1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436
|
// Cyphesis Online RPG Server and AI Engine
// Copyright (C) 2003 Alistair Riddoch
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
// $Id: Collision.cpp,v 1.33 2006-10-26 00:48:07 alriddoch Exp $
#include "Collision.h"
#include "modules/Location.h"
#include "common/debug.h"
#include "common/log.h"
#include <iostream>
static const bool debug_flag = false;
////////////////////////// COLLISION //////////////////////////
bool getCollisionTime(const Point3D & p, // Position of point
const Vector3D & u, // Velocity of point
// float point_time, // Time since position set
const Point3D & l, // Position on plane
const Vector3D & n, // Plane normal
const Vector3D & v, // Velocity of plane
// float plane_time, // Time since position set
float & time) // Collision time return
//
//
// | \ n
// p ___ u | v __\ l
// \ | /
// \ | /
// \ | /
// \ | /
// \ | /
// \ | /
// _________________________\|/___________________________
//
// The time when point hits plane is as follows:
//
// ( (p + u * t) - (l + v * t) ) . n = 0
//
// dot product ( . ) is x*x + y*y + z*z
//
// (p.x + u.x * t - l.x - v.x * t) * n.x +
// (p.y + u.y * t - l.y - v.y * t) * n.y +
// (p.z + u.z * t - l.z - v.z * t) * n.z = 0
//
// p.x * n.x + u.x * n.x * t - l.x * n.x - v.x * n.x * t +
// p.y * n.y + u.y * n.y * t - l.y * n.y - v.y * n.y * t +
// p.z * n.z + u.z * n.z * t - l.z * n.z - v.z * n.z * t = 0
//
//
// ( v.x * n.x + v.y * n.y + v.z * n.z - u.x * n.x - u.y * n.y - u.z * n.z ) * t
// = ( p.x * n.x - l.x * n.x + p.y * n.y - l.y * n.y + p.z * n.z - l.z * n.z )
//
// t =
// ( p.x * n.x - l.x * n.x + p.y * n.y - l.y * n.y + p.z * n.z - l.z * n.z ) /
// ( v.x * n.x + v.y * n.y + v.z * n.z - u.x * n.x - u.y * n.y - u.z * n.z )
//
// return value should indicate whether the point was infront of the plane
// before the collision.
//
{
time = ( p.x() * n.x() - l.x() * n.x()
+ p.y() * n.y() - l.y() * n.y()
+ p.z() * n.z() - l.z() * n.z() ) /
( v.x() * n.x() + v.y() * n.y()
+ v.z() * n.z() - u.x() * n.x()
- u.y() * n.y() - u.z() * n.z() );
// Set now_infront to true if point is currently in front of the plane
bool now_infront = (Dot(p - l, n) > 0.);
// Set collided to true if the collision has alread occured
bool collided = (time < 0.);
// Return true if the collision direction is from infront,
// whether it has already happened on not
// We require logical EOR, which for bools is equivalent to !=
// return ((now_infront && !collided) || (!now_infront && collided));
return now_infront != collided;
}
// Returns true if first_collision has been updated
static
bool predictEntryExit(const CoordList & c, // Vertices of this mesh
const Vector3D & u, // Velocity of this mesh
const CoordList & o, // Vertices of other mesh
const NormalSet & n, // Normals of other mesh
const Vector3D & v, // Velocity of other mesh
float & first_collision, // Time first vertex enters
Vector3D & normal) // Returned collision normal
{
// Check l vertices against o surfaces
Vector3D entry_normal;
bool ret = false, already = false;
// Iterate over vertices
CoordList::const_iterator Iend = c.end();
for (CoordList::const_iterator I = c.begin(); I != Iend; ++I) {
debug(std::cout << "outer loop" << std::endl << std::flush;);
float last_vertex_entry = -100, first_vertex_exit = 100, time;
// Iterate over surfaces
NormalSet::const_iterator Jend = n.end();
for (NormalSet::const_iterator J = n.begin(); J != Jend; ++J) {
const Point3D & s_pos = o[J->first];
const Vector3D & s_norm = J->second;
debug(std::cout << "Testing vertex " << *I << " to surface "
<< s_pos << ": " << s_norm;);
if (getCollisionTime(*I, u, s_pos, s_norm, v, time)) {
debug(std::cout << " Collision at " << time;);
// We are colliding from infront ie entering
if (time > last_vertex_entry) {
debug(std::cout << " new";);
last_vertex_entry = time;
entry_normal = s_norm;
}
} else {
debug(std::cout << " Emergence at " << time;);
// We are colliding fron behind ie exitint
if (time < first_vertex_exit) {
first_vertex_exit = time;
}
}
debug(std::cout << std::endl << std::flush;);
}
debug(std::cout << last_vertex_entry << ":"
<< first_vertex_exit << ":"
<< first_collision << std::endl << std::flush;);
if ((last_vertex_entry < first_vertex_exit) &&
(last_vertex_entry < first_collision)) {
if (last_vertex_entry >= 0.) {
first_collision = last_vertex_entry;
debug(std::cout << "hit" << std::endl << std::flush;);
ret = true;
normal = entry_normal;
} else {
// Indicate that one or more vertices is already in collision
already = true;
}
}
}
// If one or more vertices are already in collision, and some are yet to
// collide, then we consider that the collision is immediate.
if (ret && already) {
first_collision = 0.f;
// It is possible that we need to modify the normal here, perhaps
// to cancel out velocity completely.
}
return ret;
}
bool predictCollision(const CoordList & l, // Vertices of this mesh
const NormalSet & ln, // Normals of this mesh
const Vector3D & u, // Velocity of this mesh
const CoordList & o, // Vertices of other mesh
const NormalSet & on, // Normals of other mesh
const Vector3D & v, // Velocity of other mesh
float & time, // Returned time to collision
Vector3D & n) // Returned collision normal
{
debug(std::cout << u << ", " << v << std::endl << std::flush; );
debug(std::cout << "l with o normals" << std::endl << std::flush; );
bool lo = predictEntryExit(l, u, o, on, v, time, n);
debug(std::cout << "o with l normals" << std::endl << std::flush; );
bool ol = predictEntryExit(o, v, l, ln, u, time, n);
if (ol) {
// If ol is true then the collision is in the opposite direction,
// and the normal reaction needs to be reversed.
n = -n;
}
return (lo || ol);
}
//
// This is the vertex layout used by the 3Dbox functions.
//
//
// 6
//
//
// 7 5
//
//
// 4
//
//
//
// 2
//
//
// 3 1
// z
// |
// y\ | /x 0
// \|/
bool predictCollision(const Location & l, // This location
const Location & o, // Other location
float & time, // Returned time to collision
Vector3D & normal) // Returned normal acting on l
// Predict collision between 2 entity locations
// Returns whether the collision will occur
{
// FIXME Handle entities which have no box - just one vertex I think
// FIXME THe mesh conversion process below should probably be eliminated
// by generating the data when bBox or orienation are changed.
// This would also allow us to have other mesh shapes
assert(l.bBox().isValid());
assert(o.bBox().isValid());
assert(l.velocity().isValid());
Vector3D notMoving(0., 0., 0.);
bool oMoving = o.velocity().isValid();
const Vector3D & o_velocity = oMoving ? o.velocity() : notMoving;
assert(o_velocity.isValid());
Vector3D dist = o.pos() - l.pos();
if ((dist.mag() - l.velocity().mag() * time - o_velocity.mag() * time) >
(boxBoundingRadius(l.bBox()) + boxBoundingRadius(o.bBox()))) {
return false;
}
const WFMath::Point<3> & ln = l.bBox().lowCorner();
const WFMath::Point<3> & lf = l.bBox().highCorner();
const WFMath::Point<3> & on = o.bBox().lowCorner();
const WFMath::Point<3> & of = o.bBox().highCorner();
// Create a set of vertices representing the box corners
CoordList lbox(8), obox(8);
lbox[0] = WFMath::Point<3>(ln.x(), ln.y(), ln.z());
lbox[1] = WFMath::Point<3>(lf.x(), ln.y(), ln.z());
lbox[2] = WFMath::Point<3>(lf.x(), lf.y(), ln.z());
lbox[3] = WFMath::Point<3>(ln.x(), lf.y(), ln.z());
lbox[4] = WFMath::Point<3>(ln.x(), ln.y(), lf.z());
lbox[5] = WFMath::Point<3>(lf.x(), ln.y(), lf.z());
lbox[6] = WFMath::Point<3>(lf.x(), lf.y(), lf.z());
lbox[7] = WFMath::Point<3>(ln.x(), lf.y(), lf.z());
obox[0] = WFMath::Point<3>(on.x(), on.y(), on.z());
obox[1] = WFMath::Point<3>(of.x(), on.y(), on.z());
obox[2] = WFMath::Point<3>(of.x(), of.y(), on.z());
obox[3] = WFMath::Point<3>(on.x(), of.y(), on.z());
obox[4] = WFMath::Point<3>(on.x(), on.y(), of.z());
obox[5] = WFMath::Point<3>(of.x(), on.y(), of.z());
obox[6] = WFMath::Point<3>(of.x(), of.y(), of.z());
obox[7] = WFMath::Point<3>(on.x(), of.y(), of.z());
// Set up a set of surface normals, each with an assoicated corner
NormalSet lnormals;
lnormals.insert(std::make_pair(0, Vector3D( 0., 0., -1.))); // Bottom face
lnormals.insert(std::make_pair(1, Vector3D( 0., -1., 0.))); // South face
lnormals.insert(std::make_pair(3, Vector3D(-1., 0., 0.))); // West face
lnormals.insert(std::make_pair(2, Vector3D( 1., 0., 0.))); // East face
lnormals.insert(std::make_pair(6, Vector3D( 0., 1., 0.))); // North face
lnormals.insert(std::make_pair(4, Vector3D( 0., 0., 1.))); // Top face
NormalSet onormals(lnormals);
static const Quaternion identity(1, 0, 0, 0);
// Orient the surface normals and box corners
if (l.orientation().isValid()) {
NormalSet::iterator Iend = lnormals.end();
for (NormalSet::iterator I = lnormals.begin(); I != Iend; ++I) {
I->second.rotate(l.orientation());
}
for (int i = 0; i < 8; ++i) {
lbox[i] = lbox[i].toParentCoords(l.pos(), l.orientation());
}
} else {
for (int i = 0; i < 8; ++i) {
lbox[i] = lbox[i].toParentCoords(l.pos(), identity);
}
}
if (o.orientation().isValid()) {
NormalSet::iterator Iend = onormals.end();
for (NormalSet::iterator I = onormals.begin(); I != Iend; ++I) {
I->second.rotate(o.orientation());
}
for (int i = 0; i < 8; ++i) {
obox[i] = obox[i].toParentCoords(o.pos(), o.orientation());
}
} else {
for (int i = 0; i < 8; ++i) {
obox[i] = obox[i].toParentCoords(o.pos(), identity);
}
}
#if 0
// This must be done whether orientation is valid or not
// Translate the box corners
for(int i = 0; i < 8; ++i) {
lbox[i] += l.pos();
obox[i] += o.pos();
}
#endif
// Predict the collision using the generic mesh function
return predictCollision(lbox, lnormals, l.velocity(),
obox, onormals, o_velocity,
time, normal);
}
////////////////////////// EMERGENCE //////////////////////////
bool getEmergenceTime(const Point3D & p, // Position of point
const Vector3D & u, // Velocity of point
// float point_time, // Time since position set
const Point3D & l, // Position on plane
const Vector3D & n, // Plane normal
const Vector3D & v, // Velocity of plane
// float plane_time, // Time since position set
float & time) // Emergence time return
{
return !getCollisionTime(p, u, l, n, v, time);
}
static float min(float a, float b, float c)
{
if (a < b) {
if (a < c) {
return a;
} else {
return c;
}
} else if (b < c) {
return b;
} else {
return c;
}
}
bool predictEmergence(const CoordList & l, // Vertices of this mesh
const Vector3D & u, // Velocity of this mesh
const WFMath::AxisBox<3> & o,// Bounding box of container
float & time) // Returned time to emergence
{
const WFMath::Point<3> & on = o.lowCorner();
const WFMath::Point<3> & of = o.highCorner();
float maxtime = -1;
CoordList::const_iterator Iend = l.end();
for (CoordList::const_iterator I = l.begin(); I != Iend; ++I) {
float xtime = (u.x() >= 0.f) ? ((of.x() - I->x()) / u.x())
: ((on.x() - I->x()) / u.x());
float ytime = (u.y() >= 0.f) ? ((of.y() - I->y()) / u.y())
: ((on.y() - I->y()) / u.y());
float ztime = (u.z() >= 0.f) ? ((of.z() - I->z()) / u.z())
: ((on.z() - I->z()) / u.z());
// Determine the time taken for the box corner to reach the nearest
// edge.
float ctime = min(xtime, ytime, ztime);
debug(std::cout << xtime << ":" << ytime << ":" << ztime << ":" << ctime
<< std::endl << std::flush;);
// maxtime is the time for the last corner to make contact with the
// edge
if (ctime > maxtime) {
maxtime = ctime;
}
}
if (maxtime > 0) {
time = maxtime;
} else {
time = 0;
}
return true;
}
bool predictEmergence(const Location & l, // This location
const Location & o, // Other location
float & time) // Returned time to collision
{
// We are predicting emergence of l from its parent o
// Orientation of o is irrelevant, as children and their relative
// position are also oriented, so o's bbox is axis aligned.
// In fact the only feature of o we are interested is its bbox, so
// we could drop the Location, and take the bbox instead.
// So all we need to do is get oriented points for l, and check
// when they will first leave the axis aligned bounding values
const WFMath::Point<3> & ln = l.bBox().lowCorner();
const WFMath::Point<3> & lf = l.bBox().highCorner();
CoordList lbox(8);
lbox[0] = WFMath::Point<3>(ln.x(), ln.y(), ln.z());
lbox[1] = WFMath::Point<3>(lf.x(), ln.y(), ln.z());
lbox[2] = WFMath::Point<3>(lf.x(), lf.y(), ln.z());
lbox[3] = WFMath::Point<3>(ln.x(), lf.y(), ln.z());
lbox[4] = WFMath::Point<3>(ln.x(), ln.y(), lf.z());
lbox[5] = WFMath::Point<3>(lf.x(), ln.y(), lf.z());
lbox[6] = WFMath::Point<3>(lf.x(), lf.y(), lf.z());
lbox[7] = WFMath::Point<3>(ln.x(), lf.y(), lf.z());
// Orient the box corners
if (l.orientation().isValid()) {
for(int i = 0; i < 8; ++i) {
lbox[i] = lbox[i].toParentCoords(l.pos(), l.orientation());
}
} else {
log(WARNING, "predictEmergence(): Entity has non-valid orientation.");
}
#if 0
// Translate the box corners
for(int i = 0; i < 8; ++i) {
lbox[i] += l.pos();
}
#endif
assert(l.velocity().isValid());
// We are now ready to carry out the next step
return predictEmergence(lbox, l.velocity(), o.bBox(), time);
}
|