1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980
|
# cython: auto_cpdef=True, infer_types=True, language_level=3, py2_import=True
#
# Parser
#
# This should be done automatically
import cython
cython.declare(Nodes=object, ExprNodes=object, EncodedString=object)
import os
import re
import sys
from Cython.Compiler.Scanning import PyrexScanner, FileSourceDescriptor
import Nodes
import ExprNodes
import StringEncoding
from StringEncoding import EncodedString, BytesLiteral, _unicode, _bytes
from ModuleNode import ModuleNode
from Errors import error, warning, InternalError
from Cython import Utils
import Future
import Options
class Ctx(object):
# Parsing context
level = 'other'
visibility = 'private'
cdef_flag = 0
typedef_flag = 0
api = 0
overridable = 0
nogil = 0
namespace = None
templates = None
def __init__(self, **kwds):
self.__dict__.update(kwds)
def __call__(self, **kwds):
ctx = Ctx()
d = ctx.__dict__
d.update(self.__dict__)
d.update(kwds)
return ctx
def p_ident(s, message = "Expected an identifier"):
if s.sy == 'IDENT':
name = s.systring
s.next()
return name
else:
s.error(message)
def p_ident_list(s):
names = []
while s.sy == 'IDENT':
names.append(s.systring)
s.next()
if s.sy != ',':
break
s.next()
return names
#------------------------------------------
#
# Expressions
#
#------------------------------------------
def p_binop_operator(s):
pos = s.position()
op = s.sy
s.next()
return op, pos
def p_binop_expr(s, ops, p_sub_expr):
n1 = p_sub_expr(s)
while s.sy in ops:
op, pos = p_binop_operator(s)
n2 = p_sub_expr(s)
n1 = ExprNodes.binop_node(pos, op, n1, n2)
if op == '/':
if Future.division in s.context.future_directives:
n1.truedivision = True
else:
n1.truedivision = None # unknown
return n1
#lambdef: 'lambda' [varargslist] ':' test
def p_lambdef(s, allow_conditional=True):
# s.sy == 'lambda'
pos = s.position()
s.next()
if s.sy == ':':
args = []
star_arg = starstar_arg = None
else:
args, star_arg, starstar_arg = p_varargslist(
s, terminator=':', annotated=False)
s.expect(':')
if allow_conditional:
expr = p_test(s)
else:
expr = p_test_nocond(s)
return ExprNodes.LambdaNode(
pos, args = args,
star_arg = star_arg, starstar_arg = starstar_arg,
result_expr = expr)
#lambdef_nocond: 'lambda' [varargslist] ':' test_nocond
def p_lambdef_nocond(s):
return p_lambdef(s, allow_conditional=False)
#test: or_test ['if' or_test 'else' test] | lambdef
def p_test(s):
if s.sy == 'lambda':
return p_lambdef(s)
pos = s.position()
expr = p_or_test(s)
if s.sy == 'if':
s.next()
test = p_or_test(s)
s.expect('else')
other = p_test(s)
return ExprNodes.CondExprNode(pos, test=test, true_val=expr, false_val=other)
else:
return expr
#test_nocond: or_test | lambdef_nocond
def p_test_nocond(s):
if s.sy == 'lambda':
return p_lambdef_nocond(s)
else:
return p_or_test(s)
#or_test: and_test ('or' and_test)*
def p_or_test(s):
return p_rassoc_binop_expr(s, ('or',), p_and_test)
def p_rassoc_binop_expr(s, ops, p_subexpr):
n1 = p_subexpr(s)
if s.sy in ops:
pos = s.position()
op = s.sy
s.next()
n2 = p_rassoc_binop_expr(s, ops, p_subexpr)
n1 = ExprNodes.binop_node(pos, op, n1, n2)
return n1
#and_test: not_test ('and' not_test)*
def p_and_test(s):
#return p_binop_expr(s, ('and',), p_not_test)
return p_rassoc_binop_expr(s, ('and',), p_not_test)
#not_test: 'not' not_test | comparison
def p_not_test(s):
if s.sy == 'not':
pos = s.position()
s.next()
return ExprNodes.NotNode(pos, operand = p_not_test(s))
else:
return p_comparison(s)
#comparison: expr (comp_op expr)*
#comp_op: '<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not' 'in'|'is'|'is' 'not'
def p_comparison(s):
n1 = p_starred_expr(s)
if s.sy in comparison_ops:
pos = s.position()
op = p_cmp_op(s)
n2 = p_starred_expr(s)
n1 = ExprNodes.PrimaryCmpNode(pos,
operator = op, operand1 = n1, operand2 = n2)
if s.sy in comparison_ops:
n1.cascade = p_cascaded_cmp(s)
return n1
def p_test_or_starred_expr(s):
if s.sy == '*':
return p_starred_expr(s)
else:
return p_test(s)
def p_starred_expr(s):
pos = s.position()
if s.sy == '*':
starred = True
s.next()
else:
starred = False
expr = p_bit_expr(s)
if starred:
expr = ExprNodes.StarredTargetNode(pos, expr)
return expr
def p_cascaded_cmp(s):
pos = s.position()
op = p_cmp_op(s)
n2 = p_starred_expr(s)
result = ExprNodes.CascadedCmpNode(pos,
operator = op, operand2 = n2)
if s.sy in comparison_ops:
result.cascade = p_cascaded_cmp(s)
return result
def p_cmp_op(s):
if s.sy == 'not':
s.next()
s.expect('in')
op = 'not_in'
elif s.sy == 'is':
s.next()
if s.sy == 'not':
s.next()
op = 'is_not'
else:
op = 'is'
else:
op = s.sy
s.next()
if op == '<>':
op = '!='
return op
comparison_ops = (
'<', '>', '==', '>=', '<=', '<>', '!=',
'in', 'is', 'not'
)
#expr: xor_expr ('|' xor_expr)*
def p_bit_expr(s):
return p_binop_expr(s, ('|',), p_xor_expr)
#xor_expr: and_expr ('^' and_expr)*
def p_xor_expr(s):
return p_binop_expr(s, ('^',), p_and_expr)
#and_expr: shift_expr ('&' shift_expr)*
def p_and_expr(s):
return p_binop_expr(s, ('&',), p_shift_expr)
#shift_expr: arith_expr (('<<'|'>>') arith_expr)*
def p_shift_expr(s):
return p_binop_expr(s, ('<<', '>>'), p_arith_expr)
#arith_expr: term (('+'|'-') term)*
def p_arith_expr(s):
return p_binop_expr(s, ('+', '-'), p_term)
#term: factor (('*'|'/'|'%') factor)*
def p_term(s):
return p_binop_expr(s, ('*', '/', '%', '//'), p_factor)
#factor: ('+'|'-'|'~'|'&'|typecast|sizeof) factor | power
def p_factor(s):
# little indirection for C-ification purposes
return _p_factor(s)
def _p_factor(s):
sy = s.sy
if sy in ('+', '-', '~'):
op = s.sy
pos = s.position()
s.next()
return ExprNodes.unop_node(pos, op, p_factor(s))
elif sy == '&':
pos = s.position()
s.next()
arg = p_factor(s)
return ExprNodes.AmpersandNode(pos, operand = arg)
elif sy == "<":
return p_typecast(s)
elif sy == 'IDENT' and s.systring == "sizeof":
return p_sizeof(s)
else:
return p_power(s)
def p_typecast(s):
# s.sy == "<"
pos = s.position()
s.next()
base_type = p_c_base_type(s)
if base_type.name is None:
s.error("Unknown type")
declarator = p_c_declarator(s, empty = 1)
if s.sy == '?':
s.next()
typecheck = 1
else:
typecheck = 0
s.expect(">")
operand = p_factor(s)
return ExprNodes.TypecastNode(pos,
base_type = base_type,
declarator = declarator,
operand = operand,
typecheck = typecheck)
def p_sizeof(s):
# s.sy == ident "sizeof"
pos = s.position()
s.next()
s.expect('(')
# Here we decide if we are looking at an expression or type
# If it is actually a type, but parsable as an expression,
# we treat it as an expression here.
if looking_at_expr(s):
operand = p_test(s)
node = ExprNodes.SizeofVarNode(pos, operand = operand)
else:
base_type = p_c_base_type(s)
declarator = p_c_declarator(s, empty = 1)
node = ExprNodes.SizeofTypeNode(pos,
base_type = base_type, declarator = declarator)
s.expect(')')
return node
def p_yield_expression(s):
# s.sy == "yield"
pos = s.position()
s.next()
if s.sy != ')' and s.sy not in statement_terminators:
arg = p_testlist(s)
else:
arg = None
return ExprNodes.YieldExprNode(pos, arg=arg)
def p_yield_statement(s):
# s.sy == "yield"
yield_expr = p_yield_expression(s)
return Nodes.ExprStatNode(yield_expr.pos, expr=yield_expr)
#power: atom trailer* ('**' factor)*
def p_power(s):
if s.systring == 'new' and s.peek()[0] == 'IDENT':
return p_new_expr(s)
n1 = p_atom(s)
while s.sy in ('(', '[', '.'):
n1 = p_trailer(s, n1)
if s.sy == '**':
pos = s.position()
s.next()
n2 = p_factor(s)
n1 = ExprNodes.binop_node(pos, '**', n1, n2)
return n1
def p_new_expr(s):
# s.systring == 'new'.
pos = s.position()
s.next()
cppclass = p_c_base_type(s)
return p_call(s, ExprNodes.NewExprNode(pos, cppclass = cppclass))
#trailer: '(' [arglist] ')' | '[' subscriptlist ']' | '.' NAME
def p_trailer(s, node1):
pos = s.position()
if s.sy == '(':
return p_call(s, node1)
elif s.sy == '[':
return p_index(s, node1)
else: # s.sy == '.'
s.next()
name = EncodedString( p_ident(s) )
return ExprNodes.AttributeNode(pos,
obj = node1, attribute = name)
# arglist: argument (',' argument)* [',']
# argument: [test '='] test # Really [keyword '='] test
def p_call_parse_args(s, allow_genexp = True):
# s.sy == '('
pos = s.position()
s.next()
positional_args = []
keyword_args = []
star_arg = None
starstar_arg = None
while s.sy not in ('**', ')'):
if s.sy == '*':
if star_arg:
s.error("only one star-arg parameter allowed",
pos = s.position())
s.next()
star_arg = p_test(s)
else:
arg = p_test(s)
if s.sy == '=':
s.next()
if not arg.is_name:
s.error("Expected an identifier before '='",
pos = arg.pos)
encoded_name = EncodedString(arg.name)
keyword = ExprNodes.IdentifierStringNode(arg.pos, value = encoded_name)
arg = p_test(s)
keyword_args.append((keyword, arg))
else:
if keyword_args:
s.error("Non-keyword arg following keyword arg",
pos = arg.pos)
if star_arg:
s.error("Non-keyword arg following star-arg",
pos = arg.pos)
positional_args.append(arg)
if s.sy != ',':
break
s.next()
if s.sy == 'for':
if len(positional_args) == 1 and not star_arg:
positional_args = [ p_genexp(s, positional_args[0]) ]
elif s.sy == '**':
s.next()
starstar_arg = p_test(s)
if s.sy == ',':
s.next()
s.expect(')')
return positional_args, keyword_args, star_arg, starstar_arg
def p_call_build_packed_args(pos, positional_args, keyword_args, star_arg):
arg_tuple = None
keyword_dict = None
if positional_args or not star_arg:
arg_tuple = ExprNodes.TupleNode(pos,
args = positional_args)
if star_arg:
star_arg_tuple = ExprNodes.AsTupleNode(pos, arg = star_arg)
if arg_tuple:
arg_tuple = ExprNodes.binop_node(pos,
operator = '+', operand1 = arg_tuple,
operand2 = star_arg_tuple)
else:
arg_tuple = star_arg_tuple
if keyword_args:
keyword_args = [ExprNodes.DictItemNode(pos=key.pos, key=key, value=value)
for key, value in keyword_args]
keyword_dict = ExprNodes.DictNode(pos,
key_value_pairs = keyword_args)
return arg_tuple, keyword_dict
def p_call(s, function):
# s.sy == '('
pos = s.position()
positional_args, keyword_args, star_arg, starstar_arg = \
p_call_parse_args(s)
if not (keyword_args or star_arg or starstar_arg):
return ExprNodes.SimpleCallNode(pos,
function = function,
args = positional_args)
else:
arg_tuple, keyword_dict = p_call_build_packed_args(
pos, positional_args, keyword_args, star_arg)
return ExprNodes.GeneralCallNode(pos,
function = function,
positional_args = arg_tuple,
keyword_args = keyword_dict,
starstar_arg = starstar_arg)
#lambdef: 'lambda' [varargslist] ':' test
#subscriptlist: subscript (',' subscript)* [',']
def p_index(s, base):
# s.sy == '['
pos = s.position()
s.next()
subscripts = p_subscript_list(s)
if len(subscripts) == 1 and len(subscripts[0]) == 2:
start, stop = subscripts[0]
result = ExprNodes.SliceIndexNode(pos,
base = base, start = start, stop = stop)
else:
indexes = make_slice_nodes(pos, subscripts)
if len(indexes) == 1:
index = indexes[0]
else:
index = ExprNodes.TupleNode(pos, args = indexes)
result = ExprNodes.IndexNode(pos,
base = base, index = index)
s.expect(']')
return result
def p_subscript_list(s):
items = [p_subscript(s)]
while s.sy == ',':
s.next()
if s.sy == ']':
break
items.append(p_subscript(s))
return items
#subscript: '.' '.' '.' | test | [test] ':' [test] [':' [test]]
def p_subscript(s):
# Parse a subscript and return a list of
# 1, 2 or 3 ExprNodes, depending on how
# many slice elements were encountered.
pos = s.position()
start = p_slice_element(s, (':',))
if s.sy != ':':
return [start]
s.next()
stop = p_slice_element(s, (':', ',', ']'))
if s.sy != ':':
return [start, stop]
s.next()
step = p_slice_element(s, (':', ',', ']'))
return [start, stop, step]
def p_slice_element(s, follow_set):
# Simple expression which may be missing iff
# it is followed by something in follow_set.
if s.sy not in follow_set:
return p_test(s)
else:
return None
def expect_ellipsis(s):
s.expect('.')
s.expect('.')
s.expect('.')
def make_slice_nodes(pos, subscripts):
# Convert a list of subscripts as returned
# by p_subscript_list into a list of ExprNodes,
# creating SliceNodes for elements with 2 or
# more components.
result = []
for subscript in subscripts:
if len(subscript) == 1:
result.append(subscript[0])
else:
result.append(make_slice_node(pos, *subscript))
return result
def make_slice_node(pos, start, stop = None, step = None):
if not start:
start = ExprNodes.NoneNode(pos)
if not stop:
stop = ExprNodes.NoneNode(pos)
if not step:
step = ExprNodes.NoneNode(pos)
return ExprNodes.SliceNode(pos,
start = start, stop = stop, step = step)
#atom: '(' [yield_expr|testlist_comp] ')' | '[' [listmaker] ']' | '{' [dict_or_set_maker] '}' | '`' testlist '`' | NAME | NUMBER | STRING+
def p_atom(s):
pos = s.position()
sy = s.sy
if sy == '(':
s.next()
if s.sy == ')':
result = ExprNodes.TupleNode(pos, args = [])
elif s.sy == 'yield':
result = p_yield_expression(s)
else:
result = p_testlist_comp(s)
s.expect(')')
return result
elif sy == '[':
return p_list_maker(s)
elif sy == '{':
return p_dict_or_set_maker(s)
elif sy == '`':
return p_backquote_expr(s)
elif sy == '.':
expect_ellipsis(s)
return ExprNodes.EllipsisNode(pos)
elif sy == 'INT':
return p_int_literal(s)
elif sy == 'FLOAT':
value = s.systring
s.next()
return ExprNodes.FloatNode(pos, value = value)
elif sy == 'IMAG':
value = s.systring[:-1]
s.next()
return ExprNodes.ImagNode(pos, value = value)
elif sy == 'BEGIN_STRING':
kind, bytes_value, unicode_value = p_cat_string_literal(s)
if kind == 'c':
return ExprNodes.CharNode(pos, value = bytes_value)
elif kind == 'u':
return ExprNodes.UnicodeNode(pos, value = unicode_value, bytes_value = bytes_value)
elif kind == 'b':
return ExprNodes.BytesNode(pos, value = bytes_value)
else:
return ExprNodes.StringNode(pos, value = bytes_value, unicode_value = unicode_value)
elif sy == 'IDENT':
name = EncodedString( s.systring )
s.next()
if name == "None":
return ExprNodes.NoneNode(pos)
elif name == "True":
return ExprNodes.BoolNode(pos, value=True)
elif name == "False":
return ExprNodes.BoolNode(pos, value=False)
elif name == "NULL" and not s.in_python_file:
return ExprNodes.NullNode(pos)
else:
return p_name(s, name)
else:
s.error("Expected an identifier or literal")
def p_int_literal(s):
pos = s.position()
value = s.systring
s.next()
unsigned = ""
longness = ""
while value[-1] in u"UuLl":
if value[-1] in u"Ll":
longness += "L"
else:
unsigned += "U"
value = value[:-1]
# '3L' is ambiguous in Py2 but not in Py3. '3U' and '3LL' are
# illegal in Py2 Python files. All suffixes are illegal in Py3
# Python files.
is_c_literal = None
if unsigned:
is_c_literal = True
elif longness:
if longness == 'LL' or s.context.language_level >= 3:
is_c_literal = True
if s.in_python_file:
if is_c_literal:
error(pos, "illegal integer literal syntax in Python source file")
is_c_literal = False
return ExprNodes.IntNode(pos,
is_c_literal = is_c_literal,
value = value,
unsigned = unsigned,
longness = longness)
def p_name(s, name):
pos = s.position()
if not s.compile_time_expr and name in s.compile_time_env:
value = s.compile_time_env.lookup_here(name)
rep = repr(value)
if isinstance(value, bool):
return ExprNodes.BoolNode(pos, value = value)
elif isinstance(value, int):
return ExprNodes.IntNode(pos, value = rep)
elif isinstance(value, long):
return ExprNodes.IntNode(pos, value = rep, longness = "L")
elif isinstance(value, float):
return ExprNodes.FloatNode(pos, value = rep)
elif isinstance(value, _unicode):
return ExprNodes.UnicodeNode(pos, value = value)
elif isinstance(value, _bytes):
return ExprNodes.BytesNode(pos, value = value)
else:
error(pos, "Invalid type for compile-time constant: %s"
% value.__class__.__name__)
return ExprNodes.NameNode(pos, name = name)
def p_cat_string_literal(s):
# A sequence of one or more adjacent string literals.
# Returns (kind, bytes_value, unicode_value)
# where kind in ('b', 'c', 'u', '')
kind, bytes_value, unicode_value = p_string_literal(s)
if kind == 'c' or s.sy != 'BEGIN_STRING':
return kind, bytes_value, unicode_value
bstrings, ustrings = [bytes_value], [unicode_value]
bytes_value = unicode_value = None
while s.sy == 'BEGIN_STRING':
pos = s.position()
next_kind, next_bytes_value, next_unicode_value = p_string_literal(s)
if next_kind == 'c':
error(pos, "Cannot concatenate char literal with another string or char literal")
elif next_kind != kind:
error(pos, "Cannot mix string literals of different types, expected %s'', got %s''" %
(kind, next_kind))
else:
bstrings.append(next_bytes_value)
ustrings.append(next_unicode_value)
# join and rewrap the partial literals
if kind in ('b', 'c', '') or kind == 'u' and None not in bstrings:
# Py3 enforced unicode literals are parsed as bytes/unicode combination
bytes_value = BytesLiteral( StringEncoding.join_bytes(bstrings) )
bytes_value.encoding = s.source_encoding
if kind in ('u', ''):
unicode_value = EncodedString( u''.join([ u for u in ustrings if u is not None ]) )
return kind, bytes_value, unicode_value
def p_opt_string_literal(s, required_type='u'):
if s.sy == 'BEGIN_STRING':
kind, bytes_value, unicode_value = p_string_literal(s, required_type)
if required_type == 'u':
return unicode_value
elif required_type == 'b':
return bytes_value
else:
s.error("internal parser configuration error")
else:
return None
def check_for_non_ascii_characters(string):
for c in string:
if c >= u'\x80':
return True
return False
def p_string_literal(s, kind_override=None):
# A single string or char literal. Returns (kind, bvalue, uvalue)
# where kind in ('b', 'c', 'u', ''). The 'bvalue' is the source
# code byte sequence of the string literal, 'uvalue' is the
# decoded Unicode string. Either of the two may be None depending
# on the 'kind' of string, only unprefixed strings have both
# representations.
# s.sy == 'BEGIN_STRING'
pos = s.position()
is_raw = 0
is_python3_source = s.context.language_level >= 3
has_non_ASCII_literal_characters = False
kind = s.systring[:1].lower()
if kind == 'r':
kind = ''
is_raw = 1
elif kind in 'ub':
is_raw = s.systring[1:2].lower() == 'r'
elif kind != 'c':
kind = ''
if kind == '' and kind_override is None and Future.unicode_literals in s.context.future_directives:
chars = StringEncoding.StrLiteralBuilder(s.source_encoding)
kind = 'u'
else:
if kind_override is not None and kind_override in 'ub':
kind = kind_override
if kind == 'u':
chars = StringEncoding.UnicodeLiteralBuilder()
elif kind == '':
chars = StringEncoding.StrLiteralBuilder(s.source_encoding)
else:
chars = StringEncoding.BytesLiteralBuilder(s.source_encoding)
while 1:
s.next()
sy = s.sy
systr = s.systring
#print "p_string_literal: sy =", sy, repr(s.systring) ###
if sy == 'CHARS':
chars.append(systr)
if is_python3_source and not has_non_ASCII_literal_characters and check_for_non_ascii_characters(systr):
has_non_ASCII_literal_characters = True
elif sy == 'ESCAPE':
if is_raw:
chars.append(systr)
if is_python3_source and not has_non_ASCII_literal_characters \
and check_for_non_ascii_characters(systr):
has_non_ASCII_literal_characters = True
else:
c = systr[1]
if c in u"01234567":
chars.append_charval( int(systr[1:], 8) )
elif c in u"'\"\\":
chars.append(c)
elif c in u"abfnrtv":
chars.append(
StringEncoding.char_from_escape_sequence(systr))
elif c == u'\n':
pass
elif c == u'x':
if len(systr) == 4:
chars.append_charval( int(systr[2:], 16) )
else:
s.error("Invalid hex escape '%s'" % systr)
elif c in u'Uu':
if kind in ('u', ''):
if len(systr) in (6,10):
chrval = int(systr[2:], 16)
if chrval > 1114111: # sys.maxunicode:
s.error("Invalid unicode escape '%s'" % systr)
else:
s.error("Invalid unicode escape '%s'" % systr)
else:
# unicode escapes in byte strings are not unescaped
chrval = None
chars.append_uescape(chrval, systr)
else:
chars.append(u'\\' + systr[1:])
if is_python3_source and not has_non_ASCII_literal_characters \
and check_for_non_ascii_characters(systr):
has_non_ASCII_literal_characters = True
elif sy == 'NEWLINE':
chars.append(u'\n')
elif sy == 'END_STRING':
break
elif sy == 'EOF':
s.error("Unclosed string literal", pos = pos)
else:
s.error(
"Unexpected token %r:%r in string literal" %
(sy, s.systring))
if kind == 'c':
unicode_value = None
bytes_value = chars.getchar()
if len(bytes_value) != 1:
error(pos, u"invalid character literal: %r" % bytes_value)
else:
bytes_value, unicode_value = chars.getstrings()
if is_python3_source and has_non_ASCII_literal_characters:
# Python 3 forbids literal non-ASCII characters in byte strings
if kind != 'u':
s.error("bytes can only contain ASCII literal characters.", pos = pos)
bytes_value = None
s.next()
return (kind, bytes_value, unicode_value)
# list_display ::= "[" [listmaker] "]"
# listmaker ::= expression ( comp_for | ( "," expression )* [","] )
# comp_iter ::= comp_for | comp_if
# comp_for ::= "for" expression_list "in" testlist [comp_iter]
# comp_if ::= "if" test [comp_iter]
def p_list_maker(s):
# s.sy == '['
pos = s.position()
s.next()
if s.sy == ']':
s.expect(']')
return ExprNodes.ListNode(pos, args = [])
expr = p_test(s)
if s.sy == 'for':
target = ExprNodes.ListNode(pos, args = [])
append = ExprNodes.ComprehensionAppendNode(
pos, expr=expr, target=ExprNodes.CloneNode(target))
loop = p_comp_for(s, append)
s.expect(']')
return ExprNodes.ComprehensionNode(
pos, loop=loop, append=append, target=target,
# list comprehensions leak their loop variable in Py2
has_local_scope = s.context.language_level >= 3)
else:
if s.sy == ',':
s.next()
exprs = p_simple_expr_list(s, expr)
else:
exprs = [expr]
s.expect(']')
return ExprNodes.ListNode(pos, args = exprs)
def p_comp_iter(s, body):
if s.sy == 'for':
return p_comp_for(s, body)
elif s.sy == 'if':
return p_comp_if(s, body)
else:
# insert the 'append' operation into the loop
return body
def p_comp_for(s, body):
# s.sy == 'for'
pos = s.position()
s.next()
kw = p_for_bounds(s, allow_testlist=False)
kw.update(dict(else_clause = None, body = p_comp_iter(s, body)))
return Nodes.ForStatNode(pos, **kw)
def p_comp_if(s, body):
# s.sy == 'if'
pos = s.position()
s.next()
test = p_test_nocond(s)
return Nodes.IfStatNode(pos,
if_clauses = [Nodes.IfClauseNode(pos, condition = test,
body = p_comp_iter(s, body))],
else_clause = None )
#dictmaker: test ':' test (',' test ':' test)* [',']
def p_dict_or_set_maker(s):
# s.sy == '{'
pos = s.position()
s.next()
if s.sy == '}':
s.next()
return ExprNodes.DictNode(pos, key_value_pairs = [])
item = p_test(s)
if s.sy == ',' or s.sy == '}':
# set literal
values = [item]
while s.sy == ',':
s.next()
if s.sy == '}':
break
values.append( p_test(s) )
s.expect('}')
return ExprNodes.SetNode(pos, args=values)
elif s.sy == 'for':
# set comprehension
target = ExprNodes.SetNode(pos, args=[])
append = ExprNodes.ComprehensionAppendNode(
item.pos, expr=item, target=ExprNodes.CloneNode(target))
loop = p_comp_for(s, append)
s.expect('}')
return ExprNodes.ComprehensionNode(
pos, loop=loop, append=append, target=target)
elif s.sy == ':':
# dict literal or comprehension
key = item
s.next()
value = p_test(s)
if s.sy == 'for':
# dict comprehension
target = ExprNodes.DictNode(pos, key_value_pairs = [])
append = ExprNodes.DictComprehensionAppendNode(
item.pos, key_expr=key, value_expr=value,
target=ExprNodes.CloneNode(target))
loop = p_comp_for(s, append)
s.expect('}')
return ExprNodes.ComprehensionNode(
pos, loop=loop, append=append, target=target)
else:
# dict literal
items = [ExprNodes.DictItemNode(key.pos, key=key, value=value)]
while s.sy == ',':
s.next()
if s.sy == '}':
break
key = p_test(s)
s.expect(':')
value = p_test(s)
items.append(
ExprNodes.DictItemNode(key.pos, key=key, value=value))
s.expect('}')
return ExprNodes.DictNode(pos, key_value_pairs=items)
else:
# raise an error
s.expect('}')
return ExprNodes.DictNode(pos, key_value_pairs = [])
# NOTE: no longer in Py3 :)
def p_backquote_expr(s):
# s.sy == '`'
pos = s.position()
s.next()
args = [p_test(s)]
while s.sy == ',':
s.next()
args.append(p_test(s))
s.expect('`')
if len(args) == 1:
arg = args[0]
else:
arg = ExprNodes.TupleNode(pos, args = args)
return ExprNodes.BackquoteNode(pos, arg = arg)
def p_simple_expr_list(s, expr=None):
exprs = expr is not None and [expr] or []
while s.sy not in expr_terminators:
exprs.append( p_test(s) )
if s.sy != ',':
break
s.next()
return exprs
def p_test_or_starred_expr_list(s, expr=None):
exprs = expr is not None and [expr] or []
while s.sy not in expr_terminators:
exprs.append( p_test_or_starred_expr(s) )
if s.sy != ',':
break
s.next()
return exprs
#testlist: test (',' test)* [',']
def p_testlist(s):
pos = s.position()
expr = p_test(s)
if s.sy == ',':
s.next()
exprs = p_simple_expr_list(s, expr)
return ExprNodes.TupleNode(pos, args = exprs)
else:
return expr
# testlist_star_expr: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] )
def p_testlist_star_expr(s):
pos = s.position()
expr = p_test_or_starred_expr(s)
if s.sy == ',':
s.next()
exprs = p_test_or_starred_expr_list(s, expr)
return ExprNodes.TupleNode(pos, args = exprs)
else:
return expr
# testlist_comp: (test|star_expr) ( comp_for | (',' (test|star_expr))* [','] )
def p_testlist_comp(s):
pos = s.position()
expr = p_test_or_starred_expr(s)
if s.sy == ',':
s.next()
exprs = p_test_or_starred_expr_list(s, expr)
return ExprNodes.TupleNode(pos, args = exprs)
elif s.sy == 'for':
return p_genexp(s, expr)
else:
return expr
def p_genexp(s, expr):
# s.sy == 'for'
loop = p_comp_for(s, Nodes.ExprStatNode(
expr.pos, expr = ExprNodes.YieldExprNode(expr.pos, arg=expr)))
return ExprNodes.GeneratorExpressionNode(expr.pos, loop=loop)
expr_terminators = (')', ']', '}', ':', '=', 'NEWLINE')
#-------------------------------------------------------
#
# Statements
#
#-------------------------------------------------------
def p_global_statement(s):
# assume s.sy == 'global'
pos = s.position()
s.next()
names = p_ident_list(s)
return Nodes.GlobalNode(pos, names = names)
def p_nonlocal_statement(s):
pos = s.position()
s.next()
names = p_ident_list(s)
return Nodes.NonlocalNode(pos, names = names)
def p_expression_or_assignment(s):
expr_list = [p_testlist_star_expr(s)]
while s.sy == '=':
s.next()
if s.sy == 'yield':
expr = p_yield_expression(s)
else:
expr = p_testlist_star_expr(s)
expr_list.append(expr)
if len(expr_list) == 1:
if re.match(r"([+*/\%^\&|-]|<<|>>|\*\*|//)=", s.sy):
lhs = expr_list[0]
if not isinstance(lhs, (ExprNodes.AttributeNode, ExprNodes.IndexNode, ExprNodes.NameNode) ):
error(lhs.pos, "Illegal operand for inplace operation.")
operator = s.sy[:-1]
s.next()
if s.sy == 'yield':
rhs = p_yield_expression(s)
else:
rhs = p_testlist(s)
return Nodes.InPlaceAssignmentNode(lhs.pos, operator = operator, lhs = lhs, rhs = rhs)
expr = expr_list[0]
if isinstance(expr, (ExprNodes.UnicodeNode, ExprNodes.StringNode, ExprNodes.BytesNode)):
return Nodes.PassStatNode(expr.pos)
else:
return Nodes.ExprStatNode(expr.pos, expr = expr)
rhs = expr_list[-1]
if len(expr_list) == 2:
return Nodes.SingleAssignmentNode(rhs.pos,
lhs = expr_list[0], rhs = rhs)
else:
return Nodes.CascadedAssignmentNode(rhs.pos,
lhs_list = expr_list[:-1], rhs = rhs)
def p_print_statement(s):
# s.sy == 'print'
pos = s.position()
ends_with_comma = 0
s.next()
if s.sy == '>>':
s.next()
stream = p_test(s)
if s.sy == ',':
s.next()
ends_with_comma = s.sy in ('NEWLINE', 'EOF')
else:
stream = None
args = []
if s.sy not in ('NEWLINE', 'EOF'):
args.append(p_test(s))
while s.sy == ',':
s.next()
if s.sy in ('NEWLINE', 'EOF'):
ends_with_comma = 1
break
args.append(p_test(s))
arg_tuple = ExprNodes.TupleNode(pos, args = args)
return Nodes.PrintStatNode(pos,
arg_tuple = arg_tuple, stream = stream,
append_newline = not ends_with_comma)
def p_exec_statement(s):
# s.sy == 'exec'
pos = s.position()
s.next()
args = [ p_bit_expr(s) ]
if s.sy == 'in':
s.next()
args.append(p_test(s))
if s.sy == ',':
s.next()
args.append(p_test(s))
else:
error(pos, "'exec' currently requires a target mapping (globals/locals)")
return Nodes.ExecStatNode(pos, args = args)
def p_del_statement(s):
# s.sy == 'del'
pos = s.position()
s.next()
# FIXME: 'exprlist' in Python
args = p_simple_expr_list(s)
return Nodes.DelStatNode(pos, args = args)
def p_pass_statement(s, with_newline = 0):
pos = s.position()
s.expect('pass')
if with_newline:
s.expect_newline("Expected a newline")
return Nodes.PassStatNode(pos)
def p_break_statement(s):
# s.sy == 'break'
pos = s.position()
s.next()
return Nodes.BreakStatNode(pos)
def p_continue_statement(s):
# s.sy == 'continue'
pos = s.position()
s.next()
return Nodes.ContinueStatNode(pos)
def p_return_statement(s):
# s.sy == 'return'
pos = s.position()
s.next()
if s.sy not in statement_terminators:
value = p_testlist(s)
else:
value = None
return Nodes.ReturnStatNode(pos, value = value)
def p_raise_statement(s):
# s.sy == 'raise'
pos = s.position()
s.next()
exc_type = None
exc_value = None
exc_tb = None
cause = None
if s.sy not in statement_terminators:
exc_type = p_test(s)
if s.sy == ',':
s.next()
exc_value = p_test(s)
if s.sy == ',':
s.next()
exc_tb = p_test(s)
elif s.sy == 'from':
s.next()
cause = p_test(s)
if exc_type or exc_value or exc_tb:
return Nodes.RaiseStatNode(pos,
exc_type = exc_type,
exc_value = exc_value,
exc_tb = exc_tb,
cause = cause)
else:
return Nodes.ReraiseStatNode(pos)
def p_import_statement(s):
# s.sy in ('import', 'cimport')
pos = s.position()
kind = s.sy
s.next()
items = [p_dotted_name(s, as_allowed = 1)]
while s.sy == ',':
s.next()
items.append(p_dotted_name(s, as_allowed = 1))
stats = []
for pos, target_name, dotted_name, as_name in items:
dotted_name = EncodedString(dotted_name)
if kind == 'cimport':
stat = Nodes.CImportStatNode(pos,
module_name = dotted_name,
as_name = as_name)
else:
if as_name and "." in dotted_name:
name_list = ExprNodes.ListNode(pos, args = [
ExprNodes.IdentifierStringNode(pos, value = EncodedString("*"))])
else:
name_list = None
stat = Nodes.SingleAssignmentNode(pos,
lhs = ExprNodes.NameNode(pos,
name = as_name or target_name),
rhs = ExprNodes.ImportNode(pos,
module_name = ExprNodes.IdentifierStringNode(
pos, value = dotted_name),
level = None,
name_list = name_list))
stats.append(stat)
return Nodes.StatListNode(pos, stats = stats)
def p_from_import_statement(s, first_statement = 0):
# s.sy == 'from'
pos = s.position()
s.next()
if s.sy == '.':
# count relative import level
level = 0
while s.sy == '.':
level += 1
s.next()
if s.sy == 'cimport':
s.error("Relative cimport is not supported yet")
else:
level = None
if level is not None and s.sy == 'import':
# we are dealing with "from .. import foo, bar"
dotted_name_pos, dotted_name = s.position(), ''
elif level is not None and s.sy == 'cimport':
# "from .. cimport"
s.error("Relative cimport is not supported yet")
else:
(dotted_name_pos, _, dotted_name, _) = \
p_dotted_name(s, as_allowed = 0)
if s.sy in ('import', 'cimport'):
kind = s.sy
s.next()
else:
s.error("Expected 'import' or 'cimport'")
is_cimport = kind == 'cimport'
is_parenthesized = False
if s.sy == '*':
imported_names = [(s.position(), "*", None, None)]
s.next()
else:
if s.sy == '(':
is_parenthesized = True
s.next()
imported_names = [p_imported_name(s, is_cimport)]
while s.sy == ',':
s.next()
if is_parenthesized and s.sy == ')':
break
imported_names.append(p_imported_name(s, is_cimport))
if is_parenthesized:
s.expect(')')
dotted_name = EncodedString(dotted_name)
if dotted_name == '__future__':
if not first_statement:
s.error("from __future__ imports must occur at the beginning of the file")
elif level is not None:
s.error("invalid syntax")
else:
for (name_pos, name, as_name, kind) in imported_names:
if name == "braces":
s.error("not a chance", name_pos)
break
try:
directive = getattr(Future, name)
except AttributeError:
s.error("future feature %s is not defined" % name, name_pos)
break
s.context.future_directives.add(directive)
return Nodes.PassStatNode(pos)
elif kind == 'cimport':
return Nodes.FromCImportStatNode(pos,
module_name = dotted_name,
imported_names = imported_names)
else:
imported_name_strings = []
items = []
for (name_pos, name, as_name, kind) in imported_names:
encoded_name = EncodedString(name)
imported_name_strings.append(
ExprNodes.IdentifierStringNode(name_pos, value = encoded_name))
items.append(
(name,
ExprNodes.NameNode(name_pos,
name = as_name or name)))
import_list = ExprNodes.ListNode(
imported_names[0][0], args = imported_name_strings)
dotted_name = EncodedString(dotted_name)
return Nodes.FromImportStatNode(pos,
module = ExprNodes.ImportNode(dotted_name_pos,
module_name = ExprNodes.IdentifierStringNode(pos, value = dotted_name),
level = level,
name_list = import_list),
items = items)
imported_name_kinds = ('class', 'struct', 'union')
def p_imported_name(s, is_cimport):
pos = s.position()
kind = None
if is_cimport and s.systring in imported_name_kinds:
kind = s.systring
s.next()
name = p_ident(s)
as_name = p_as_name(s)
return (pos, name, as_name, kind)
def p_dotted_name(s, as_allowed):
pos = s.position()
target_name = p_ident(s)
as_name = None
names = [target_name]
while s.sy == '.':
s.next()
names.append(p_ident(s))
if as_allowed:
as_name = p_as_name(s)
return (pos, target_name, u'.'.join(names), as_name)
def p_as_name(s):
if s.sy == 'IDENT' and s.systring == 'as':
s.next()
return p_ident(s)
else:
return None
def p_assert_statement(s):
# s.sy == 'assert'
pos = s.position()
s.next()
cond = p_test(s)
if s.sy == ',':
s.next()
value = p_test(s)
else:
value = None
return Nodes.AssertStatNode(pos, cond = cond, value = value)
statement_terminators = (';', 'NEWLINE', 'EOF')
def p_if_statement(s):
# s.sy == 'if'
pos = s.position()
s.next()
if_clauses = [p_if_clause(s)]
while s.sy == 'elif':
s.next()
if_clauses.append(p_if_clause(s))
else_clause = p_else_clause(s)
return Nodes.IfStatNode(pos,
if_clauses = if_clauses, else_clause = else_clause)
def p_if_clause(s):
pos = s.position()
test = p_test(s)
body = p_suite(s)
return Nodes.IfClauseNode(pos,
condition = test, body = body)
def p_else_clause(s):
if s.sy == 'else':
s.next()
return p_suite(s)
else:
return None
def p_while_statement(s):
# s.sy == 'while'
pos = s.position()
s.next()
test = p_test(s)
body = p_suite(s)
else_clause = p_else_clause(s)
return Nodes.WhileStatNode(pos,
condition = test, body = body,
else_clause = else_clause)
def p_for_statement(s):
# s.sy == 'for'
pos = s.position()
s.next()
kw = p_for_bounds(s, allow_testlist=True)
body = p_suite(s)
else_clause = p_else_clause(s)
kw.update(dict(body = body, else_clause = else_clause))
return Nodes.ForStatNode(pos, **kw)
def p_for_bounds(s, allow_testlist=True):
target = p_for_target(s)
if s.sy == 'in':
s.next()
iterator = p_for_iterator(s, allow_testlist)
return dict( target = target, iterator = iterator )
elif not s.in_python_file:
if s.sy == 'from':
s.next()
bound1 = p_bit_expr(s)
else:
# Support shorter "for a <= x < b" syntax
bound1, target = target, None
rel1 = p_for_from_relation(s)
name2_pos = s.position()
name2 = p_ident(s)
rel2_pos = s.position()
rel2 = p_for_from_relation(s)
bound2 = p_bit_expr(s)
step = p_for_from_step(s)
if target is None:
target = ExprNodes.NameNode(name2_pos, name = name2)
else:
if not target.is_name:
error(target.pos,
"Target of for-from statement must be a variable name")
elif name2 != target.name:
error(name2_pos,
"Variable name in for-from range does not match target")
if rel1[0] != rel2[0]:
error(rel2_pos,
"Relation directions in for-from do not match")
return dict(target = target,
bound1 = bound1,
relation1 = rel1,
relation2 = rel2,
bound2 = bound2,
step = step,
)
else:
s.expect('in')
return {}
def p_for_from_relation(s):
if s.sy in inequality_relations:
op = s.sy
s.next()
return op
else:
s.error("Expected one of '<', '<=', '>' '>='")
def p_for_from_step(s):
if s.sy == 'IDENT' and s.systring == 'by':
s.next()
step = p_bit_expr(s)
return step
else:
return None
inequality_relations = ('<', '<=', '>', '>=')
def p_target(s, terminator):
pos = s.position()
expr = p_starred_expr(s)
if s.sy == ',':
s.next()
exprs = [expr]
while s.sy != terminator:
exprs.append(p_starred_expr(s))
if s.sy != ',':
break
s.next()
return ExprNodes.TupleNode(pos, args = exprs)
else:
return expr
def p_for_target(s):
return p_target(s, 'in')
def p_for_iterator(s, allow_testlist=True):
pos = s.position()
if allow_testlist:
expr = p_testlist(s)
else:
expr = p_or_test(s)
return ExprNodes.IteratorNode(pos, sequence = expr)
def p_try_statement(s):
# s.sy == 'try'
pos = s.position()
s.next()
body = p_suite(s)
except_clauses = []
else_clause = None
if s.sy in ('except', 'else'):
while s.sy == 'except':
except_clauses.append(p_except_clause(s))
if s.sy == 'else':
s.next()
else_clause = p_suite(s)
body = Nodes.TryExceptStatNode(pos,
body = body, except_clauses = except_clauses,
else_clause = else_clause)
if s.sy != 'finally':
return body
# try-except-finally is equivalent to nested try-except/try-finally
if s.sy == 'finally':
s.next()
finally_clause = p_suite(s)
return Nodes.TryFinallyStatNode(pos,
body = body, finally_clause = finally_clause)
else:
s.error("Expected 'except' or 'finally'")
def p_except_clause(s):
# s.sy == 'except'
pos = s.position()
s.next()
exc_type = None
exc_value = None
if s.sy != ':':
exc_type = p_test(s)
# normalise into list of single exception tests
if isinstance(exc_type, ExprNodes.TupleNode):
exc_type = exc_type.args
else:
exc_type = [exc_type]
if s.sy == ',' or (s.sy == 'IDENT' and s.systring == 'as'):
s.next()
exc_value = p_test(s)
elif s.sy == 'IDENT' and s.systring == 'as':
# Py3 syntax requires a name here
s.next()
pos2 = s.position()
name = p_ident(s)
exc_value = ExprNodes.NameNode(pos2, name = name)
body = p_suite(s)
return Nodes.ExceptClauseNode(pos,
pattern = exc_type, target = exc_value, body = body)
def p_include_statement(s, ctx):
pos = s.position()
s.next() # 'include'
unicode_include_file_name = p_string_literal(s, 'u')[2]
s.expect_newline("Syntax error in include statement")
if s.compile_time_eval:
include_file_name = unicode_include_file_name
include_file_path = s.context.find_include_file(include_file_name, pos)
if include_file_path:
s.included_files.append(include_file_name)
f = Utils.open_source_file(include_file_path, mode="rU")
source_desc = FileSourceDescriptor(include_file_path)
s2 = PyrexScanner(f, source_desc, s, source_encoding=f.encoding, parse_comments=s.parse_comments)
try:
tree = p_statement_list(s2, ctx)
finally:
f.close()
return tree
else:
return None
else:
return Nodes.PassStatNode(pos)
def p_with_statement(s):
s.next() # 'with'
if s.systring == 'template' and not s.in_python_file:
node = p_with_template(s)
else:
node = p_with_items(s)
return node
def p_with_items(s):
pos = s.position()
if not s.in_python_file and s.sy == 'IDENT' and s.systring in ('nogil', 'gil'):
state = s.systring
s.next()
if s.sy == ',':
s.next()
body = p_with_items(s)
else:
body = p_suite(s)
return Nodes.GILStatNode(pos, state = state, body = body)
else:
manager = p_test(s)
target = None
if s.sy == 'IDENT' and s.systring == 'as':
s.next()
target = p_starred_expr(s)
if s.sy == ',':
s.next()
body = p_with_items(s)
else:
body = p_suite(s)
return Nodes.WithStatNode(pos, manager = manager,
target = target, body = body)
def p_with_template(s):
pos = s.position()
templates = []
s.next()
s.expect('[')
templates.append(s.systring)
s.next()
while s.systring == ',':
s.next()
templates.append(s.systring)
s.next()
s.expect(']')
if s.sy == ':':
s.next()
s.expect_newline("Syntax error in template function declaration")
s.expect_indent()
body_ctx = Ctx()
body_ctx.templates = templates
func_or_var = p_c_func_or_var_declaration(s, pos, body_ctx)
s.expect_dedent()
return func_or_var
else:
error(pos, "Syntax error in template function declaration")
def p_simple_statement(s, first_statement = 0):
#print "p_simple_statement:", s.sy, s.systring ###
if s.sy == 'global':
node = p_global_statement(s)
elif s.sy == 'nonlocal':
node = p_nonlocal_statement(s)
elif s.sy == 'print':
node = p_print_statement(s)
elif s.sy == 'exec':
node = p_exec_statement(s)
elif s.sy == 'del':
node = p_del_statement(s)
elif s.sy == 'break':
node = p_break_statement(s)
elif s.sy == 'continue':
node = p_continue_statement(s)
elif s.sy == 'return':
node = p_return_statement(s)
elif s.sy == 'raise':
node = p_raise_statement(s)
elif s.sy in ('import', 'cimport'):
node = p_import_statement(s)
elif s.sy == 'from':
node = p_from_import_statement(s, first_statement = first_statement)
elif s.sy == 'yield':
node = p_yield_statement(s)
elif s.sy == 'assert':
node = p_assert_statement(s)
elif s.sy == 'pass':
node = p_pass_statement(s)
else:
node = p_expression_or_assignment(s)
return node
def p_simple_statement_list(s, ctx, first_statement = 0):
# Parse a series of simple statements on one line
# separated by semicolons.
stat = p_simple_statement(s, first_statement = first_statement)
pos = stat.pos
stats = []
if not isinstance(stat, Nodes.PassStatNode):
stats.append(stat)
while s.sy == ';':
#print "p_simple_statement_list: maybe more to follow" ###
s.next()
if s.sy in ('NEWLINE', 'EOF'):
break
stat = p_simple_statement(s, first_statement = first_statement)
if isinstance(stat, Nodes.PassStatNode):
continue
stats.append(stat)
first_statement = False
if not stats:
stat = Nodes.PassStatNode(pos)
elif len(stats) == 1:
stat = stats[0]
else:
stat = Nodes.StatListNode(pos, stats = stats)
s.expect_newline("Syntax error in simple statement list")
return stat
def p_compile_time_expr(s):
old = s.compile_time_expr
s.compile_time_expr = 1
expr = p_testlist(s)
s.compile_time_expr = old
return expr
def p_DEF_statement(s):
pos = s.position()
denv = s.compile_time_env
s.next() # 'DEF'
name = p_ident(s)
s.expect('=')
expr = p_compile_time_expr(s)
value = expr.compile_time_value(denv)
#print "p_DEF_statement: %s = %r" % (name, value) ###
denv.declare(name, value)
s.expect_newline()
return Nodes.PassStatNode(pos)
def p_IF_statement(s, ctx):
pos = s.position()
saved_eval = s.compile_time_eval
current_eval = saved_eval
denv = s.compile_time_env
result = None
while 1:
s.next() # 'IF' or 'ELIF'
expr = p_compile_time_expr(s)
s.compile_time_eval = current_eval and bool(expr.compile_time_value(denv))
body = p_suite(s, ctx)
if s.compile_time_eval:
result = body
current_eval = 0
if s.sy != 'ELIF':
break
if s.sy == 'ELSE':
s.next()
s.compile_time_eval = current_eval
body = p_suite(s, ctx)
if current_eval:
result = body
if not result:
result = Nodes.PassStatNode(pos)
s.compile_time_eval = saved_eval
return result
def p_statement(s, ctx, first_statement = 0):
cdef_flag = ctx.cdef_flag
decorators = None
if s.sy == 'ctypedef':
if ctx.level not in ('module', 'module_pxd'):
s.error("ctypedef statement not allowed here")
#if ctx.api:
# error(s.position(), "'api' not allowed with 'ctypedef'")
return p_ctypedef_statement(s, ctx)
elif s.sy == 'DEF':
return p_DEF_statement(s)
elif s.sy == 'IF':
return p_IF_statement(s, ctx)
elif s.sy == 'DECORATOR':
if ctx.level not in ('module', 'class', 'c_class', 'function', 'property', 'module_pxd', 'c_class_pxd', 'other'):
s.error('decorator not allowed here')
s.level = ctx.level
decorators = p_decorators(s)
if s.sy not in ('def', 'cdef', 'cpdef', 'class'):
s.error("Decorators can only be followed by functions or classes")
elif s.sy == 'pass' and cdef_flag:
# empty cdef block
return p_pass_statement(s, with_newline = 1)
overridable = 0
if s.sy == 'cdef':
cdef_flag = 1
s.next()
elif s.sy == 'cpdef':
cdef_flag = 1
overridable = 1
s.next()
if cdef_flag:
if ctx.level not in ('module', 'module_pxd', 'function', 'c_class', 'c_class_pxd'):
s.error('cdef statement not allowed here')
s.level = ctx.level
node = p_cdef_statement(s, ctx(overridable = overridable))
if decorators is not None:
if not isinstance(node, (Nodes.CFuncDefNode, Nodes.CVarDefNode, Nodes.CClassDefNode)):
s.error("Decorators can only be followed by functions or classes")
node.decorators = decorators
return node
else:
if ctx.api:
s.error("'api' not allowed with this statement")
elif s.sy == 'def':
# def statements aren't allowed in pxd files, except
# as part of a cdef class
if ('pxd' in ctx.level) and (ctx.level != 'c_class_pxd'):
s.error('def statement not allowed here')
s.level = ctx.level
return p_def_statement(s, decorators)
elif s.sy == 'class':
if ctx.level not in ('module', 'function', 'class', 'other'):
s.error("class definition not allowed here")
return p_class_statement(s, decorators)
elif s.sy == 'include':
if ctx.level not in ('module', 'module_pxd'):
s.error("include statement not allowed here")
return p_include_statement(s, ctx)
elif ctx.level == 'c_class' and s.sy == 'IDENT' and s.systring == 'property':
return p_property_decl(s)
elif s.sy == 'pass' and ctx.level != 'property':
return p_pass_statement(s, with_newline = 1)
else:
if ctx.level in ('c_class_pxd', 'property'):
s.error("Executable statement not allowed here")
if s.sy == 'if':
return p_if_statement(s)
elif s.sy == 'while':
return p_while_statement(s)
elif s.sy == 'for':
return p_for_statement(s)
elif s.sy == 'try':
return p_try_statement(s)
elif s.sy == 'with':
return p_with_statement(s)
else:
return p_simple_statement_list(
s, ctx, first_statement = first_statement)
def p_statement_list(s, ctx, first_statement = 0):
# Parse a series of statements separated by newlines.
pos = s.position()
stats = []
while s.sy not in ('DEDENT', 'EOF'):
stat = p_statement(s, ctx, first_statement = first_statement)
if isinstance(stat, Nodes.PassStatNode):
continue
stats.append(stat)
first_statement = False
if not stats:
return Nodes.PassStatNode(pos)
elif len(stats) == 1:
return stats[0]
else:
return Nodes.StatListNode(pos, stats = stats)
def p_suite(s, ctx = Ctx(), with_doc = 0, with_pseudo_doc = 0):
pos = s.position()
s.expect(':')
doc = None
stmts = []
if s.sy == 'NEWLINE':
s.next()
s.expect_indent()
if with_doc or with_pseudo_doc:
doc = p_doc_string(s)
body = p_statement_list(s, ctx)
s.expect_dedent()
else:
if ctx.api:
s.error("'api' not allowed with this statement")
if ctx.level in ('module', 'class', 'function', 'other'):
body = p_simple_statement_list(s, ctx)
else:
body = p_pass_statement(s)
s.expect_newline("Syntax error in declarations")
if with_doc:
return doc, body
else:
return body
def p_positional_and_keyword_args(s, end_sy_set, templates = None):
"""
Parses positional and keyword arguments. end_sy_set
should contain any s.sy that terminate the argument list.
Argument expansion (* and **) are not allowed.
Returns: (positional_args, keyword_args)
"""
positional_args = []
keyword_args = []
pos_idx = 0
while s.sy not in end_sy_set:
if s.sy == '*' or s.sy == '**':
s.error('Argument expansion not allowed here.')
parsed_type = False
if s.sy == 'IDENT' and s.peek()[0] == '=':
ident = s.systring
s.next() # s.sy is '='
s.next()
if looking_at_expr(s):
arg = p_test(s)
else:
base_type = p_c_base_type(s, templates = templates)
declarator = p_c_declarator(s, empty = 1)
arg = Nodes.CComplexBaseTypeNode(base_type.pos,
base_type = base_type, declarator = declarator)
parsed_type = True
keyword_node = ExprNodes.IdentifierStringNode(
arg.pos, value = EncodedString(ident))
keyword_args.append((keyword_node, arg))
was_keyword = True
else:
if looking_at_expr(s):
arg = p_test(s)
else:
base_type = p_c_base_type(s, templates = templates)
declarator = p_c_declarator(s, empty = 1)
arg = Nodes.CComplexBaseTypeNode(base_type.pos,
base_type = base_type, declarator = declarator)
parsed_type = True
positional_args.append(arg)
pos_idx += 1
if len(keyword_args) > 0:
s.error("Non-keyword arg following keyword arg",
pos = arg.pos)
if s.sy != ',':
if s.sy not in end_sy_set:
if parsed_type:
s.error("Unmatched %s" % " or ".join(end_sy_set))
break
s.next()
return positional_args, keyword_args
def p_c_base_type(s, self_flag = 0, nonempty = 0, templates = None):
# If self_flag is true, this is the base type for the
# self argument of a C method of an extension type.
if s.sy == '(':
return p_c_complex_base_type(s)
else:
return p_c_simple_base_type(s, self_flag, nonempty = nonempty, templates = templates)
def p_calling_convention(s):
if s.sy == 'IDENT' and s.systring in calling_convention_words:
result = s.systring
s.next()
return result
else:
return ""
calling_convention_words = ("__stdcall", "__cdecl", "__fastcall")
def p_c_complex_base_type(s):
# s.sy == '('
pos = s.position()
s.next()
base_type = p_c_base_type(s)
declarator = p_c_declarator(s, empty = 1)
s.expect(')')
return Nodes.CComplexBaseTypeNode(pos,
base_type = base_type, declarator = declarator)
def p_c_simple_base_type(s, self_flag, nonempty, templates = None):
#print "p_c_simple_base_type: self_flag =", self_flag, nonempty
is_basic = 0
signed = 1
longness = 0
complex = 0
module_path = []
pos = s.position()
if not s.sy == 'IDENT':
error(pos, "Expected an identifier, found '%s'" % s.sy)
if looking_at_base_type(s):
#print "p_c_simple_base_type: looking_at_base_type at", s.position()
is_basic = 1
if s.sy == 'IDENT' and s.systring in special_basic_c_types:
signed, longness = special_basic_c_types[s.systring]
name = s.systring
s.next()
else:
signed, longness = p_sign_and_longness(s)
if s.sy == 'IDENT' and s.systring in basic_c_type_names:
name = s.systring
s.next()
else:
name = 'int' # long [int], short [int], long [int] complex, etc.
if s.sy == 'IDENT' and s.systring == 'complex':
complex = 1
s.next()
elif looking_at_dotted_name(s):
#print "p_c_simple_base_type: looking_at_type_name at", s.position()
name = s.systring
s.next()
while s.sy == '.':
module_path.append(name)
s.next()
name = p_ident(s)
else:
name = s.systring
s.next()
if nonempty and s.sy != 'IDENT':
# Make sure this is not a declaration of a variable or function.
if s.sy == '(':
s.next()
if s.sy == '*' or s.sy == '**' or s.sy == '&':
s.put_back('(', '(')
else:
s.put_back('(', '(')
s.put_back('IDENT', name)
name = None
elif s.sy not in ('*', '**', '[', '&'):
s.put_back('IDENT', name)
name = None
type_node = Nodes.CSimpleBaseTypeNode(pos,
name = name, module_path = module_path,
is_basic_c_type = is_basic, signed = signed,
complex = complex, longness = longness,
is_self_arg = self_flag, templates = templates)
if s.sy == '[':
type_node = p_buffer_or_template(s, type_node, templates)
if s.sy == '.':
s.next()
name = p_ident(s)
type_node = Nodes.CNestedBaseTypeNode(pos, base_type = type_node, name = name)
return type_node
def p_buffer_or_template(s, base_type_node, templates):
# s.sy == '['
pos = s.position()
s.next()
# Note that buffer_positional_options_count=1, so the only positional argument is dtype.
# For templated types, all parameters are types.
positional_args, keyword_args = (
p_positional_and_keyword_args(s, (']',), templates)
)
s.expect(']')
keyword_dict = ExprNodes.DictNode(pos,
key_value_pairs = [
ExprNodes.DictItemNode(pos=key.pos, key=key, value=value)
for key, value in keyword_args
])
result = Nodes.TemplatedTypeNode(pos,
positional_args = positional_args,
keyword_args = keyword_dict,
base_type_node = base_type_node)
return result
def looking_at_name(s):
return s.sy == 'IDENT' and not s.systring in calling_convention_words
def looking_at_expr(s):
if s.systring in base_type_start_words:
return False
elif s.sy == 'IDENT':
is_type = False
name = s.systring
dotted_path = []
s.next()
while s.sy == '.':
s.next()
dotted_path.append(s.systring)
s.expect('IDENT')
saved = s.sy, s.systring
if s.sy == 'IDENT':
is_type = True
elif s.sy == '*' or s.sy == '**':
s.next()
is_type = s.sy in (')', ']')
s.put_back(*saved)
elif s.sy == '(':
s.next()
is_type = s.sy == '*'
s.put_back(*saved)
elif s.sy == '[':
s.next()
is_type = s.sy == ']'
s.put_back(*saved)
dotted_path.reverse()
for p in dotted_path:
s.put_back('IDENT', p)
s.put_back('.', '.')
s.put_back('IDENT', name)
return not is_type
else:
return True
def looking_at_base_type(s):
#print "looking_at_base_type?", s.sy, s.systring, s.position()
return s.sy == 'IDENT' and s.systring in base_type_start_words
def looking_at_dotted_name(s):
if s.sy == 'IDENT':
name = s.systring
s.next()
result = s.sy == '.'
s.put_back('IDENT', name)
return result
else:
return 0
basic_c_type_names = ("void", "char", "int", "float", "double", "bint")
special_basic_c_types = {
# name : (signed, longness)
"Py_UNICODE" : (0, 0),
"Py_UCS4" : (0, 0),
"Py_ssize_t" : (2, 0),
"ssize_t" : (2, 0),
"size_t" : (0, 0),
}
sign_and_longness_words = ("short", "long", "signed", "unsigned")
base_type_start_words = \
basic_c_type_names + sign_and_longness_words + tuple(special_basic_c_types)
def p_sign_and_longness(s):
signed = 1
longness = 0
while s.sy == 'IDENT' and s.systring in sign_and_longness_words:
if s.systring == 'unsigned':
signed = 0
elif s.systring == 'signed':
signed = 2
elif s.systring == 'short':
longness = -1
elif s.systring == 'long':
longness += 1
s.next()
return signed, longness
def p_opt_cname(s):
literal = p_opt_string_literal(s, 'u')
if literal is not None:
cname = EncodedString(literal)
cname.encoding = s.source_encoding
else:
cname = None
return cname
def p_c_declarator(s, ctx = Ctx(), empty = 0, is_type = 0, cmethod_flag = 0,
assignable = 0, nonempty = 0,
calling_convention_allowed = 0):
# If empty is true, the declarator must be empty. If nonempty is true,
# the declarator must be nonempty. Otherwise we don't care.
# If cmethod_flag is true, then if this declarator declares
# a function, it's a C method of an extension type.
pos = s.position()
if s.sy == '(':
s.next()
if s.sy == ')' or looking_at_name(s):
base = Nodes.CNameDeclaratorNode(pos, name = EncodedString(u""), cname = None)
result = p_c_func_declarator(s, pos, ctx, base, cmethod_flag)
else:
result = p_c_declarator(s, ctx, empty = empty, is_type = is_type,
cmethod_flag = cmethod_flag,
nonempty = nonempty,
calling_convention_allowed = 1)
s.expect(')')
else:
result = p_c_simple_declarator(s, ctx, empty, is_type, cmethod_flag,
assignable, nonempty)
if not calling_convention_allowed and result.calling_convention and s.sy != '(':
error(s.position(), "%s on something that is not a function"
% result.calling_convention)
while s.sy in ('[', '('):
pos = s.position()
if s.sy == '[':
result = p_c_array_declarator(s, result)
else: # sy == '('
s.next()
result = p_c_func_declarator(s, pos, ctx, result, cmethod_flag)
cmethod_flag = 0
return result
def p_c_array_declarator(s, base):
pos = s.position()
s.next() # '['
if s.sy != ']':
dim = p_testlist(s)
else:
dim = None
s.expect(']')
return Nodes.CArrayDeclaratorNode(pos, base = base, dimension = dim)
def p_c_func_declarator(s, pos, ctx, base, cmethod_flag):
# Opening paren has already been skipped
args = p_c_arg_list(s, ctx, cmethod_flag = cmethod_flag,
nonempty_declarators = 0)
ellipsis = p_optional_ellipsis(s)
s.expect(')')
nogil = p_nogil(s)
exc_val, exc_check = p_exception_value_clause(s)
with_gil = p_with_gil(s)
return Nodes.CFuncDeclaratorNode(pos,
base = base, args = args, has_varargs = ellipsis,
exception_value = exc_val, exception_check = exc_check,
nogil = nogil or ctx.nogil or with_gil, with_gil = with_gil)
supported_overloaded_operators = cython.set([
'+', '-', '*', '/', '%',
'++', '--', '~', '|', '&', '^', '<<', '>>', ',',
'==', '!=', '>=', '>', '<=', '<',
'[]', '()',
])
def p_c_simple_declarator(s, ctx, empty, is_type, cmethod_flag,
assignable, nonempty):
pos = s.position()
calling_convention = p_calling_convention(s)
if s.sy == '*':
s.next()
base = p_c_declarator(s, ctx, empty = empty, is_type = is_type,
cmethod_flag = cmethod_flag,
assignable = assignable, nonempty = nonempty)
result = Nodes.CPtrDeclaratorNode(pos,
base = base)
elif s.sy == '**': # scanner returns this as a single token
s.next()
base = p_c_declarator(s, ctx, empty = empty, is_type = is_type,
cmethod_flag = cmethod_flag,
assignable = assignable, nonempty = nonempty)
result = Nodes.CPtrDeclaratorNode(pos,
base = Nodes.CPtrDeclaratorNode(pos,
base = base))
elif s.sy == '&':
s.next()
base = p_c_declarator(s, ctx, empty = empty, is_type = is_type,
cmethod_flag = cmethod_flag,
assignable = assignable, nonempty = nonempty)
result = Nodes.CReferenceDeclaratorNode(pos, base = base)
else:
rhs = None
if s.sy == 'IDENT':
name = EncodedString(s.systring)
if empty:
error(s.position(), "Declarator should be empty")
s.next()
cname = p_opt_cname(s)
if name != 'operator' and s.sy == '=' and assignable:
s.next()
rhs = p_test(s)
else:
if nonempty:
error(s.position(), "Empty declarator")
name = ""
cname = None
if cname is None and ctx.namespace is not None and nonempty:
cname = ctx.namespace + "::" + name
if name == 'operator' and ctx.visibility == 'extern' and nonempty:
op = s.sy
if [1 for c in op if c in '+-*/<=>!%&|([^~,']:
s.next()
# Handle diphthong operators.
if op == '(':
s.expect(')')
op = '()'
elif op == '[':
s.expect(']')
op = '[]'
if op in ['-', '+', '|', '&'] and s.sy == op:
op = op*2
s.next()
if s.sy == '=':
op += s.sy
s.next()
if op not in supported_overloaded_operators:
s.error("Overloading operator '%s' not yet supported." % op)
name = name+op
result = Nodes.CNameDeclaratorNode(pos,
name = name, cname = cname, default = rhs)
result.calling_convention = calling_convention
return result
def p_nogil(s):
if s.sy == 'IDENT' and s.systring == 'nogil':
s.next()
return 1
else:
return 0
def p_with_gil(s):
if s.sy == 'with':
s.next()
s.expect_keyword('gil')
return 1
else:
return 0
def p_exception_value_clause(s):
exc_val = None
exc_check = 0
if s.sy == 'except':
s.next()
if s.sy == '*':
exc_check = 1
s.next()
elif s.sy == '+':
exc_check = '+'
s.next()
if s.sy == 'IDENT':
name = s.systring
s.next()
exc_val = p_name(s, name)
else:
if s.sy == '?':
exc_check = 1
s.next()
exc_val = p_test(s)
return exc_val, exc_check
c_arg_list_terminators = ('*', '**', '.', ')')
def p_c_arg_list(s, ctx = Ctx(), in_pyfunc = 0, cmethod_flag = 0,
nonempty_declarators = 0, kw_only = 0, annotated = 1):
# Comma-separated list of C argument declarations, possibly empty.
# May have a trailing comma.
args = []
is_self_arg = cmethod_flag
while s.sy not in c_arg_list_terminators:
args.append(p_c_arg_decl(s, ctx, in_pyfunc, is_self_arg,
nonempty = nonempty_declarators, kw_only = kw_only,
annotated = annotated))
if s.sy != ',':
break
s.next()
is_self_arg = 0
return args
def p_optional_ellipsis(s):
if s.sy == '.':
expect_ellipsis(s)
return 1
else:
return 0
def p_c_arg_decl(s, ctx, in_pyfunc, cmethod_flag = 0, nonempty = 0,
kw_only = 0, annotated = 1):
pos = s.position()
not_none = or_none = 0
default = None
annotation = None
if s.in_python_file:
# empty type declaration
base_type = Nodes.CSimpleBaseTypeNode(pos,
name = None, module_path = [],
is_basic_c_type = 0, signed = 0,
complex = 0, longness = 0,
is_self_arg = cmethod_flag, templates = None)
else:
base_type = p_c_base_type(s, cmethod_flag, nonempty = nonempty)
declarator = p_c_declarator(s, ctx, nonempty = nonempty)
if s.sy in ('not', 'or') and not s.in_python_file:
kind = s.sy
s.next()
if s.sy == 'IDENT' and s.systring == 'None':
s.next()
else:
s.error("Expected 'None'")
if not in_pyfunc:
error(pos, "'%s None' only allowed in Python functions" % kind)
or_none = kind == 'or'
not_none = kind == 'not'
if annotated and s.sy == ':':
s.next()
annotation = p_test(s)
if s.sy == '=':
s.next()
if 'pxd' in s.level:
if s.sy not in ['*', '?']:
error(pos, "default values cannot be specified in pxd files, use ? or *")
default = ExprNodes.BoolNode(1)
s.next()
else:
default = p_test(s)
return Nodes.CArgDeclNode(pos,
base_type = base_type,
declarator = declarator,
not_none = not_none,
or_none = or_none,
default = default,
annotation = annotation,
kw_only = kw_only)
def p_api(s):
if s.sy == 'IDENT' and s.systring == 'api':
s.next()
return 1
else:
return 0
def p_cdef_statement(s, ctx):
pos = s.position()
ctx.visibility = p_visibility(s, ctx.visibility)
ctx.api = ctx.api or p_api(s)
if ctx.api:
if ctx.visibility not in ('private', 'public'):
error(pos, "Cannot combine 'api' with '%s'" % ctx.visibility)
if (ctx.visibility == 'extern') and s.sy == 'from':
return p_cdef_extern_block(s, pos, ctx)
elif s.sy == 'import':
s.next()
return p_cdef_extern_block(s, pos, ctx)
elif p_nogil(s):
ctx.nogil = 1
if ctx.overridable:
error(pos, "cdef blocks cannot be declared cpdef")
return p_cdef_block(s, ctx)
elif s.sy == ':':
if ctx.overridable:
error(pos, "cdef blocks cannot be declared cpdef")
return p_cdef_block(s, ctx)
elif s.sy == 'class':
if ctx.level not in ('module', 'module_pxd'):
error(pos, "Extension type definition not allowed here")
if ctx.overridable:
error(pos, "Extension types cannot be declared cpdef")
return p_c_class_definition(s, pos, ctx)
elif s.sy == 'IDENT' and s.systring == 'cppclass':
if ctx.visibility != 'extern':
error(pos, "C++ classes need to be declared extern")
return p_cpp_class_definition(s, pos, ctx)
elif s.sy == 'IDENT' and s.systring in ("struct", "union", "enum", "packed"):
if ctx.level not in ('module', 'module_pxd'):
error(pos, "C struct/union/enum definition not allowed here")
if ctx.overridable:
error(pos, "C struct/union/enum cannot be declared cpdef")
if s.systring == "enum":
return p_c_enum_definition(s, pos, ctx)
else:
return p_c_struct_or_union_definition(s, pos, ctx)
else:
return p_c_func_or_var_declaration(s, pos, ctx)
def p_cdef_block(s, ctx):
return p_suite(s, ctx(cdef_flag = 1))
def p_cdef_extern_block(s, pos, ctx):
if ctx.overridable:
error(pos, "cdef extern blocks cannot be declared cpdef")
include_file = None
s.expect('from')
if s.sy == '*':
s.next()
else:
include_file = p_string_literal(s, 'u')[2]
ctx = ctx(cdef_flag = 1, visibility = 'extern')
if s.systring == "namespace":
s.next()
ctx.namespace = p_string_literal(s, 'u')[2]
if p_nogil(s):
ctx.nogil = 1
body = p_suite(s, ctx)
return Nodes.CDefExternNode(pos,
include_file = include_file,
body = body,
namespace = ctx.namespace)
def p_c_enum_definition(s, pos, ctx):
# s.sy == ident 'enum'
s.next()
if s.sy == 'IDENT':
name = s.systring
s.next()
cname = p_opt_cname(s)
if cname is None and ctx.namespace is not None:
cname = ctx.namespace + "::" + name
else:
name = None
cname = None
items = None
s.expect(':')
items = []
if s.sy != 'NEWLINE':
p_c_enum_line(s, ctx, items)
else:
s.next() # 'NEWLINE'
s.expect_indent()
while s.sy not in ('DEDENT', 'EOF'):
p_c_enum_line(s, ctx, items)
s.expect_dedent()
return Nodes.CEnumDefNode(
pos, name = name, cname = cname, items = items,
typedef_flag = ctx.typedef_flag, visibility = ctx.visibility,
api = ctx.api, in_pxd = ctx.level == 'module_pxd')
def p_c_enum_line(s, ctx, items):
if s.sy != 'pass':
p_c_enum_item(s, ctx, items)
while s.sy == ',':
s.next()
if s.sy in ('NEWLINE', 'EOF'):
break
p_c_enum_item(s, ctx, items)
else:
s.next()
s.expect_newline("Syntax error in enum item list")
def p_c_enum_item(s, ctx, items):
pos = s.position()
name = p_ident(s)
cname = p_opt_cname(s)
if cname is None and ctx.namespace is not None:
cname = ctx.namespace + "::" + name
value = None
if s.sy == '=':
s.next()
value = p_test(s)
items.append(Nodes.CEnumDefItemNode(pos,
name = name, cname = cname, value = value))
def p_c_struct_or_union_definition(s, pos, ctx):
packed = False
if s.systring == 'packed':
packed = True
s.next()
if s.sy != 'IDENT' or s.systring != 'struct':
s.expected('struct')
# s.sy == ident 'struct' or 'union'
kind = s.systring
s.next()
name = p_ident(s)
cname = p_opt_cname(s)
if cname is None and ctx.namespace is not None:
cname = ctx.namespace + "::" + name
attributes = None
if s.sy == ':':
s.next()
s.expect('NEWLINE')
s.expect_indent()
attributes = []
body_ctx = Ctx()
while s.sy != 'DEDENT':
if s.sy != 'pass':
attributes.append(
p_c_func_or_var_declaration(s, s.position(), body_ctx))
else:
s.next()
s.expect_newline("Expected a newline")
s.expect_dedent()
else:
s.expect_newline("Syntax error in struct or union definition")
return Nodes.CStructOrUnionDefNode(pos,
name = name, cname = cname, kind = kind, attributes = attributes,
typedef_flag = ctx.typedef_flag, visibility = ctx.visibility,
api = ctx.api, in_pxd = ctx.level == 'module_pxd', packed = packed)
def p_visibility(s, prev_visibility):
pos = s.position()
visibility = prev_visibility
if s.sy == 'IDENT' and s.systring in ('extern', 'public', 'readonly'):
visibility = s.systring
if prev_visibility != 'private' and visibility != prev_visibility:
s.error("Conflicting visibility options '%s' and '%s'"
% (prev_visibility, visibility))
s.next()
return visibility
def p_c_modifiers(s):
if s.sy == 'IDENT' and s.systring in ('inline',):
modifier = s.systring
s.next()
return [modifier] + p_c_modifiers(s)
return []
def p_c_func_or_var_declaration(s, pos, ctx):
cmethod_flag = ctx.level in ('c_class', 'c_class_pxd')
modifiers = p_c_modifiers(s)
base_type = p_c_base_type(s, nonempty = 1, templates = ctx.templates)
declarator = p_c_declarator(s, ctx, cmethod_flag = cmethod_flag,
assignable = 1, nonempty = 1)
declarator.overridable = ctx.overridable
if s.sy == ':':
if ctx.level not in ('module', 'c_class', 'module_pxd', 'c_class_pxd') and not ctx.templates:
s.error("C function definition not allowed here")
doc, suite = p_suite(s, Ctx(level = 'function'), with_doc = 1)
result = Nodes.CFuncDefNode(pos,
visibility = ctx.visibility,
base_type = base_type,
declarator = declarator,
body = suite,
doc = doc,
modifiers = modifiers,
api = ctx.api,
overridable = ctx.overridable)
else:
#if api:
# s.error("'api' not allowed with variable declaration")
declarators = [declarator]
while s.sy == ',':
s.next()
if s.sy == 'NEWLINE':
break
declarator = p_c_declarator(s, ctx, cmethod_flag = cmethod_flag,
assignable = 1, nonempty = 1)
declarators.append(declarator)
s.expect_newline("Syntax error in C variable declaration")
result = Nodes.CVarDefNode(pos,
visibility = ctx.visibility,
base_type = base_type,
declarators = declarators,
in_pxd = ctx.level == 'module_pxd',
api = ctx.api,
overridable = ctx.overridable)
return result
def p_ctypedef_statement(s, ctx):
# s.sy == 'ctypedef'
pos = s.position()
s.next()
visibility = p_visibility(s, ctx.visibility)
api = p_api(s)
ctx = ctx(typedef_flag = 1, visibility = visibility)
if api:
ctx.api = 1
if s.sy == 'class':
return p_c_class_definition(s, pos, ctx)
elif s.sy == 'IDENT' and s.systring in ('packed', 'struct', 'union', 'enum'):
if s.systring == 'enum':
return p_c_enum_definition(s, pos, ctx)
else:
return p_c_struct_or_union_definition(s, pos, ctx)
else:
base_type = p_c_base_type(s, nonempty = 1)
if base_type.name is None:
s.error("Syntax error in ctypedef statement")
declarator = p_c_declarator(s, ctx, is_type = 1, nonempty = 1)
s.expect_newline("Syntax error in ctypedef statement")
return Nodes.CTypeDefNode(
pos, base_type = base_type,
declarator = declarator,
visibility = visibility, api = api,
in_pxd = ctx.level == 'module_pxd')
def p_decorators(s):
decorators = []
while s.sy == 'DECORATOR':
pos = s.position()
s.next()
decstring = p_dotted_name(s, as_allowed=0)[2]
names = decstring.split('.')
decorator = ExprNodes.NameNode(pos, name=EncodedString(names[0]))
for name in names[1:]:
decorator = ExprNodes.AttributeNode(pos,
attribute=EncodedString(name),
obj=decorator)
if s.sy == '(':
decorator = p_call(s, decorator)
decorators.append(Nodes.DecoratorNode(pos, decorator=decorator))
s.expect_newline("Expected a newline after decorator")
return decorators
def p_def_statement(s, decorators=None):
# s.sy == 'def'
pos = s.position()
s.next()
name = EncodedString( p_ident(s) )
s.expect('(');
args, star_arg, starstar_arg = p_varargslist(s, terminator=')')
s.expect(')')
if p_nogil(s):
error(pos, "Python function cannot be declared nogil")
return_type_annotation = None
if s.sy == '->':
s.next()
return_type_annotation = p_test(s)
doc, body = p_suite(s, Ctx(level = 'function'), with_doc = 1)
return Nodes.DefNode(pos, name = name, args = args,
star_arg = star_arg, starstar_arg = starstar_arg,
doc = doc, body = body, decorators = decorators,
return_type_annotation = return_type_annotation)
def p_varargslist(s, terminator=')', annotated=1):
args = p_c_arg_list(s, in_pyfunc = 1, nonempty_declarators = 1,
annotated = annotated)
star_arg = None
starstar_arg = None
if s.sy == '*':
s.next()
if s.sy == 'IDENT':
star_arg = p_py_arg_decl(s, annotated=annotated)
if s.sy == ',':
s.next()
args.extend(p_c_arg_list(s, in_pyfunc = 1,
nonempty_declarators = 1, kw_only = 1, annotated = annotated))
elif s.sy != terminator:
s.error("Syntax error in Python function argument list")
if s.sy == '**':
s.next()
starstar_arg = p_py_arg_decl(s, annotated=annotated)
return (args, star_arg, starstar_arg)
def p_py_arg_decl(s, annotated = 1):
pos = s.position()
name = p_ident(s)
annotation = None
if annotated and s.sy == ':':
s.next()
annotation = p_test(s)
return Nodes.PyArgDeclNode(pos, name = name, annotation = annotation)
def p_class_statement(s, decorators):
# s.sy == 'class'
pos = s.position()
s.next()
class_name = EncodedString( p_ident(s) )
class_name.encoding = s.source_encoding
arg_tuple = None
keyword_dict = None
starstar_arg = None
if s.sy == '(':
positional_args, keyword_args, star_arg, starstar_arg = \
p_call_parse_args(s, allow_genexp = False)
arg_tuple, keyword_dict = p_call_build_packed_args(
pos, positional_args, keyword_args, star_arg)
if arg_tuple is None:
# XXX: empty arg_tuple
arg_tuple = ExprNodes.TupleNode(pos, args = [])
doc, body = p_suite(s, Ctx(level = 'class'), with_doc = 1)
return Nodes.PyClassDefNode(pos,
name = class_name,
bases = arg_tuple,
keyword_args = keyword_dict,
starstar_arg = starstar_arg,
doc = doc, body = body, decorators = decorators)
def p_c_class_definition(s, pos, ctx):
# s.sy == 'class'
s.next()
module_path = []
class_name = p_ident(s)
while s.sy == '.':
s.next()
module_path.append(class_name)
class_name = p_ident(s)
if module_path and ctx.visibility != 'extern':
error(pos, "Qualified class name only allowed for 'extern' C class")
if module_path and s.sy == 'IDENT' and s.systring == 'as':
s.next()
as_name = p_ident(s)
else:
as_name = class_name
objstruct_name = None
typeobj_name = None
base_class_module = None
base_class_name = None
if s.sy == '(':
s.next()
base_class_path = [p_ident(s)]
while s.sy == '.':
s.next()
base_class_path.append(p_ident(s))
if s.sy == ',':
s.error("C class may only have one base class")
s.expect(')')
base_class_module = ".".join(base_class_path[:-1])
base_class_name = base_class_path[-1]
if s.sy == '[':
if ctx.visibility not in ('public', 'extern') and not ctx.api:
error(s.position(), "Name options only allowed for 'public', 'api', or 'extern' C class")
objstruct_name, typeobj_name = p_c_class_options(s)
if s.sy == ':':
if ctx.level == 'module_pxd':
body_level = 'c_class_pxd'
else:
body_level = 'c_class'
doc, body = p_suite(s, Ctx(level = body_level), with_doc = 1)
else:
s.expect_newline("Syntax error in C class definition")
doc = None
body = None
if ctx.visibility == 'extern':
if not module_path:
error(pos, "Module name required for 'extern' C class")
if typeobj_name:
error(pos, "Type object name specification not allowed for 'extern' C class")
elif ctx.visibility == 'public':
if not objstruct_name:
error(pos, "Object struct name specification required for 'public' C class")
if not typeobj_name:
error(pos, "Type object name specification required for 'public' C class")
elif ctx.visibility == 'private':
if ctx.api:
if not objstruct_name:
error(pos, "Object struct name specification required for 'api' C class")
if not typeobj_name:
error(pos, "Type object name specification required for 'api' C class")
else:
error(pos, "Invalid class visibility '%s'" % ctx.visibility)
return Nodes.CClassDefNode(pos,
visibility = ctx.visibility,
typedef_flag = ctx.typedef_flag,
api = ctx.api,
module_name = ".".join(module_path),
class_name = class_name,
as_name = as_name,
base_class_module = base_class_module,
base_class_name = base_class_name,
objstruct_name = objstruct_name,
typeobj_name = typeobj_name,
in_pxd = ctx.level == 'module_pxd',
doc = doc,
body = body)
def p_c_class_options(s):
objstruct_name = None
typeobj_name = None
s.expect('[')
while 1:
if s.sy != 'IDENT':
break
if s.systring == 'object':
s.next()
objstruct_name = p_ident(s)
elif s.systring == 'type':
s.next()
typeobj_name = p_ident(s)
if s.sy != ',':
break
s.next()
s.expect(']', "Expected 'object' or 'type'")
return objstruct_name, typeobj_name
def p_property_decl(s):
pos = s.position()
s.next() # 'property'
name = p_ident(s)
doc, body = p_suite(s, Ctx(level = 'property'), with_doc = 1)
return Nodes.PropertyNode(pos, name = name, doc = doc, body = body)
def p_doc_string(s):
if s.sy == 'BEGIN_STRING':
pos = s.position()
kind, bytes_result, unicode_result = p_cat_string_literal(s)
if s.sy != 'EOF':
s.expect_newline("Syntax error in doc string")
if kind in ('u', ''):
return unicode_result
warning(pos, "Python 3 requires docstrings to be unicode strings")
return bytes_result
else:
return None
def p_code(s, level=None):
body = p_statement_list(s, Ctx(level = level), first_statement = 1)
if s.sy != 'EOF':
s.error("Syntax error in statement [%s,%s]" % (
repr(s.sy), repr(s.systring)))
return body
COMPILER_DIRECTIVE_COMMENT_RE = re.compile(r"^#\s*cython\s*:\s*((\w|[.])+\s*=.*)$")
def p_compiler_directive_comments(s):
result = {}
while s.sy == 'commentline':
m = COMPILER_DIRECTIVE_COMMENT_RE.match(s.systring)
if m:
directives = m.group(1).strip()
try:
result.update( Options.parse_directive_list(
directives, ignore_unknown=True) )
except ValueError, e:
s.error(e.args[0], fatal=False)
s.next()
return result
def p_module(s, pxd, full_module_name):
pos = s.position()
directive_comments = p_compiler_directive_comments(s)
s.parse_comments = False
if 'language_level' in directive_comments:
s.context.set_language_level(directive_comments['language_level'])
doc = p_doc_string(s)
if pxd:
level = 'module_pxd'
else:
level = 'module'
body = p_statement_list(s, Ctx(level = level), first_statement = 1)
if s.sy != 'EOF':
s.error("Syntax error in statement [%s,%s]" % (
repr(s.sy), repr(s.systring)))
return ModuleNode(pos, doc = doc, body = body,
full_module_name = full_module_name,
directive_comments = directive_comments)
def p_cpp_class_definition(s, pos, ctx):
# s.sy == 'cppclass'
s.next()
module_path = []
class_name = p_ident(s)
cname = p_opt_cname(s)
if cname is None and ctx.namespace is not None:
cname = ctx.namespace + "::" + class_name
if s.sy == '.':
error(pos, "Qualified class name not allowed C++ class")
if s.sy == '[':
s.next()
templates = [p_ident(s)]
while s.sy == ',':
s.next()
templates.append(p_ident(s))
s.expect(']')
else:
templates = None
if s.sy == '(':
s.next()
base_classes = [p_dotted_name(s, False)[2]]
while s.sy == ',':
s.next()
base_classes.append(p_dotted_name(s, False)[2])
s.expect(')')
else:
base_classes = []
if s.sy == '[':
error(s.position(), "Name options not allowed for C++ class")
if s.sy == ':':
s.next()
s.expect('NEWLINE')
s.expect_indent()
attributes = []
body_ctx = Ctx(visibility = ctx.visibility)
body_ctx.templates = templates
while s.sy != 'DEDENT':
if s.systring == 'cppclass':
attributes.append(
p_cpp_class_definition(s, s.position(), body_ctx))
elif s.sy != 'pass':
attributes.append(
p_c_func_or_var_declaration(s, s.position(), body_ctx))
else:
s.next()
s.expect_newline("Expected a newline")
s.expect_dedent()
else:
attributes = None
s.expect_newline("Syntax error in C++ class definition")
return Nodes.CppClassNode(pos,
name = class_name,
cname = cname,
base_classes = base_classes,
visibility = ctx.visibility,
in_pxd = ctx.level == 'module_pxd',
attributes = attributes,
templates = templates)
#----------------------------------------------
#
# Debugging
#
#----------------------------------------------
def print_parse_tree(f, node, level, key = None):
from types import ListType, TupleType
from Nodes import Node
ind = " " * level
if node:
f.write(ind)
if key:
f.write("%s: " % key)
t = type(node)
if t is tuple:
f.write("(%s @ %s\n" % (node[0], node[1]))
for i in xrange(2, len(node)):
print_parse_tree(f, node[i], level+1)
f.write("%s)\n" % ind)
return
elif isinstance(node, Node):
try:
tag = node.tag
except AttributeError:
tag = node.__class__.__name__
f.write("%s @ %s\n" % (tag, node.pos))
for name, value in node.__dict__.items():
if name != 'tag' and name != 'pos':
print_parse_tree(f, value, level+1, name)
return
elif t is list:
f.write("[\n")
for i in xrange(len(node)):
print_parse_tree(f, node[i], level+1)
f.write("%s]\n" % ind)
return
f.write("%s%s\n" % (ind, node))
|