= qr.rem) nnz++;
}
lmis[k][i+1].nnz = nnz;
if (!(lmis[k][i+1].val = (double *) calloc(nnz,
sizeof(double))) || !(lmis[k][i+1].ind = (int *)
calloc(nnz, sizeof(int)))){
t = PyErr_NoMemory();
goto done;
}
/* lmis[k][i+1].val, lmis[k][i+1].ind are the lower
* triangular nonzeros/indices of Gk[:,i]. The indices
* refer to the postions in the lower triangular part
* stored in row major order as an mk*(mk+1)/2 array. */
for (nnz=0, j=SP_COL(Gk)[i]; j<SP_COL(Gk)[i+1]; j++){
qr = div(SP_ROW(Gk)[j], mk);
if (qr.quot <= qr.rem){
lmis[k][i+1].val[nnz] = SP_VALD(Gk)[j];
lmis[k][i+1].ind[nnz] = qr.rem*(qr.rem+1)/2 +
qr.quot;
nnz++;
}
}
}
}
}
for (k=0; k<l; k++) for(i=0; i<n+1; i++){
if (lmis[k][i].issparse){
SDPConeSetASparseVecMat(sdpcone, k, i, lmis[k][i].n, 1.0, 0,
lmis[k][i].ind, lmis[k][i].val, lmis[k][i].nnz);
}
else {
SDPConeSetADenseVecMat(sdpcone, k, i, lmis[k][i].n, 1.0,
lmis[k][i].val, lmis[k][i].nnz);
}
/* SDPConeViewDataMatrix(sdpcone, k, i); */
}
DSDPSetup(sdp);
if (DSDPSolve(sdp)){
PyErr_SetString(PyExc_ArithmeticError, "DSDP error");
t = NULL;
goto done;
}
DSDPStopReason(sdp, &info);
if (info != DSDP_CONVERGED && info != DSDP_SMALL_STEPS &&
info != DSDP_INDEFINITE_SCHUR_MATRIX && info != DSDP_MAX_IT
&& info != DSDP_NUMERICAL_ERROR && info != DSDP_UPPERBOUND ){
PyErr_SetObject(PyExc_ArithmeticError, Py_BuildValue("i",info));
t = NULL;
goto done;
}
if (!(zs = PyList_New(l)) || !(x = (matrix *) Matrix_New(n, 1,
DOUBLE)) || !(zl = (matrix *) Matrix_New(ml, 1, DOUBLE)) ||
!(zk = (double *) calloc(maxm*(maxm+1)/2, sizeof(double))) ||
!(t = PyTuple_New(5))) {
Py_XDECREF(x); Py_XDECREF(zl); Py_XDECREF(zs); Py_XDECREF(t);
t = PyErr_NoMemory();
goto done;
}
DSDPGetSolutionType(sdp, &status);
if (info == DSDP_CONVERGED) {
switch (status){
case DSDP_PDFEASIBLE:
#if PY_MAJOR_VERSION >= 3
PyTuple_SET_ITEM(t, 0, (PyObject *)PyUnicode_FromString("DSDP_PDFEASIBLE"));
#else
PyTuple_SET_ITEM(t, 0, (PyObject *)PyString_FromString("DSDP_PDFEASIBLE"));
#endif
break;
case DSDP_UNBOUNDED:
#if PY_MAJOR_VERSION >= 3
PyTuple_SET_ITEM(t, 0, (PyObject *)PyUnicode_FromString("DSDP_UNBOUNDED"));
#else
PyTuple_SET_ITEM(t, 0, (PyObject *)PyString_FromString("DSDP_UNBOUNDED"));
#endif
break;
case DSDP_INFEASIBLE:
#if PY_MAJOR_VERSION >= 3
PyTuple_SET_ITEM(t, 0, (PyObject *)PyUnicode_FromString("DSDP_INFEASIBLE"));
#else
PyTuple_SET_ITEM(t, 0, (PyObject *)PyString_FromString("DSDP_INFEASIBLE"));
#endif
break;
case DSDP_PDUNKNOWN:
#if PY_MAJOR_VERSION >= 3
PyTuple_SET_ITEM(t, 0, (PyObject *)PyUnicode_FromString("DSDP_UNKNOWN"));
#else
PyTuple_SET_ITEM(t, 0, (PyObject *)PyString_FromString("DSDP_UNKNOWN"));
#endif
break;
}
} else {
#if PY_MAJOR_VERSION >= 3
PyTuple_SET_ITEM(t, 0, (PyObject *)PyUnicode_FromString("DSDP_UNKNOWN"));
#else
PyTuple_SET_ITEM(t, 0, (PyObject *)PyString_FromString("DSDP_UNKNOWN"));
#endif
}
DSDPGetY(sdp, MAT_BUFD(x), n);
PyTuple_SET_ITEM(t, 1, (PyObject *) x);
DSDPGetR(sdp, &r);
PyTuple_SET_ITEM(t, 2, Py_BuildValue("d", r));
DSDPComputeX(sdp);
LPConeGetXArray(lpcone, &zlvals, &k);
memcpy(MAT_BUFD(zl), zlvals, ml*sizeof(double));
PyTuple_SET_ITEM(t, 3, (PyObject *) zl);
for (k=0; k<l; k++){
hk = (matrix *) PyList_GetItem(hs, k);
mk = MAT_NROWS(hk);
if (!(zsk = (matrix *) Matrix_New(mk, mk, DOUBLE))){
Py_XDECREF(x); Py_XDECREF(zl); Py_XDECREF(zs);
Py_XDECREF(t);
t = PyErr_NoMemory();
goto done;
}
SDPConeComputeX(sdpcone, k, mk, zk, maxm*(maxm+1)/2);
for (j=0; j<mk; j++){
lngth=j+1; incx=1; incy=mk;
dcopy_(&lngth, zk+j*(j+1)/2, &incx, MAT_BUFD(zsk)+j, &incy);
}
PyList_SetItem(zs, k, (PyObject *) zsk);
}
PyTuple_SET_ITEM(t, 4, (PyObject *) zs);
done:
free(lp_colptr); free(lp_rowind); free(lp_values); free(zk);
DSDPDestroy(sdp);
if (lmis) for (k=0; k<l; k++){
if (lmis[k]) for (i=0; i<n+1; i++){
if (lmis[k][i].issparse) free(lmis[k][i].ind);
free(lmis[k][i].val);
}
}
free(lmis);
return t;
}
static PyMethodDef dsdp_functions[] = {
{"sdp", (PyCFunction) solvesdp, METH_VARARGS|METH_KEYWORDS, doc_dsdp},
{NULL} /* Sentinel */
};
#if PY_MAJOR_VERSION >= 3
static PyModuleDef dsdp_module_def = {
PyModuleDef_HEAD_INIT,
"dsdp",
dsdp__doc__,
-1,
dsdp_functions,
NULL, NULL, NULL, NULL
};
PyMODINIT_FUNC PyInit_dsdp(void)
{
if (!(dsdp_module = PyModule_Create(&dsdp_module_def))) return NULL;
PyModule_AddObject(dsdp_module, "options", PyDict_New());
if (import_cvxopt() < 0) return NULL;
return dsdp_module;
}
#else
PyMODINIT_FUNC initdsdp(void)
{
dsdp_module = Py_InitModule3("cvxopt.dsdp", dsdp_functions,
dsdp__doc__);
PyModule_AddObject(dsdp_module, "options", PyDict_New());
if (import_cvxopt() < 0) return;
}
#endif
|