1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917
|
#
# Cython/Python language types
#
from Code import UtilityCode
import StringEncoding
import Naming
import copy
from Errors import error
class BaseType(object):
#
# Base class for all Cython types including pseudo-types.
def can_coerce_to_pyobject(self, env):
return False
def cast_code(self, expr_code):
return "((%s)%s)" % (self.declaration_code(""), expr_code)
def specialization_name(self):
return self.declaration_code("").replace(" ", "__")
def base_declaration_code(self, base_code, entity_code):
if entity_code:
return "%s %s" % (base_code, entity_code)
else:
return base_code
def invalid_value(self):
"""
Returns the most invalid value an object of this type can assume as a
C expression string. Returns None if no such value exists.
"""
class PyrexType(BaseType):
#
# Base class for all Cython types
#
# is_pyobject boolean Is a Python object type
# is_extension_type boolean Is a Python extension type
# is_numeric boolean Is a C numeric type
# is_int boolean Is a C integer type
# is_float boolean Is a C floating point type
# is_complex boolean Is a C complex type
# is_void boolean Is the C void type
# is_array boolean Is a C array type
# is_ptr boolean Is a C pointer type
# is_null_ptr boolean Is the type of NULL
# is_reference boolean Is a C reference type
# is_cfunction boolean Is a C function type
# is_struct_or_union boolean Is a C struct or union type
# is_struct boolean Is a C struct type
# is_enum boolean Is a C enum type
# is_typedef boolean Is a typedef type
# is_string boolean Is a C char * type
# is_unicode boolean Is a UTF-8 encoded C char * type
# is_unicode_char boolean Is either Py_UCS4 or Py_UNICODE
# is_returncode boolean Is used only to signal exceptions
# is_error boolean Is the dummy error type
# is_buffer boolean Is buffer access type
# has_attributes boolean Has C dot-selectable attributes
# default_value string Initial value
#
# declaration_code(entity_code,
# for_display = 0, dll_linkage = None, pyrex = 0)
# Returns a code fragment for the declaration of an entity
# of this type, given a code fragment for the entity.
# * If for_display, this is for reading by a human in an error
# message; otherwise it must be valid C code.
# * If dll_linkage is not None, it must be 'DL_EXPORT' or
# 'DL_IMPORT', and will be added to the base type part of
# the declaration.
# * If pyrex = 1, this is for use in a 'cdef extern'
# statement of a Cython include file.
#
# assignable_from(src_type)
# Tests whether a variable of this type can be
# assigned a value of type src_type.
#
# same_as(other_type)
# Tests whether this type represents the same type
# as other_type.
#
# as_argument_type():
# Coerces array type into pointer type for use as
# a formal argument type.
#
is_pyobject = 0
is_unspecified = 0
is_extension_type = 0
is_builtin_type = 0
is_numeric = 0
is_int = 0
is_float = 0
is_complex = 0
is_void = 0
is_array = 0
is_ptr = 0
is_null_ptr = 0
is_reference = 0
is_cfunction = 0
is_struct_or_union = 0
is_cpp_class = 0
is_struct = 0
is_enum = 0
is_typedef = 0
is_string = 0
is_unicode = 0
is_unicode_char = 0
is_returncode = 0
is_error = 0
is_buffer = 0
has_attributes = 0
default_value = ""
def resolve(self):
# If a typedef, returns the base type.
return self
def specialize(self, values):
# TODO(danilo): Override wherever it makes sense.
return self
def literal_code(self, value):
# Returns a C code fragment representing a literal
# value of this type.
return str(value)
def __str__(self):
return self.declaration_code("", for_display = 1).strip()
def same_as(self, other_type, **kwds):
return self.same_as_resolved_type(other_type.resolve(), **kwds)
def same_as_resolved_type(self, other_type):
return self == other_type or other_type is error_type
def subtype_of(self, other_type):
return self.subtype_of_resolved_type(other_type.resolve())
def subtype_of_resolved_type(self, other_type):
return self.same_as(other_type)
def assignable_from(self, src_type):
return self.assignable_from_resolved_type(src_type.resolve())
def assignable_from_resolved_type(self, src_type):
return self.same_as(src_type)
def as_argument_type(self):
return self
def is_complete(self):
# A type is incomplete if it is an unsized array,
# a struct whose attributes are not defined, etc.
return 1
def is_simple_buffer_dtype(self):
return (self.is_int or self.is_float or self.is_complex or self.is_pyobject or
self.is_extension_type or self.is_ptr)
def struct_nesting_depth(self):
# Returns the number levels of nested structs. This is
# used for constructing a stack for walking the run-time
# type information of the struct.
return 1
def public_decl(base_code, dll_linkage):
if dll_linkage:
return "%s(%s)" % (dll_linkage, base_code)
else:
return base_code
def create_typedef_type(name, base_type, cname, is_external=0):
if base_type.is_complex:
if is_external:
raise ValueError("Complex external typedefs not supported")
return base_type
else:
return CTypedefType(name, base_type, cname, is_external)
class CTypedefType(BaseType):
#
# Pseudo-type defined with a ctypedef statement in a
# 'cdef extern from' block. Delegates most attribute
# lookups to the base type. ANYTHING NOT DEFINED
# HERE IS DELEGATED!
#
# qualified_name string
# typedef_name string
# typedef_cname string
# typedef_base_type PyrexType
# typedef_is_external bool
is_typedef = 1
typedef_is_external = 0
to_py_utility_code = None
from_py_utility_code = None
def __init__(self, name, base_type, cname, is_external=0):
assert not base_type.is_complex
self.typedef_name = name
self.typedef_cname = cname
self.typedef_base_type = base_type
self.typedef_is_external = is_external
def invalid_value(self):
return self.typedef_base_type.invalid_value()
def resolve(self):
return self.typedef_base_type.resolve()
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
if pyrex or for_display:
base_code = self.typedef_name
else:
base_code = public_decl(self.typedef_cname, dll_linkage)
return self.base_declaration_code(base_code, entity_code)
def as_argument_type(self):
return self
def cast_code(self, expr_code):
# If self is really an array (rather than pointer), we can't cast.
# For example, the gmp mpz_t.
if self.typedef_base_type.is_array:
base_type = self.typedef_base_type.base_type
return CPtrType(base_type).cast_code(expr_code)
else:
return BaseType.cast_code(self, expr_code)
def __repr__(self):
return "<CTypedefType %s>" % self.typedef_cname
def __str__(self):
return self.typedef_name
def _create_utility_code(self, template_utility_code,
template_function_name):
type_name = self.typedef_cname.replace(" ","_").replace("::","__")
utility_code = template_utility_code.specialize(
type = self.typedef_cname,
TypeName = type_name)
function_name = template_function_name % type_name
return utility_code, function_name
def create_to_py_utility_code(self, env):
if self.typedef_is_external:
if not self.to_py_utility_code:
base_type = self.typedef_base_type
if type(base_type) is CIntType:
# Various subclasses have special methods
# that should be inherited.
self.to_py_utility_code, self.to_py_function = \
self._create_utility_code(c_typedef_int_to_py_function,
'__Pyx_PyInt_to_py_%s')
elif base_type.is_float:
pass # XXX implement!
elif base_type.is_complex:
pass # XXX implement!
pass
if self.to_py_utility_code:
env.use_utility_code(self.to_py_utility_code)
return True
# delegation
return self.typedef_base_type.create_to_py_utility_code(env)
def create_from_py_utility_code(self, env):
if self.typedef_is_external:
if not self.from_py_utility_code:
base_type = self.typedef_base_type
if type(base_type) is CIntType:
# Various subclasses have special methods
# that should be inherited.
self.from_py_utility_code, self.from_py_function = \
self._create_utility_code(c_typedef_int_from_py_function,
'__Pyx_PyInt_from_py_%s')
elif base_type.is_float:
pass # XXX implement!
elif base_type.is_complex:
pass # XXX implement!
if self.from_py_utility_code:
env.use_utility_code(self.from_py_utility_code)
return True
# delegation
return self.typedef_base_type.create_from_py_utility_code(env)
def error_condition(self, result_code):
if self.typedef_is_external:
if self.exception_value:
condition = "(%s == (%s)%s)" % (
result_code, self.typedef_cname, self.exception_value)
if self.exception_check:
condition += " && PyErr_Occurred()"
return condition
# delegation
return self.typedef_base_type.error_condition(result_code)
def __getattr__(self, name):
return getattr(self.typedef_base_type, name)
class BufferType(BaseType):
#
# Delegates most attribute
# lookups to the base type. ANYTHING NOT DEFINED
# HERE IS DELEGATED!
# dtype PyrexType
# ndim int
# mode str
# negative_indices bool
# cast bool
# is_buffer bool
# writable bool
is_buffer = 1
writable = True
def __init__(self, base, dtype, ndim, mode, negative_indices, cast):
self.base = base
self.dtype = dtype
self.ndim = ndim
self.buffer_ptr_type = CPtrType(dtype)
self.mode = mode
self.negative_indices = negative_indices
self.cast = cast
def as_argument_type(self):
return self
def __getattr__(self, name):
return getattr(self.base, name)
def __repr__(self):
return "<BufferType %r>" % self.base
class PyObjectType(PyrexType):
#
# Base class for all Python object types (reference-counted).
#
# buffer_defaults dict or None Default options for bu
name = "object"
is_pyobject = 1
default_value = "0"
buffer_defaults = None
is_extern = False
is_subclassed = False
def __str__(self):
return "Python object"
def __repr__(self):
return "<PyObjectType>"
def can_coerce_to_pyobject(self, env):
return True
def default_coerced_ctype(self):
"The default C type that this Python type coerces to, or None."
return None
def assignable_from(self, src_type):
# except for pointers, conversion will be attempted
return not src_type.is_ptr or src_type.is_string
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
if pyrex or for_display:
base_code = "object"
else:
base_code = public_decl("PyObject", dll_linkage)
entity_code = "*%s" % entity_code
return self.base_declaration_code(base_code, entity_code)
def as_pyobject(self, cname):
if (not self.is_complete()) or self.is_extension_type:
return "(PyObject *)" + cname
else:
return cname
class BuiltinObjectType(PyObjectType):
# objstruct_cname string Name of PyObject struct
is_builtin_type = 1
has_attributes = 1
base_type = None
module_name = '__builtin__'
# fields that let it look like an extension type
vtabslot_cname = None
vtabstruct_cname = None
vtabptr_cname = None
typedef_flag = True
is_external = True
def __init__(self, name, cname, objstruct_cname=None):
self.name = name
self.cname = cname
self.typeptr_cname = "(&%s)" % cname
self.objstruct_cname = objstruct_cname
def set_scope(self, scope):
self.scope = scope
if scope:
scope.parent_type = self
def __str__(self):
return "%s object" % self.name
def __repr__(self):
return "<%s>"% self.cname
def default_coerced_ctype(self):
if self.name == 'bytes':
return c_char_ptr_type
elif self.name == 'bool':
return c_bint_type
elif self.name == 'float':
return c_double_type
return None
def assignable_from(self, src_type):
if isinstance(src_type, BuiltinObjectType):
return src_type.name == self.name
elif src_type.is_extension_type:
return (src_type.module_name == '__builtin__' and
src_type.name == self.name)
else:
return True
def typeobj_is_available(self):
return True
def attributes_known(self):
return True
def subtype_of(self, type):
return type.is_pyobject and self.assignable_from(type)
def type_check_function(self, exact=True):
type_name = self.name
if type_name == 'str':
type_check = 'PyString_Check'
elif type_name == 'frozenset':
type_check = 'PyFrozenSet_Check'
else:
type_check = 'Py%s_Check' % type_name.capitalize()
if exact and type_name not in ('bool', 'slice'):
type_check += 'Exact'
return type_check
def isinstance_code(self, arg):
return '%s(%s)' % (self.type_check_function(exact=False), arg)
def type_test_code(self, arg, notnone=False):
type_check = self.type_check_function(exact=True)
check = 'likely(%s(%s))' % (type_check, arg)
if not notnone:
check = check + ('||((%s) == Py_None)' % arg)
error = '(PyErr_Format(PyExc_TypeError, "Expected %s, got %%.200s", Py_TYPE(%s)->tp_name), 0)' % (self.name, arg)
return check + '||' + error
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
if pyrex or for_display:
base_code = self.name
else:
base_code = public_decl("PyObject", dll_linkage)
entity_code = "*%s" % entity_code
return self.base_declaration_code(base_code, entity_code)
def cast_code(self, expr_code, to_object_struct = False):
return "((%s*)%s)" % (
to_object_struct and self.objstruct_cname or "PyObject", # self.objstruct_cname may be None
expr_code)
class PyExtensionType(PyObjectType):
#
# A Python extension type.
#
# name string
# scope CClassScope Attribute namespace
# visibility string
# typedef_flag boolean
# base_type PyExtensionType or None
# module_name string or None Qualified name of defining module
# objstruct_cname string Name of PyObject struct
# objtypedef_cname string Name of PyObject struct typedef
# typeobj_cname string or None C code fragment referring to type object
# typeptr_cname string or None Name of pointer to external type object
# vtabslot_cname string Name of C method table member
# vtabstruct_cname string Name of C method table struct
# vtabptr_cname string Name of pointer to C method table
# vtable_cname string Name of C method table definition
is_extension_type = 1
has_attributes = 1
objtypedef_cname = None
def __init__(self, name, typedef_flag, base_type, is_external=0):
self.name = name
self.scope = None
self.typedef_flag = typedef_flag
if base_type is not None:
base_type.is_subclassed = True
self.base_type = base_type
self.module_name = None
self.objstruct_cname = None
self.typeobj_cname = None
self.typeptr_cname = None
self.vtabslot_cname = None
self.vtabstruct_cname = None
self.vtabptr_cname = None
self.vtable_cname = None
self.is_external = is_external
def set_scope(self, scope):
self.scope = scope
if scope:
scope.parent_type = self
def subtype_of_resolved_type(self, other_type):
if other_type.is_extension_type:
return self is other_type or (
self.base_type and self.base_type.subtype_of(other_type))
else:
return other_type is py_object_type
def typeobj_is_available(self):
# Do we have a pointer to the type object?
return self.typeptr_cname
def typeobj_is_imported(self):
# If we don't know the C name of the type object but we do
# know which module it's defined in, it will be imported.
return self.typeobj_cname is None and self.module_name is not None
def assignable_from(self, src_type):
if self == src_type:
return True
if isinstance(src_type, PyExtensionType):
if src_type.base_type is not None:
return self.assignable_from(src_type.base_type)
return False
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0, deref = 0):
if pyrex or for_display:
base_code = self.name
else:
if self.typedef_flag:
objstruct = self.objstruct_cname
else:
objstruct = "struct %s" % self.objstruct_cname
base_code = public_decl(objstruct, dll_linkage)
if deref:
assert not entity_code
else:
entity_code = "*%s" % entity_code
return self.base_declaration_code(base_code, entity_code)
def type_test_code(self, py_arg, notnone=False):
none_check = "((%s) == Py_None)" % py_arg
type_check = "likely(__Pyx_TypeTest(%s, %s))" % (
py_arg, self.typeptr_cname)
if notnone:
return type_check
else:
return "likely(%s || %s)" % (none_check, type_check)
def attributes_known(self):
return self.scope is not None
def __str__(self):
return self.name
def __repr__(self):
return "<PyExtensionType %s%s>" % (self.scope.class_name,
("", " typedef")[self.typedef_flag])
class CType(PyrexType):
#
# Base class for all C types (non-reference-counted).
#
# to_py_function string C function for converting to Python object
# from_py_function string C function for constructing from Python object
#
to_py_function = None
from_py_function = None
exception_value = None
exception_check = 1
def create_to_py_utility_code(self, env):
return self.to_py_function is not None
def create_from_py_utility_code(self, env):
return self.from_py_function is not None
def can_coerce_to_pyobject(self, env):
return self.create_to_py_utility_code(env)
def error_condition(self, result_code):
conds = []
if self.is_string:
conds.append("(!%s)" % result_code)
elif self.exception_value is not None:
conds.append("(%s == (%s)%s)" % (result_code, self.sign_and_name(), self.exception_value))
if self.exception_check:
conds.append("PyErr_Occurred()")
if len(conds) > 0:
return " && ".join(conds)
else:
return 0
class CVoidType(CType):
#
# C "void" type
#
is_void = 1
def __repr__(self):
return "<CVoidType>"
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
if pyrex or for_display:
base_code = "void"
else:
base_code = public_decl("void", dll_linkage)
return self.base_declaration_code(base_code, entity_code)
def is_complete(self):
return 0
class CNumericType(CType):
#
# Base class for all C numeric types.
#
# rank integer Relative size
# signed integer 0 = unsigned, 1 = unspecified, 2 = explicitly signed
#
is_numeric = 1
default_value = "0"
has_attributes = True
scope = None
sign_words = ("unsigned ", "", "signed ")
def __init__(self, rank, signed = 1):
self.rank = rank
self.signed = signed
def sign_and_name(self):
s = self.sign_words[self.signed]
n = rank_to_type_name[self.rank]
return s + n
def __repr__(self):
return "<CNumericType %s>" % self.sign_and_name()
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
type_name = self.sign_and_name()
if pyrex or for_display:
base_code = type_name.replace('PY_LONG_LONG', 'long long')
else:
base_code = public_decl(type_name, dll_linkage)
return self.base_declaration_code(base_code, entity_code)
def attributes_known(self):
if self.scope is None:
import Symtab
self.scope = scope = Symtab.CClassScope(
'',
None,
visibility="extern")
scope.parent_type = self
scope.directives = {}
entry = scope.declare_cfunction(
"conjugate",
CFuncType(self, [CFuncTypeArg("self", self, None)], nogil=True),
pos=None,
defining=1,
cname=" ")
return True
type_conversion_predeclarations = ""
type_conversion_functions = ""
c_int_from_py_function = UtilityCode(
proto="""
static CYTHON_INLINE %(type)s __Pyx_PyInt_As%(SignWord)s%(TypeName)s(PyObject *);
""",
impl="""
static CYTHON_INLINE %(type)s __Pyx_PyInt_As%(SignWord)s%(TypeName)s(PyObject* x) {
const %(type)s neg_one = (%(type)s)-1, const_zero = 0;
const int is_unsigned = neg_one > const_zero;
if (sizeof(%(type)s) < sizeof(long)) {
long val = __Pyx_PyInt_AsLong(x);
if (unlikely(val != (long)(%(type)s)val)) {
if (!unlikely(val == -1 && PyErr_Occurred())) {
PyErr_SetString(PyExc_OverflowError,
(is_unsigned && unlikely(val < 0)) ?
"can't convert negative value to %(type)s" :
"value too large to convert to %(type)s");
}
return (%(type)s)-1;
}
return (%(type)s)val;
}
return (%(type)s)__Pyx_PyInt_As%(SignWord)sLong(x);
}
""") #fool emacs: '
c_long_from_py_function = UtilityCode(
proto="""
static CYTHON_INLINE %(type)s __Pyx_PyInt_As%(SignWord)s%(TypeName)s(PyObject *);
""",
impl="""
static CYTHON_INLINE %(type)s __Pyx_PyInt_As%(SignWord)s%(TypeName)s(PyObject* x) {
const %(type)s neg_one = (%(type)s)-1, const_zero = 0;
const int is_unsigned = neg_one > const_zero;
#if PY_VERSION_HEX < 0x03000000
if (likely(PyInt_Check(x))) {
long val = PyInt_AS_LONG(x);
if (is_unsigned && unlikely(val < 0)) {
PyErr_SetString(PyExc_OverflowError,
"can't convert negative value to %(type)s");
return (%(type)s)-1;
}
return (%(type)s)val;
} else
#endif
if (likely(PyLong_Check(x))) {
if (is_unsigned) {
if (unlikely(Py_SIZE(x) < 0)) {
PyErr_SetString(PyExc_OverflowError,
"can't convert negative value to %(type)s");
return (%(type)s)-1;
}
return (%(type)s)PyLong_AsUnsigned%(TypeName)s(x);
} else {
return (%(type)s)PyLong_As%(TypeName)s(x);
}
} else {
%(type)s val;
PyObject *tmp = __Pyx_PyNumber_Int(x);
if (!tmp) return (%(type)s)-1;
val = __Pyx_PyInt_As%(SignWord)s%(TypeName)s(tmp);
Py_DECREF(tmp);
return val;
}
}
""")
c_typedef_int_from_py_function = UtilityCode(
proto="""
static CYTHON_INLINE %(type)s __Pyx_PyInt_from_py_%(TypeName)s(PyObject *);
""",
impl="""
static CYTHON_INLINE %(type)s __Pyx_PyInt_from_py_%(TypeName)s(PyObject* x) {
const %(type)s neg_one = (%(type)s)-1, const_zero = (%(type)s)0;
const int is_unsigned = const_zero < neg_one;
if (sizeof(%(type)s) == sizeof(char)) {
if (is_unsigned)
return (%(type)s)__Pyx_PyInt_AsUnsignedChar(x);
else
return (%(type)s)__Pyx_PyInt_AsSignedChar(x);
} else if (sizeof(%(type)s) == sizeof(short)) {
if (is_unsigned)
return (%(type)s)__Pyx_PyInt_AsUnsignedShort(x);
else
return (%(type)s)__Pyx_PyInt_AsSignedShort(x);
} else if (sizeof(%(type)s) == sizeof(int)) {
if (is_unsigned)
return (%(type)s)__Pyx_PyInt_AsUnsignedInt(x);
else
return (%(type)s)__Pyx_PyInt_AsSignedInt(x);
} else if (sizeof(%(type)s) == sizeof(long)) {
if (is_unsigned)
return (%(type)s)__Pyx_PyInt_AsUnsignedLong(x);
else
return (%(type)s)__Pyx_PyInt_AsSignedLong(x);
} else if (sizeof(%(type)s) == sizeof(PY_LONG_LONG)) {
if (is_unsigned)
return (%(type)s)__Pyx_PyInt_AsUnsignedLongLong(x);
else
return (%(type)s)__Pyx_PyInt_AsSignedLongLong(x);
} else {
%(type)s val;
PyObject *v = __Pyx_PyNumber_Int(x);
#if PY_VERSION_HEX < 0x03000000
if (likely(v) && !PyLong_Check(v)) {
PyObject *tmp = v;
v = PyNumber_Long(tmp);
Py_DECREF(tmp);
}
#endif
if (likely(v)) {
int one = 1; int is_little = (int)*(unsigned char *)&one;
unsigned char *bytes = (unsigned char *)&val;
int ret = _PyLong_AsByteArray((PyLongObject *)v,
bytes, sizeof(val),
is_little, !is_unsigned);
Py_DECREF(v);
if (likely(!ret))
return val;
}
return (%(type)s)-1;
}
}
""")
c_typedef_int_to_py_function = UtilityCode(
proto="""
static CYTHON_INLINE PyObject *__Pyx_PyInt_to_py_%(TypeName)s(%(type)s);
""",
impl="""
static CYTHON_INLINE PyObject *__Pyx_PyInt_to_py_%(TypeName)s(%(type)s val) {
const %(type)s neg_one = (%(type)s)-1, const_zero = (%(type)s)0;
const int is_unsigned = const_zero < neg_one;
if ((sizeof(%(type)s) == sizeof(char)) ||
(sizeof(%(type)s) == sizeof(short))) {
return PyInt_FromLong((long)val);
} else if ((sizeof(%(type)s) == sizeof(int)) ||
(sizeof(%(type)s) == sizeof(long))) {
if (is_unsigned)
return PyLong_FromUnsignedLong((unsigned long)val);
else
return PyInt_FromLong((long)val);
} else if (sizeof(%(type)s) == sizeof(PY_LONG_LONG)) {
if (is_unsigned)
return PyLong_FromUnsignedLongLong((unsigned PY_LONG_LONG)val);
else
return PyLong_FromLongLong((PY_LONG_LONG)val);
} else {
int one = 1; int little = (int)*(unsigned char *)&one;
unsigned char *bytes = (unsigned char *)&val;
return _PyLong_FromByteArray(bytes, sizeof(%(type)s),
little, !is_unsigned);
}
}
""")
class CIntType(CNumericType):
is_int = 1
typedef_flag = 0
to_py_function = None
from_py_function = None
exception_value = -1
def __init__(self, rank, signed = 1):
CNumericType.__init__(self, rank, signed)
if self.to_py_function is None:
self.to_py_function = self.get_to_py_type_conversion()
if self.from_py_function is None:
self.from_py_function = self.get_from_py_type_conversion()
def get_to_py_type_conversion(self):
if self.rank < list(rank_to_type_name).index('int'):
# This assumes sizeof(short) < sizeof(int)
return "PyInt_FromLong"
else:
# Py{Int|Long}_From[Unsigned]Long[Long]
Prefix = "Int"
SignWord = ""
TypeName = "Long"
if not self.signed:
Prefix = "Long"
SignWord = "Unsigned"
if self.rank >= list(rank_to_type_name).index('PY_LONG_LONG'):
Prefix = "Long"
TypeName = "LongLong"
return "Py%s_From%s%s" % (Prefix, SignWord, TypeName)
def get_from_py_type_conversion(self):
type_name = rank_to_type_name[self.rank]
type_name = type_name.replace("PY_LONG_LONG", "long long")
TypeName = type_name.title().replace(" ", "")
SignWord = self.sign_words[self.signed].strip().title()
if self.rank >= list(rank_to_type_name).index('long'):
utility_code = c_long_from_py_function
else:
utility_code = c_int_from_py_function
utility_code.specialize(self,
SignWord=SignWord,
TypeName=TypeName)
func_name = "__Pyx_PyInt_As%s%s" % (SignWord, TypeName)
return func_name
def assignable_from_resolved_type(self, src_type):
return src_type.is_int or src_type.is_enum or src_type is error_type
def invalid_value(self):
if rank_to_type_name[int(self.rank)] == 'char':
return "'?'"
else:
# We do not really know the size of the type, so return
# a 32-bit literal and rely on casting to final type. It will
# be negative for signed ints, which is good.
return "0xbad0bad0";
class CAnonEnumType(CIntType):
is_enum = 1
def sign_and_name(self):
return 'int'
class CReturnCodeType(CIntType):
to_py_function = "__Pyx_Owned_Py_None"
is_returncode = 1
class CBIntType(CIntType):
to_py_function = "__Pyx_PyBool_FromLong"
from_py_function = "__Pyx_PyObject_IsTrue"
exception_check = 1 # for C++ bool
def __repr__(self):
return "<CNumericType bint>"
def __str__(self):
return 'bint'
class CPyUCS4IntType(CIntType):
# Py_UCS4
is_unicode_char = True
# Py_UCS4 coerces from and to single character unicode strings (or
# at most two characters on 16bit Unicode builds), but we also
# allow Python integers as input. The value range for Py_UCS4
# is 0..1114111, which is checked when converting from an integer
# value.
to_py_function = "PyUnicode_FromOrdinal"
from_py_function = "__Pyx_PyObject_AsPy_UCS4"
def create_from_py_utility_code(self, env):
env.use_utility_code(pyobject_as_py_ucs4_utility_code)
return True
def sign_and_name(self):
return "Py_UCS4"
pyobject_as_py_ucs4_utility_code = UtilityCode(
proto='''
static CYTHON_INLINE Py_UCS4 __Pyx_PyObject_AsPy_UCS4(PyObject*);
''',
impl='''
static CYTHON_INLINE Py_UCS4 __Pyx_PyObject_AsPy_UCS4(PyObject* x) {
long ival;
if (PyUnicode_Check(x)) {
if (likely(PyUnicode_GET_SIZE(x) == 1)) {
return PyUnicode_AS_UNICODE(x)[0];
}
#if Py_UNICODE_SIZE == 2
else if (PyUnicode_GET_SIZE(x) == 2) {
Py_UCS4 high_val = PyUnicode_AS_UNICODE(x)[0];
if (high_val >= 0xD800 && high_val <= 0xDBFF) {
Py_UCS4 low_val = PyUnicode_AS_UNICODE(x)[1];
if (low_val >= 0xDC00 && low_val <= 0xDFFF) {
return 0x10000 + (((high_val & ((1<<10)-1)) << 10) | (low_val & ((1<<10)-1)));
}
}
}
#endif
PyErr_Format(PyExc_ValueError,
"only single character unicode strings can be converted to Py_UCS4, "
"got length %"PY_FORMAT_SIZE_T"d", PyUnicode_GET_SIZE(x));
return (Py_UCS4)-1;
}
ival = __Pyx_PyInt_AsLong(x);
if (unlikely(ival < 0)) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_OverflowError,
"cannot convert negative value to Py_UCS4");
return (Py_UCS4)-1;
} else if (unlikely(ival > 1114111)) {
PyErr_SetString(PyExc_OverflowError,
"value too large to convert to Py_UCS4");
return (Py_UCS4)-1;
}
return (Py_UCS4)ival;
}
''')
class CPyUnicodeIntType(CIntType):
# Py_UNICODE
is_unicode_char = True
# Py_UNICODE coerces from and to single character unicode strings,
# but we also allow Python integers as input. The value range for
# Py_UNICODE is 0..1114111, which is checked when converting from
# an integer value.
to_py_function = "PyUnicode_FromOrdinal"
from_py_function = "__Pyx_PyObject_AsPy_UNICODE"
def create_from_py_utility_code(self, env):
env.use_utility_code(pyobject_as_py_unicode_utility_code)
return True
def sign_and_name(self):
return "Py_UNICODE"
pyobject_as_py_unicode_utility_code = UtilityCode(
proto='''
static CYTHON_INLINE Py_UNICODE __Pyx_PyObject_AsPy_UNICODE(PyObject*);
''',
impl='''
static CYTHON_INLINE Py_UNICODE __Pyx_PyObject_AsPy_UNICODE(PyObject* x) {
static long maxval = 0;
long ival;
if (PyUnicode_Check(x)) {
if (unlikely(PyUnicode_GET_SIZE(x) != 1)) {
PyErr_Format(PyExc_ValueError,
"only single character unicode strings can be converted to Py_UNICODE, "
"got length %"PY_FORMAT_SIZE_T"d", PyUnicode_GET_SIZE(x));
return (Py_UNICODE)-1;
}
return PyUnicode_AS_UNICODE(x)[0];
}
if (unlikely(!maxval))
maxval = (long)PyUnicode_GetMax();
ival = __Pyx_PyInt_AsLong(x);
if (unlikely(ival < 0)) {
if (!PyErr_Occurred())
PyErr_SetString(PyExc_OverflowError,
"cannot convert negative value to Py_UNICODE");
return (Py_UNICODE)-1;
} else if (unlikely(ival > maxval)) {
PyErr_SetString(PyExc_OverflowError,
"value too large to convert to Py_UNICODE");
return (Py_UNICODE)-1;
}
return (Py_UNICODE)ival;
}
''')
class CPyHashTType(CIntType):
to_py_function = "__Pyx_PyInt_FromHash_t"
from_py_function = "__Pyx_PyInt_AsHash_t"
def sign_and_name(self):
return "Py_hash_t"
class CPySSizeTType(CIntType):
to_py_function = "PyInt_FromSsize_t"
from_py_function = "__Pyx_PyIndex_AsSsize_t"
def sign_and_name(self):
return "Py_ssize_t"
class CSSizeTType(CIntType):
to_py_function = "PyInt_FromSsize_t"
from_py_function = "PyInt_AsSsize_t"
def sign_and_name(self):
return "Py_ssize_t"
class CSizeTType(CIntType):
to_py_function = "__Pyx_PyInt_FromSize_t"
from_py_function = "__Pyx_PyInt_AsSize_t"
def sign_and_name(self):
return "size_t"
class CFloatType(CNumericType):
is_float = 1
to_py_function = "PyFloat_FromDouble"
from_py_function = "__pyx_PyFloat_AsDouble"
exception_value = -1
def __init__(self, rank, math_h_modifier = ''):
CNumericType.__init__(self, rank, 1)
self.math_h_modifier = math_h_modifier
def assignable_from_resolved_type(self, src_type):
return (src_type.is_numeric and not src_type.is_complex) or src_type is error_type
def invalid_value(self):
return Naming.PYX_NAN
class CComplexType(CNumericType):
is_complex = 1
to_py_function = "__pyx_PyComplex_FromComplex"
has_attributes = 1
scope = None
def __init__(self, real_type):
while real_type.is_typedef and not real_type.typedef_is_external:
real_type = real_type.typedef_base_type
if real_type.is_typedef and real_type.typedef_is_external:
# The below is not actually used: Coercions are currently disabled
# so that complex types of external types can not be created
self.funcsuffix = "_%s" % real_type.specialization_name()
elif hasattr(real_type, 'math_h_modifier'):
self.funcsuffix = real_type.math_h_modifier
else:
self.funcsuffix = "_%s" % real_type.specialization_name()
self.real_type = real_type
CNumericType.__init__(self, real_type.rank + 0.5, real_type.signed)
self.binops = {}
self.from_parts = "%s_from_parts" % self.specialization_name()
self.default_value = "%s(0, 0)" % self.from_parts
def __eq__(self, other):
if isinstance(self, CComplexType) and isinstance(other, CComplexType):
return self.real_type == other.real_type
else:
return False
def __ne__(self, other):
if isinstance(self, CComplexType) and isinstance(other, CComplexType):
return self.real_type != other.real_type
else:
return True
def __lt__(self, other):
if isinstance(self, CComplexType) and isinstance(other, CComplexType):
return self.real_type < other.real_type
else:
# this is arbitrary, but it makes sure we always have
# *some* kind of order
return False
def __hash__(self):
return ~hash(self.real_type)
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
if pyrex or for_display:
real_code = self.real_type.declaration_code("", for_display, dll_linkage, pyrex)
base_code = "%s complex" % real_code
else:
base_code = public_decl(self.sign_and_name(), dll_linkage)
return self.base_declaration_code(base_code, entity_code)
def sign_and_name(self):
real_type_name = self.real_type.specialization_name()
real_type_name = real_type_name.replace('long__double','long_double')
real_type_name = real_type_name.replace('PY_LONG_LONG','long_long')
return Naming.type_prefix + real_type_name + "_complex"
def assignable_from(self, src_type):
# Temporary hack/feature disabling, see #441
if (not src_type.is_complex and src_type.is_numeric and src_type.is_typedef
and src_type.typedef_is_external):
return False
else:
return super(CComplexType, self).assignable_from(src_type)
def assignable_from_resolved_type(self, src_type):
return (src_type.is_complex and self.real_type.assignable_from_resolved_type(src_type.real_type)
or src_type.is_numeric and self.real_type.assignable_from_resolved_type(src_type)
or src_type is error_type)
def attributes_known(self):
if self.scope is None:
import Symtab
self.scope = scope = Symtab.CClassScope(
'',
None,
visibility="extern")
scope.parent_type = self
scope.directives = {}
scope.declare_var("real", self.real_type, None, cname="real", is_cdef=True)
scope.declare_var("imag", self.real_type, None, cname="imag", is_cdef=True)
entry = scope.declare_cfunction(
"conjugate",
CFuncType(self, [CFuncTypeArg("self", self, None)], nogil=True),
pos=None,
defining=1,
cname="__Pyx_c_conj%s" % self.funcsuffix)
return True
def create_declaration_utility_code(self, env):
# This must always be run, because a single CComplexType instance can be shared
# across multiple compilations (the one created in the module scope)
env.use_utility_code(complex_header_utility_code)
env.use_utility_code(complex_real_imag_utility_code)
for utility_code in (complex_type_utility_code,
complex_from_parts_utility_code,
complex_arithmetic_utility_code):
env.use_utility_code(
utility_code.specialize(
self,
real_type = self.real_type.declaration_code(''),
m = self.funcsuffix,
is_float = self.real_type.is_float))
return True
def create_to_py_utility_code(self, env):
env.use_utility_code(complex_real_imag_utility_code)
env.use_utility_code(complex_to_py_utility_code)
return True
def create_from_py_utility_code(self, env):
self.real_type.create_from_py_utility_code(env)
for utility_code in (complex_from_parts_utility_code,
complex_from_py_utility_code):
env.use_utility_code(
utility_code.specialize(
self,
real_type = self.real_type.declaration_code(''),
m = self.funcsuffix,
is_float = self.real_type.is_float))
self.from_py_function = "__Pyx_PyComplex_As_" + self.specialization_name()
return True
def lookup_op(self, nargs, op):
try:
return self.binops[nargs, op]
except KeyError:
pass
try:
op_name = complex_ops[nargs, op]
self.binops[nargs, op] = func_name = "__Pyx_c_%s%s" % (op_name, self.funcsuffix)
return func_name
except KeyError:
return None
def unary_op(self, op):
return self.lookup_op(1, op)
def binary_op(self, op):
return self.lookup_op(2, op)
complex_ops = {
(1, '-'): 'neg',
(1, 'zero'): 'is_zero',
(2, '+'): 'sum',
(2, '-'): 'diff',
(2, '*'): 'prod',
(2, '/'): 'quot',
(2, '=='): 'eq',
}
complex_header_utility_code = UtilityCode(
proto_block='h_code',
proto="""
#if !defined(CYTHON_CCOMPLEX)
#if defined(__cplusplus)
#define CYTHON_CCOMPLEX 1
#elif defined(_Complex_I)
#define CYTHON_CCOMPLEX 1
#else
#define CYTHON_CCOMPLEX 0
#endif
#endif
#if CYTHON_CCOMPLEX
#ifdef __cplusplus
#include <complex>
#else
#include <complex.h>
#endif
#endif
#if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__)
#undef _Complex_I
#define _Complex_I 1.0fj
#endif
""")
complex_real_imag_utility_code = UtilityCode(
proto="""
#if CYTHON_CCOMPLEX
#ifdef __cplusplus
#define __Pyx_CREAL(z) ((z).real())
#define __Pyx_CIMAG(z) ((z).imag())
#else
#define __Pyx_CREAL(z) (__real__(z))
#define __Pyx_CIMAG(z) (__imag__(z))
#endif
#else
#define __Pyx_CREAL(z) ((z).real)
#define __Pyx_CIMAG(z) ((z).imag)
#endif
#if defined(_WIN32) && defined(__cplusplus) && CYTHON_CCOMPLEX
#define __Pyx_SET_CREAL(z,x) ((z).real(x))
#define __Pyx_SET_CIMAG(z,y) ((z).imag(y))
#else
#define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x)
#define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y)
#endif
""")
complex_type_utility_code = UtilityCode(
proto_block='complex_type_declarations',
proto="""
#if CYTHON_CCOMPLEX
#ifdef __cplusplus
typedef ::std::complex< %(real_type)s > %(type_name)s;
#else
typedef %(real_type)s _Complex %(type_name)s;
#endif
#else
typedef struct { %(real_type)s real, imag; } %(type_name)s;
#endif
""")
complex_from_parts_utility_code = UtilityCode(
proto_block='utility_code_proto',
proto="""
static CYTHON_INLINE %(type)s %(type_name)s_from_parts(%(real_type)s, %(real_type)s);
""",
impl="""
#if CYTHON_CCOMPLEX
#ifdef __cplusplus
static CYTHON_INLINE %(type)s %(type_name)s_from_parts(%(real_type)s x, %(real_type)s y) {
return ::std::complex< %(real_type)s >(x, y);
}
#else
static CYTHON_INLINE %(type)s %(type_name)s_from_parts(%(real_type)s x, %(real_type)s y) {
return x + y*(%(type)s)_Complex_I;
}
#endif
#else
static CYTHON_INLINE %(type)s %(type_name)s_from_parts(%(real_type)s x, %(real_type)s y) {
%(type)s z;
z.real = x;
z.imag = y;
return z;
}
#endif
""")
complex_to_py_utility_code = UtilityCode(
proto="""
#define __pyx_PyComplex_FromComplex(z) \\
PyComplex_FromDoubles((double)__Pyx_CREAL(z), \\
(double)__Pyx_CIMAG(z))
""")
complex_from_py_utility_code = UtilityCode(
proto="""
static %(type)s __Pyx_PyComplex_As_%(type_name)s(PyObject*);
""",
impl="""
static %(type)s __Pyx_PyComplex_As_%(type_name)s(PyObject* o) {
Py_complex cval;
if (PyComplex_CheckExact(o))
cval = ((PyComplexObject *)o)->cval;
else
cval = PyComplex_AsCComplex(o);
return %(type_name)s_from_parts(
(%(real_type)s)cval.real,
(%(real_type)s)cval.imag);
}
""")
complex_arithmetic_utility_code = UtilityCode(
proto="""
#if CYTHON_CCOMPLEX
#define __Pyx_c_eq%(m)s(a, b) ((a)==(b))
#define __Pyx_c_sum%(m)s(a, b) ((a)+(b))
#define __Pyx_c_diff%(m)s(a, b) ((a)-(b))
#define __Pyx_c_prod%(m)s(a, b) ((a)*(b))
#define __Pyx_c_quot%(m)s(a, b) ((a)/(b))
#define __Pyx_c_neg%(m)s(a) (-(a))
#ifdef __cplusplus
#define __Pyx_c_is_zero%(m)s(z) ((z)==(%(real_type)s)0)
#define __Pyx_c_conj%(m)s(z) (::std::conj(z))
#if %(is_float)s
#define __Pyx_c_abs%(m)s(z) (::std::abs(z))
#define __Pyx_c_pow%(m)s(a, b) (::std::pow(a, b))
#endif
#else
#define __Pyx_c_is_zero%(m)s(z) ((z)==0)
#define __Pyx_c_conj%(m)s(z) (conj%(m)s(z))
#if %(is_float)s
#define __Pyx_c_abs%(m)s(z) (cabs%(m)s(z))
#define __Pyx_c_pow%(m)s(a, b) (cpow%(m)s(a, b))
#endif
#endif
#else
static CYTHON_INLINE int __Pyx_c_eq%(m)s(%(type)s, %(type)s);
static CYTHON_INLINE %(type)s __Pyx_c_sum%(m)s(%(type)s, %(type)s);
static CYTHON_INLINE %(type)s __Pyx_c_diff%(m)s(%(type)s, %(type)s);
static CYTHON_INLINE %(type)s __Pyx_c_prod%(m)s(%(type)s, %(type)s);
static CYTHON_INLINE %(type)s __Pyx_c_quot%(m)s(%(type)s, %(type)s);
static CYTHON_INLINE %(type)s __Pyx_c_neg%(m)s(%(type)s);
static CYTHON_INLINE int __Pyx_c_is_zero%(m)s(%(type)s);
static CYTHON_INLINE %(type)s __Pyx_c_conj%(m)s(%(type)s);
#if %(is_float)s
static CYTHON_INLINE %(real_type)s __Pyx_c_abs%(m)s(%(type)s);
static CYTHON_INLINE %(type)s __Pyx_c_pow%(m)s(%(type)s, %(type)s);
#endif
#endif
""",
impl="""
#if CYTHON_CCOMPLEX
#else
static CYTHON_INLINE int __Pyx_c_eq%(m)s(%(type)s a, %(type)s b) {
return (a.real == b.real) && (a.imag == b.imag);
}
static CYTHON_INLINE %(type)s __Pyx_c_sum%(m)s(%(type)s a, %(type)s b) {
%(type)s z;
z.real = a.real + b.real;
z.imag = a.imag + b.imag;
return z;
}
static CYTHON_INLINE %(type)s __Pyx_c_diff%(m)s(%(type)s a, %(type)s b) {
%(type)s z;
z.real = a.real - b.real;
z.imag = a.imag - b.imag;
return z;
}
static CYTHON_INLINE %(type)s __Pyx_c_prod%(m)s(%(type)s a, %(type)s b) {
%(type)s z;
z.real = a.real * b.real - a.imag * b.imag;
z.imag = a.real * b.imag + a.imag * b.real;
return z;
}
static CYTHON_INLINE %(type)s __Pyx_c_quot%(m)s(%(type)s a, %(type)s b) {
%(type)s z;
%(real_type)s denom = b.real * b.real + b.imag * b.imag;
z.real = (a.real * b.real + a.imag * b.imag) / denom;
z.imag = (a.imag * b.real - a.real * b.imag) / denom;
return z;
}
static CYTHON_INLINE %(type)s __Pyx_c_neg%(m)s(%(type)s a) {
%(type)s z;
z.real = -a.real;
z.imag = -a.imag;
return z;
}
static CYTHON_INLINE int __Pyx_c_is_zero%(m)s(%(type)s a) {
return (a.real == 0) && (a.imag == 0);
}
static CYTHON_INLINE %(type)s __Pyx_c_conj%(m)s(%(type)s a) {
%(type)s z;
z.real = a.real;
z.imag = -a.imag;
return z;
}
#if %(is_float)s
static CYTHON_INLINE %(real_type)s __Pyx_c_abs%(m)s(%(type)s z) {
#if !defined(HAVE_HYPOT) || defined(_MSC_VER)
return sqrt%(m)s(z.real*z.real + z.imag*z.imag);
#else
return hypot%(m)s(z.real, z.imag);
#endif
}
static CYTHON_INLINE %(type)s __Pyx_c_pow%(m)s(%(type)s a, %(type)s b) {
%(type)s z;
%(real_type)s r, lnr, theta, z_r, z_theta;
if (b.imag == 0 && b.real == (int)b.real) {
if (b.real < 0) {
%(real_type)s denom = a.real * a.real + a.imag * a.imag;
a.real = a.real / denom;
a.imag = -a.imag / denom;
b.real = -b.real;
}
switch ((int)b.real) {
case 0:
z.real = 1;
z.imag = 0;
return z;
case 1:
return a;
case 2:
z = __Pyx_c_prod%(m)s(a, a);
return __Pyx_c_prod%(m)s(a, a);
case 3:
z = __Pyx_c_prod%(m)s(a, a);
return __Pyx_c_prod%(m)s(z, a);
case 4:
z = __Pyx_c_prod%(m)s(a, a);
return __Pyx_c_prod%(m)s(z, z);
}
}
if (a.imag == 0) {
if (a.real == 0) {
return a;
}
r = a.real;
theta = 0;
} else {
r = __Pyx_c_abs%(m)s(a);
theta = atan2%(m)s(a.imag, a.real);
}
lnr = log%(m)s(r);
z_r = exp%(m)s(lnr * b.real - theta * b.imag);
z_theta = theta * b.real + lnr * b.imag;
z.real = z_r * cos%(m)s(z_theta);
z.imag = z_r * sin%(m)s(z_theta);
return z;
}
#endif
#endif
""")
class CArrayType(CType):
# base_type CType Element type
# size integer or None Number of elements
is_array = 1
def __init__(self, base_type, size):
self.base_type = base_type
self.size = size
if base_type in (c_char_type, c_uchar_type, c_schar_type):
self.is_string = 1
def __repr__(self):
return "<CArrayType %s %s>" % (self.size, repr(self.base_type))
def same_as_resolved_type(self, other_type):
return ((other_type.is_array and
self.base_type.same_as(other_type.base_type))
or other_type is error_type)
def assignable_from_resolved_type(self, src_type):
# Can't assign to a variable of an array type
return 0
def element_ptr_type(self):
return c_ptr_type(self.base_type)
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
if self.size is not None:
dimension_code = self.size
else:
dimension_code = ""
if entity_code.startswith("*"):
entity_code = "(%s)" % entity_code
return self.base_type.declaration_code(
"%s[%s]" % (entity_code, dimension_code),
for_display, dll_linkage, pyrex)
def as_argument_type(self):
return c_ptr_type(self.base_type)
def is_complete(self):
return self.size is not None
class CPtrType(CType):
# base_type CType Referenced type
is_ptr = 1
default_value = "0"
def __init__(self, base_type):
self.base_type = base_type
def __repr__(self):
return "<CPtrType %s>" % repr(self.base_type)
def same_as_resolved_type(self, other_type):
return ((other_type.is_ptr and
self.base_type.same_as(other_type.base_type))
or other_type is error_type)
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
#print "CPtrType.declaration_code: pointer to", self.base_type ###
return self.base_type.declaration_code(
"*%s" % entity_code,
for_display, dll_linkage, pyrex)
def assignable_from_resolved_type(self, other_type):
if other_type is error_type:
return 1
if other_type.is_null_ptr:
return 1
if self.base_type.is_cfunction:
if other_type.is_ptr:
other_type = other_type.base_type.resolve()
if other_type.is_cfunction:
return self.base_type.pointer_assignable_from_resolved_type(other_type)
else:
return 0
if (self.base_type.is_cpp_class and other_type.is_ptr
and other_type.base_type.is_cpp_class and other_type.base_type.is_subclass(self.base_type)):
return 1
if other_type.is_array or other_type.is_ptr:
return self.base_type.is_void or self.base_type.same_as(other_type.base_type)
return 0
def specialize(self, values):
base_type = self.base_type.specialize(values)
if base_type == self.base_type:
return self
else:
return CPtrType(base_type)
def invalid_value(self):
return "1"
class CNullPtrType(CPtrType):
is_null_ptr = 1
class CReferenceType(BaseType):
is_reference = 1
def __init__(self, base_type):
self.ref_base_type = base_type
def __repr__(self):
return "<CReferenceType %s>" % repr(self.ref_base_type)
def __str__(self):
return "%s &" % self.ref_base_type
def as_argument_type(self):
return self
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
#print "CReferenceType.declaration_code: pointer to", self.base_type ###
return self.ref_base_type.declaration_code(
"&%s" % entity_code,
for_display, dll_linkage, pyrex)
def specialize(self, values):
base_type = self.ref_base_type.specialize(values)
if base_type == self.ref_base_type:
return self
else:
return CReferenceType(base_type)
def __getattr__(self, name):
return getattr(self.ref_base_type, name)
class CFuncType(CType):
# return_type CType
# args [CFuncTypeArg]
# has_varargs boolean
# exception_value string
# exception_check boolean True if PyErr_Occurred check needed
# calling_convention string Function calling convention
# nogil boolean Can be called without gil
# with_gil boolean Acquire gil around function body
# templates [string] or None
is_cfunction = 1
original_sig = None
def __init__(self, return_type, args, has_varargs = 0,
exception_value = None, exception_check = 0, calling_convention = "",
nogil = 0, with_gil = 0, is_overridable = 0, optional_arg_count = 0,
templates = None):
self.return_type = return_type
self.args = args
self.has_varargs = has_varargs
self.optional_arg_count = optional_arg_count
self.exception_value = exception_value
self.exception_check = exception_check
self.calling_convention = calling_convention
self.nogil = nogil
self.with_gil = with_gil
self.is_overridable = is_overridable
self.templates = templates
def __repr__(self):
arg_reprs = map(repr, self.args)
if self.has_varargs:
arg_reprs.append("...")
if self.exception_value:
except_clause = " %r" % self.exception_value
else:
except_clause = ""
if self.exception_check:
except_clause += "?"
return "<CFuncType %s %s[%s]%s>" % (
repr(self.return_type),
self.calling_convention_prefix(),
",".join(arg_reprs),
except_clause)
def calling_convention_prefix(self):
cc = self.calling_convention
if cc:
return cc + " "
else:
return ""
def same_c_signature_as(self, other_type, as_cmethod = 0):
return self.same_c_signature_as_resolved_type(
other_type.resolve(), as_cmethod)
def same_c_signature_as_resolved_type(self, other_type, as_cmethod = 0):
#print "CFuncType.same_c_signature_as_resolved_type:", \
# self, other_type, "as_cmethod =", as_cmethod ###
if other_type is error_type:
return 1
if not other_type.is_cfunction:
return 0
if self.is_overridable != other_type.is_overridable:
return 0
nargs = len(self.args)
if nargs != len(other_type.args):
return 0
# When comparing C method signatures, the first argument
# is exempt from compatibility checking (the proper check
# is performed elsewhere).
for i in range(as_cmethod, nargs):
if not self.args[i].type.same_as(
other_type.args[i].type):
return 0
if self.has_varargs != other_type.has_varargs:
return 0
if self.optional_arg_count != other_type.optional_arg_count:
return 0
if not self.return_type.same_as(other_type.return_type):
return 0
if not self.same_calling_convention_as(other_type):
return 0
return 1
def compatible_signature_with(self, other_type, as_cmethod = 0):
return self.compatible_signature_with_resolved_type(other_type.resolve(), as_cmethod)
def compatible_signature_with_resolved_type(self, other_type, as_cmethod):
#print "CFuncType.same_c_signature_as_resolved_type:", \
# self, other_type, "as_cmethod =", as_cmethod ###
if other_type is error_type:
return 1
if not other_type.is_cfunction:
return 0
if not self.is_overridable and other_type.is_overridable:
return 0
nargs = len(self.args)
if nargs - self.optional_arg_count != len(other_type.args) - other_type.optional_arg_count:
return 0
if self.optional_arg_count < other_type.optional_arg_count:
return 0
# When comparing C method signatures, the first argument
# is exempt from compatibility checking (the proper check
# is performed elsewhere).
for i in range(as_cmethod, len(other_type.args)):
if not self.args[i].type.same_as(
other_type.args[i].type):
return 0
if self.has_varargs != other_type.has_varargs:
return 0
if not self.return_type.subtype_of_resolved_type(other_type.return_type):
return 0
if not self.same_calling_convention_as(other_type):
return 0
if self.nogil != other_type.nogil:
return 0
self.original_sig = other_type.original_sig or other_type
if as_cmethod:
self.args[0] = other_type.args[0]
return 1
def narrower_c_signature_than(self, other_type, as_cmethod = 0):
return self.narrower_c_signature_than_resolved_type(other_type.resolve(), as_cmethod)
def narrower_c_signature_than_resolved_type(self, other_type, as_cmethod):
if other_type is error_type:
return 1
if not other_type.is_cfunction:
return 0
nargs = len(self.args)
if nargs != len(other_type.args):
return 0
for i in range(as_cmethod, nargs):
if not self.args[i].type.subtype_of_resolved_type(other_type.args[i].type):
return 0
else:
self.args[i].needs_type_test = other_type.args[i].needs_type_test \
or not self.args[i].type.same_as(other_type.args[i].type)
if self.has_varargs != other_type.has_varargs:
return 0
if self.optional_arg_count != other_type.optional_arg_count:
return 0
if not self.return_type.subtype_of_resolved_type(other_type.return_type):
return 0
return 1
def same_calling_convention_as(self, other):
## XXX Under discussion ...
## callspec_words = ("__stdcall", "__cdecl", "__fastcall")
## cs1 = self.calling_convention
## cs2 = other.calling_convention
## if (cs1 in callspec_words or
## cs2 in callspec_words):
## return cs1 == cs2
## else:
## return True
sc1 = self.calling_convention == '__stdcall'
sc2 = other.calling_convention == '__stdcall'
return sc1 == sc2
def same_exception_signature_as(self, other_type):
return self.same_exception_signature_as_resolved_type(
other_type.resolve())
def same_exception_signature_as_resolved_type(self, other_type):
return self.exception_value == other_type.exception_value \
and self.exception_check == other_type.exception_check
def same_as_resolved_type(self, other_type, as_cmethod = 0):
return self.same_c_signature_as_resolved_type(other_type, as_cmethod) \
and self.same_exception_signature_as_resolved_type(other_type) \
and self.nogil == other_type.nogil
def pointer_assignable_from_resolved_type(self, other_type):
return self.same_c_signature_as_resolved_type(other_type) \
and self.same_exception_signature_as_resolved_type(other_type) \
and not (self.nogil and not other_type.nogil)
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0,
with_calling_convention = 1):
arg_decl_list = []
for arg in self.args[:len(self.args)-self.optional_arg_count]:
arg_decl_list.append(
arg.type.declaration_code("", for_display, pyrex = pyrex))
if self.is_overridable:
arg_decl_list.append("int %s" % Naming.skip_dispatch_cname)
if self.optional_arg_count:
arg_decl_list.append(self.op_arg_struct.declaration_code(Naming.optional_args_cname))
if self.has_varargs:
arg_decl_list.append("...")
arg_decl_code = ", ".join(arg_decl_list)
if not arg_decl_code and not pyrex:
arg_decl_code = "void"
trailer = ""
if (pyrex or for_display) and not self.return_type.is_pyobject:
if self.exception_value and self.exception_check:
trailer = " except? %s" % self.exception_value
elif self.exception_value:
trailer = " except %s" % self.exception_value
elif self.exception_check == '+':
trailer = " except +"
else:
" except *" # ignored
if self.nogil:
trailer += " nogil"
if not with_calling_convention:
cc = ''
else:
cc = self.calling_convention_prefix()
if (not entity_code and cc) or entity_code.startswith("*"):
entity_code = "(%s%s)" % (cc, entity_code)
cc = ""
return self.return_type.declaration_code(
"%s%s(%s)%s" % (cc, entity_code, arg_decl_code, trailer),
for_display, dll_linkage, pyrex)
def function_header_code(self, func_name, arg_code):
return "%s%s(%s)" % (self.calling_convention_prefix(),
func_name, arg_code)
def signature_string(self):
s = self.declaration_code("")
return s
def signature_cast_string(self):
s = self.declaration_code("(*)", with_calling_convention=False)
return '(%s)' % s
def specialize(self, values):
if self.templates is None:
new_templates = None
else:
new_templates = [v.specialize(values) for v in self.templates]
return CFuncType(self.return_type.specialize(values),
[arg.specialize(values) for arg in self.args],
has_varargs = 0,
exception_value = self.exception_value,
exception_check = self.exception_check,
calling_convention = self.calling_convention,
nogil = self.nogil,
with_gil = self.with_gil,
is_overridable = self.is_overridable,
optional_arg_count = self.optional_arg_count,
templates = new_templates)
def opt_arg_cname(self, arg_name):
return self.op_arg_struct.base_type.scope.lookup(arg_name).cname
class CFuncTypeArg(object):
# name string
# cname string
# type PyrexType
# pos source file position
# FIXME: is this the right setup? should None be allowed here?
not_none = False
or_none = False
accept_none = True
def __init__(self, name, type, pos, cname=None):
self.name = name
if cname is not None:
self.cname = cname
else:
self.cname = Naming.var_prefix + name
self.type = type
self.pos = pos
self.needs_type_test = False # TODO: should these defaults be set in analyse_types()?
def __repr__(self):
return "%s:%s" % (self.name, repr(self.type))
def declaration_code(self, for_display = 0):
return self.type.declaration_code(self.cname, for_display)
def specialize(self, values):
return CFuncTypeArg(self.name, self.type.specialize(values), self.pos, self.cname)
class StructUtilityCode(object):
def __init__(self, type, forward_decl):
self.type = type
self.header = "static PyObject* %s(%s)" % (type.to_py_function, type.declaration_code('s'))
self.forward_decl = forward_decl
def __eq__(self, other):
return isinstance(other, StructUtilityCode) and self.header == other.header
def __hash__(self):
return hash(self.header)
def get_tree(self):
pass
def put_code(self, output):
code = output['utility_code_def']
proto = output['utility_code_proto']
code.putln("%s {" % self.header)
code.putln("PyObject* res;")
code.putln("PyObject* member;")
code.putln("res = PyDict_New(); if (res == NULL) return NULL;")
for member in self.type.scope.var_entries:
nameconst_cname = code.get_py_string_const(member.name, identifier=True)
code.putln("member = %s(s.%s); if (member == NULL) goto bad;" % (
member.type.to_py_function, member.cname))
code.putln("if (PyDict_SetItem(res, %s, member) < 0) goto bad;" % nameconst_cname)
code.putln("Py_DECREF(member);")
code.putln("return res;")
code.putln("bad:")
code.putln("Py_XDECREF(member);")
code.putln("Py_DECREF(res);")
code.putln("return NULL;")
code.putln("}")
# This is a bit of a hack, we need a forward declaration
# due to the way things are ordered in the module...
if self.forward_decl:
proto.putln(self.type.declaration_code('') + ';')
proto.putln(self.header + ";")
def inject_tree_and_scope_into(self, module_node):
pass
class CStructOrUnionType(CType):
# name string
# cname string
# kind string "struct" or "union"
# scope StructOrUnionScope, or None if incomplete
# typedef_flag boolean
# packed boolean
# entry Entry
is_struct_or_union = 1
has_attributes = 1
def __init__(self, name, kind, scope, typedef_flag, cname, packed=False):
self.name = name
self.cname = cname
self.kind = kind
self.scope = scope
self.typedef_flag = typedef_flag
self.is_struct = kind == 'struct'
if self.is_struct:
self.to_py_function = "%s_to_py_%s" % (Naming.convert_func_prefix, self.cname)
self.exception_check = True
self._convert_code = None
self.packed = packed
def create_to_py_utility_code(self, env):
if env.outer_scope is None:
return False
if self._convert_code is False: return # tri-state-ish
if self._convert_code is None:
for member in self.scope.var_entries:
if not member.type.to_py_function or not member.type.create_to_py_utility_code(env):
self.to_py_function = None
self._convert_code = False
return False
forward_decl = (self.entry.visibility != 'extern')
self._convert_code = StructUtilityCode(self, forward_decl)
env.use_utility_code(self._convert_code)
return True
def __repr__(self):
return "<CStructOrUnionType %s %s%s>" % (self.name, self.cname,
("", " typedef")[self.typedef_flag])
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
if pyrex or for_display:
base_code = self.name
else:
if self.typedef_flag:
base_code = self.cname
else:
base_code = "%s %s" % (self.kind, self.cname)
base_code = public_decl(base_code, dll_linkage)
return self.base_declaration_code(base_code, entity_code)
def __eq__(self, other):
try:
return (isinstance(other, CStructOrUnionType) and
self.name == other.name)
except AttributeError:
return False
def __lt__(self, other):
try:
return self.name < other.name
except AttributeError:
# this is arbitrary, but it makes sure we always have
# *some* kind of order
return False
def __hash__(self):
return hash(self.cname) ^ hash(self.kind)
def is_complete(self):
return self.scope is not None
def attributes_known(self):
return self.is_complete()
def can_be_complex(self):
# Does the struct consist of exactly two identical floats?
fields = self.scope.var_entries
if len(fields) != 2: return False
a, b = fields
return (a.type.is_float and b.type.is_float and
a.type.declaration_code("") ==
b.type.declaration_code(""))
def struct_nesting_depth(self):
child_depths = [x.type.struct_nesting_depth()
for x in self.scope.var_entries]
return max(child_depths) + 1
class CppClassType(CType):
# name string
# cname string
# scope CppClassScope
# templates [string] or None
is_cpp_class = 1
has_attributes = 1
exception_check = True
namespace = None
def __init__(self, name, scope, cname, base_classes, templates = None, template_type = None):
self.name = name
self.cname = cname
self.scope = scope
self.base_classes = base_classes
self.operators = []
self.templates = templates
self.template_type = template_type
self.specializations = {}
def specialize_here(self, pos, template_values = None):
if self.templates is None:
error(pos, "'%s' type is not a template" % self);
return PyrexTypes.error_type
if len(self.templates) != len(template_values):
error(pos, "%s templated type receives %d arguments, got %d" %
(self.name, len(self.templates), len(template_values)))
return error_type
return self.specialize(dict(zip(self.templates, template_values)))
def specialize(self, values):
if not self.templates and not self.namespace:
return self
if self.templates is None:
self.templates = []
key = tuple(values.items())
if key in self.specializations:
return self.specializations[key]
template_values = [t.specialize(values) for t in self.templates]
specialized = self.specializations[key] = \
CppClassType(self.name, None, self.cname, [], template_values, template_type=self)
# Need to do these *after* self.specializations[key] is set
# to avoid infinite recursion on circular references.
specialized.base_classes = [b.specialize(values) for b in self.base_classes]
specialized.scope = self.scope.specialize(values)
if self.namespace is not None:
specialized.namespace = self.namespace.specialize(values)
return specialized
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
if self.templates:
template_strings = [param.declaration_code('', for_display, None, pyrex)
for param in self.templates]
templates = "<%s>" % ",".join(template_strings)
if templates[-2:] == ">>":
templates = templates[:-2] + "> >"
else:
templates = ""
if pyrex or for_display:
base_code = "%s%s" % (self.name, templates)
else:
base_code = "%s%s" % (self.cname, templates)
if self.namespace is not None:
base_code = "%s::%s" % (self.namespace.declaration_code(''), base_code)
base_code = public_decl(base_code, dll_linkage)
return self.base_declaration_code(base_code, entity_code)
def is_subclass(self, other_type):
# TODO(danilo): Handle templates.
if self.same_as_resolved_type(other_type):
return 1
for base_class in self.base_classes:
if base_class.is_subclass(other_type):
return 1
return 0
def same_as_resolved_type(self, other_type):
if other_type.is_cpp_class:
if self == other_type:
return 1
elif self.template_type and self.template_type == other_type.template_type:
if self.templates == other_type.templates:
return 1
for t1, t2 in zip(self.templates, other_type.templates):
if not t1.same_as_resolved_type(t2):
return 0
return 1
return 0
def assignable_from_resolved_type(self, other_type):
# TODO: handle operator=(...) here?
if other_type is error_type:
return True
return other_type.is_cpp_class and other_type.is_subclass(self)
def attributes_known(self):
return self.scope is not None
class TemplatePlaceholderType(CType):
def __init__(self, name):
self.name = name
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
if entity_code:
return self.name + " " + entity_code
else:
return self.name
def specialize(self, values):
if self in values:
return values[self]
else:
return self
def same_as_resolved_type(self, other_type):
if isinstance(other_type, TemplatePlaceholderType):
return self.name == other_type.name
else:
return 0
def __hash__(self):
return hash(self.name)
def __cmp__(self, other):
if isinstance(other, TemplatePlaceholderType):
return cmp(self.name, other.name)
else:
return cmp(type(self), type(other))
def __eq__(self, other):
if isinstance(other, TemplatePlaceholderType):
return self.name == other.name
else:
return False
class CEnumType(CType):
# name string
# cname string or None
# typedef_flag boolean
is_enum = 1
signed = 1
rank = -1 # Ranks below any integer type
to_py_function = "PyInt_FromLong"
from_py_function = "PyInt_AsLong"
def __init__(self, name, cname, typedef_flag):
self.name = name
self.cname = cname
self.values = []
self.typedef_flag = typedef_flag
def __str__(self):
return self.name
def __repr__(self):
return "<CEnumType %s %s%s>" % (self.name, self.cname,
("", " typedef")[self.typedef_flag])
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
if pyrex or for_display:
base_code = self.name
else:
if self.typedef_flag:
base_code = self.cname
else:
base_code = "enum %s" % self.cname
base_code = public_decl(base_code, dll_linkage)
return self.base_declaration_code(base_code, entity_code)
class CStringType(object):
# Mixin class for C string types.
is_string = 1
is_unicode = 0
to_py_function = "PyBytes_FromString"
from_py_function = "PyBytes_AsString"
exception_value = "NULL"
def literal_code(self, value):
assert isinstance(value, str)
return '"%s"' % StringEncoding.escape_byte_string(value)
class CUTF8CharArrayType(CStringType, CArrayType):
# C 'char []' type.
is_unicode = 1
to_py_function = "PyUnicode_DecodeUTF8"
exception_value = "NULL"
def __init__(self, size):
CArrayType.__init__(self, c_char_type, size)
class CCharArrayType(CStringType, CArrayType):
# C 'char []' type.
def __init__(self, size):
CArrayType.__init__(self, c_char_type, size)
class CCharPtrType(CStringType, CPtrType):
# C 'char *' type.
def __init__(self):
CPtrType.__init__(self, c_char_type)
class CUCharPtrType(CStringType, CPtrType):
# C 'unsigned char *' type.
to_py_function = "__Pyx_PyBytes_FromUString"
from_py_function = "__Pyx_PyBytes_AsUString"
def __init__(self):
CPtrType.__init__(self, c_uchar_type)
class UnspecifiedType(PyrexType):
# Used as a placeholder until the type can be determined.
is_unspecified = 1
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
return "<unspecified>"
def same_as_resolved_type(self, other_type):
return False
class ErrorType(PyrexType):
# Used to prevent propagation of error messages.
is_error = 1
exception_value = "0"
exception_check = 0
to_py_function = "dummy"
from_py_function = "dummy"
def create_to_py_utility_code(self, env):
return True
def create_from_py_utility_code(self, env):
return True
def declaration_code(self, entity_code,
for_display = 0, dll_linkage = None, pyrex = 0):
return "<error>"
def same_as_resolved_type(self, other_type):
return 1
def error_condition(self, result_code):
return "dummy"
rank_to_type_name = (
"char", # 0
"short", # 1
"int", # 2
"long", # 3
"PY_LONG_LONG", # 4
"float", # 5
"double", # 6
"long double", # 7
)
RANK_INT = list(rank_to_type_name).index('int')
RANK_LONG = list(rank_to_type_name).index('long')
UNSIGNED = 0
SIGNED = 2
py_object_type = PyObjectType()
c_void_type = CVoidType()
c_uchar_type = CIntType(0, UNSIGNED)
c_ushort_type = CIntType(1, UNSIGNED)
c_uint_type = CIntType(2, UNSIGNED)
c_ulong_type = CIntType(3, UNSIGNED)
c_ulonglong_type = CIntType(4, UNSIGNED)
c_char_type = CIntType(0)
c_short_type = CIntType(1)
c_int_type = CIntType(2)
c_long_type = CIntType(3)
c_longlong_type = CIntType(4)
c_schar_type = CIntType(0, SIGNED)
c_sshort_type = CIntType(1, SIGNED)
c_sint_type = CIntType(2, SIGNED)
c_slong_type = CIntType(3, SIGNED)
c_slonglong_type = CIntType(4, SIGNED)
c_float_type = CFloatType(5, math_h_modifier='f')
c_double_type = CFloatType(6)
c_longdouble_type = CFloatType(7, math_h_modifier='l')
c_float_complex_type = CComplexType(c_float_type)
c_double_complex_type = CComplexType(c_double_type)
c_longdouble_complex_type = CComplexType(c_longdouble_type)
c_anon_enum_type = CAnonEnumType(-1)
c_returncode_type = CReturnCodeType(RANK_INT)
c_bint_type = CBIntType(RANK_INT)
c_py_unicode_type = CPyUnicodeIntType(RANK_INT-0.5, UNSIGNED)
c_py_ucs4_type = CPyUCS4IntType(RANK_LONG-0.5, UNSIGNED)
c_py_hash_t_type = CPyHashTType(RANK_LONG+0.5, SIGNED)
c_py_ssize_t_type = CPySSizeTType(RANK_LONG+0.5, SIGNED)
c_ssize_t_type = CSSizeTType(RANK_LONG+0.5, SIGNED)
c_size_t_type = CSizeTType(RANK_LONG+0.5, UNSIGNED)
c_null_ptr_type = CNullPtrType(c_void_type)
c_void_ptr_type = CPtrType(c_void_type)
c_void_ptr_ptr_type = CPtrType(c_void_ptr_type)
c_char_array_type = CCharArrayType(None)
c_char_ptr_type = CCharPtrType()
c_uchar_ptr_type = CUCharPtrType()
c_utf8_char_array_type = CUTF8CharArrayType(None)
c_char_ptr_ptr_type = CPtrType(c_char_ptr_type)
c_int_ptr_type = CPtrType(c_int_type)
c_py_unicode_ptr_type = CPtrType(c_py_unicode_type)
c_py_ssize_t_ptr_type = CPtrType(c_py_ssize_t_type)
c_ssize_t_ptr_type = CPtrType(c_ssize_t_type)
c_size_t_ptr_type = CPtrType(c_size_t_type)
# the Py_buffer type is defined in Builtin.py
c_py_buffer_type = CStructOrUnionType("Py_buffer", "struct", None, 1, "Py_buffer")
c_py_buffer_ptr_type = CPtrType(c_py_buffer_type)
error_type = ErrorType()
unspecified_type = UnspecifiedType()
modifiers_and_name_to_type = {
#(signed, longness, name) : type
(0, 0, "char"): c_uchar_type,
(1, 0, "char"): c_char_type,
(2, 0, "char"): c_schar_type,
(0, -1, "int"): c_ushort_type,
(0, 0, "int"): c_uint_type,
(0, 1, "int"): c_ulong_type,
(0, 2, "int"): c_ulonglong_type,
(1, -1, "int"): c_short_type,
(1, 0, "int"): c_int_type,
(1, 1, "int"): c_long_type,
(1, 2, "int"): c_longlong_type,
(2, -1, "int"): c_sshort_type,
(2, 0, "int"): c_sint_type,
(2, 1, "int"): c_slong_type,
(2, 2, "int"): c_slonglong_type,
(1, 0, "float"): c_float_type,
(1, 0, "double"): c_double_type,
(1, 1, "double"): c_longdouble_type,
(1, 0, "complex"): c_double_complex_type, # C: float, Python: double => Python wins
(1, 0, "floatcomplex"): c_float_complex_type,
(1, 0, "doublecomplex"): c_double_complex_type,
(1, 1, "doublecomplex"): c_longdouble_complex_type,
#
(1, 0, "void"): c_void_type,
(1, 0, "bint"): c_bint_type,
(0, 0, "Py_UNICODE"): c_py_unicode_type,
(0, 0, "Py_UCS4"): c_py_ucs4_type,
(2, 0, "Py_hash_t"): c_py_hash_t_type,
(2, 0, "Py_ssize_t"): c_py_ssize_t_type,
(2, 0, "ssize_t") : c_ssize_t_type,
(0, 0, "size_t") : c_size_t_type,
(1, 0, "object"): py_object_type,
}
def is_promotion(src_type, dst_type):
# It's hard to find a hard definition of promotion, but empirical
# evidence suggests that the below is all that's allowed.
if src_type.is_numeric:
if dst_type.same_as(c_int_type):
unsigned = (not src_type.signed)
return (src_type.is_enum or
(src_type.is_int and
unsigned + src_type.rank < dst_type.rank))
elif dst_type.same_as(c_double_type):
return src_type.is_float and src_type.rank <= dst_type.rank
return False
def best_match(args, functions, pos=None):
"""
Given a list args of arguments and a list of functions, choose one
to call which seems to be the "best" fit for this list of arguments.
This function is used, e.g., when deciding which overloaded method
to dispatch for C++ classes.
We first eliminate functions based on arity, and if only one
function has the correct arity, we return it. Otherwise, we weight
functions based on how much work must be done to convert the
arguments, with the following priorities:
* identical types or pointers to identical types
* promotions
* non-Python types
That is, we prefer functions where no arguments need converted,
and failing that, functions where only promotions are required, and
so on.
If no function is deemed a good fit, or if two or more functions have
the same weight, we return None (as there is no best match). If pos
is not None, we also generate an error.
"""
# TODO: args should be a list of types, not a list of Nodes.
actual_nargs = len(args)
candidates = []
errors = []
for func in functions:
error_mesg = ""
func_type = func.type
if func_type.is_ptr:
func_type = func_type.base_type
# Check function type
if not func_type.is_cfunction:
if not func_type.is_error and pos is not None:
error_mesg = "Calling non-function type '%s'" % func_type
errors.append((func, error_mesg))
continue
# Check no. of args
max_nargs = len(func_type.args)
min_nargs = max_nargs - func_type.optional_arg_count
if actual_nargs < min_nargs or \
(not func_type.has_varargs and actual_nargs > max_nargs):
if max_nargs == min_nargs and not func_type.has_varargs:
expectation = max_nargs
elif actual_nargs < min_nargs:
expectation = "at least %s" % min_nargs
else:
expectation = "at most %s" % max_nargs
error_mesg = "Call with wrong number of arguments (expected %s, got %s)" \
% (expectation, actual_nargs)
errors.append((func, error_mesg))
continue
candidates.append((func, func_type))
# Optimize the most common case of no overloading...
if len(candidates) == 1:
return candidates[0][0]
elif len(candidates) == 0:
if pos is not None:
if len(errors) == 1:
error(pos, errors[0][1])
else:
error(pos, "no suitable method found")
return None
possibilities = []
bad_types = []
for index, (func, func_type) in enumerate(candidates):
score = [0,0,0]
for i in range(min(len(args), len(func_type.args))):
src_type = args[i].type
dst_type = func_type.args[i].type
if dst_type.assignable_from(src_type):
if src_type == dst_type or dst_type.same_as(src_type):
pass # score 0
elif is_promotion(src_type, dst_type):
score[2] += 1
elif not src_type.is_pyobject:
score[1] += 1
else:
score[0] += 1
else:
error_mesg = "Invalid conversion from '%s' to '%s'"%(src_type,
dst_type)
bad_types.append((func, error_mesg))
break
else:
possibilities.append((score, index, func)) # so we can sort it
if possibilities:
possibilities.sort()
if len(possibilities) > 1 and possibilities[0][0] == possibilities[1][0]:
if pos is not None:
error(pos, "ambiguous overloaded method")
return None
return possibilities[0][-1]
if pos is not None:
if len(bad_types) == 1:
error(pos, bad_types[0][1])
else:
error(pos, "no suitable method found")
return None
def widest_numeric_type(type1, type2):
# Given two numeric types, return the narrowest type
# encompassing both of them.
if type1 == type2:
widest_type = type1
elif type1.is_complex or type2.is_complex:
def real_type(ntype):
if ntype.is_complex:
return ntype.real_type
return ntype
widest_type = CComplexType(
widest_numeric_type(
real_type(type1),
real_type(type2)))
elif type1.is_enum and type2.is_enum:
widest_type = c_int_type
elif type1.rank < type2.rank:
widest_type = type2
elif type1.rank > type2.rank:
widest_type = type1
elif type1.signed < type2.signed:
widest_type = type1
else:
widest_type = type2
return widest_type
def independent_spanning_type(type1, type2):
# Return a type assignable independently from both type1 and
# type2, but do not require any interoperability between the two.
# For example, in "True * 2", it is safe to assume an integer
# result type (so spanning_type() will do the right thing),
# whereas "x = True or 2" must evaluate to a type that can hold
# both a boolean value and an integer, so this function works
# better.
if type1 == type2:
return type1
elif (type1 is c_bint_type or type2 is c_bint_type) and (type1.is_numeric and type2.is_numeric):
# special case: if one of the results is a bint and the other
# is another C integer, we must prevent returning a numeric
# type so that we do not lose the ability to coerce to a
# Python bool if we have to.
return py_object_type
span_type = _spanning_type(type1, type2)
if span_type is None:
return error_type
return span_type
def spanning_type(type1, type2):
# Return a type assignable from both type1 and type2, or
# py_object_type if no better type is found. Assumes that the
# code that calls this will try a coercion afterwards, which will
# fail if the types cannot actually coerce to a py_object_type.
if type1 == type2:
return type1
elif type1 is py_object_type or type2 is py_object_type:
return py_object_type
elif type1 is c_py_unicode_type or type2 is c_py_unicode_type:
# Py_UNICODE behaves more like a string than an int
return py_object_type
span_type = _spanning_type(type1, type2)
if span_type is None:
return py_object_type
return span_type
def _spanning_type(type1, type2):
if type1.is_numeric and type2.is_numeric:
return widest_numeric_type(type1, type2)
elif type1.is_builtin_type and type1.name == 'float' and type2.is_numeric:
return widest_numeric_type(c_double_type, type2)
elif type2.is_builtin_type and type2.name == 'float' and type1.is_numeric:
return widest_numeric_type(type1, c_double_type)
elif type1.is_extension_type and type2.is_extension_type:
return widest_extension_type(type1, type2)
elif type1.is_pyobject or type2.is_pyobject:
return py_object_type
elif type1.assignable_from(type2):
if type1.is_extension_type and type1.typeobj_is_imported():
# external types are unsafe, so we use PyObject instead
return py_object_type
return type1
elif type2.assignable_from(type1):
if type2.is_extension_type and type2.typeobj_is_imported():
# external types are unsafe, so we use PyObject instead
return py_object_type
return type2
else:
return None
def widest_extension_type(type1, type2):
if type1.typeobj_is_imported() or type2.typeobj_is_imported():
return py_object_type
while True:
if type1.subtype_of(type2):
return type2
elif type2.subtype_of(type1):
return type1
type1, type2 = type1.base_type, type2.base_type
if type1 is None or type2 is None:
return py_object_type
def simple_c_type(signed, longness, name):
# Find type descriptor for simple type given name and modifiers.
# Returns None if arguments don't make sense.
return modifiers_and_name_to_type.get((signed, longness, name))
def parse_basic_type(name):
base = None
if name.startswith('p_'):
base = parse_basic_type(name[2:])
elif name.startswith('p'):
base = parse_basic_type(name[1:])
elif name.endswith('*'):
base = parse_basic_type(name[:-1])
if base:
return CPtrType(base)
#
basic_type = simple_c_type(1, 0, name)
if basic_type:
return basic_type
#
signed = 1
longness = 0
if name == 'Py_UNICODE':
signed = 0
elif name == 'Py_UCS4':
signed = 0
elif name == 'Py_hash_t':
signed = 2
elif name == 'Py_ssize_t':
signed = 2
elif name == 'ssize_t':
signed = 2
elif name == 'size_t':
signed = 0
else:
if name.startswith('u'):
name = name[1:]
signed = 0
elif (name.startswith('s') and
not name.startswith('short')):
name = name[1:]
signed = 2
longness = 0
while name.startswith('short'):
name = name.replace('short', '', 1).strip()
longness -= 1
while name.startswith('long'):
name = name.replace('long', '', 1).strip()
longness += 1
if longness != 0 and not name:
name = 'int'
return simple_c_type(signed, longness, name)
def c_array_type(base_type, size):
# Construct a C array type.
if base_type is c_char_type:
return CCharArrayType(size)
elif base_type is error_type:
return error_type
else:
return CArrayType(base_type, size)
def c_ptr_type(base_type):
# Construct a C pointer type.
if base_type is c_char_type:
return c_char_ptr_type
elif base_type is c_uchar_type:
return c_uchar_ptr_type
elif base_type is error_type:
return error_type
else:
return CPtrType(base_type)
def c_ref_type(base_type):
# Construct a C reference type
if base_type is error_type:
return error_type
else:
return CReferenceType(base_type)
def same_type(type1, type2):
return type1.same_as(type2)
def assignable_from(type1, type2):
return type1.assignable_from(type2)
def typecast(to_type, from_type, expr_code):
# Return expr_code cast to a C type which can be
# assigned to to_type, assuming its existing C type
# is from_type.
if to_type is from_type or \
(not to_type.is_pyobject and assignable_from(to_type, from_type)):
return expr_code
else:
#print "typecast: to", to_type, "from", from_type ###
return to_type.cast_code(expr_code)
type_conversion_predeclarations = """
/* Type Conversion Predeclarations */
#define __Pyx_PyBytes_FromUString(s) PyBytes_FromString((char*)s)
#define __Pyx_PyBytes_AsUString(s) ((unsigned char*) PyBytes_AsString(s))
#define __Pyx_Owned_Py_None(b) (Py_INCREF(Py_None), Py_None)
#define __Pyx_PyBool_FromLong(b) ((b) ? (Py_INCREF(Py_True), Py_True) : (Py_INCREF(Py_False), Py_False))
static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject*);
static CYTHON_INLINE PyObject* __Pyx_PyNumber_Int(PyObject* x);
static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject*);
static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t);
static CYTHON_INLINE size_t __Pyx_PyInt_AsSize_t(PyObject*);
#define __pyx_PyFloat_AsDouble(x) (PyFloat_CheckExact(x) ? PyFloat_AS_DOUBLE(x) : PyFloat_AsDouble(x))
""" + type_conversion_predeclarations
# Note: __Pyx_PyObject_IsTrue is written to minimize branching.
type_conversion_functions = """
/* Type Conversion Functions */
static CYTHON_INLINE int __Pyx_PyObject_IsTrue(PyObject* x) {
int is_true = x == Py_True;
if (is_true | (x == Py_False) | (x == Py_None)) return is_true;
else return PyObject_IsTrue(x);
}
static CYTHON_INLINE PyObject* __Pyx_PyNumber_Int(PyObject* x) {
PyNumberMethods *m;
const char *name = NULL;
PyObject *res = NULL;
#if PY_VERSION_HEX < 0x03000000
if (PyInt_Check(x) || PyLong_Check(x))
#else
if (PyLong_Check(x))
#endif
return Py_INCREF(x), x;
m = Py_TYPE(x)->tp_as_number;
#if PY_VERSION_HEX < 0x03000000
if (m && m->nb_int) {
name = "int";
res = PyNumber_Int(x);
}
else if (m && m->nb_long) {
name = "long";
res = PyNumber_Long(x);
}
#else
if (m && m->nb_int) {
name = "int";
res = PyNumber_Long(x);
}
#endif
if (res) {
#if PY_VERSION_HEX < 0x03000000
if (!PyInt_Check(res) && !PyLong_Check(res)) {
#else
if (!PyLong_Check(res)) {
#endif
PyErr_Format(PyExc_TypeError,
"__%s__ returned non-%s (type %.200s)",
name, name, Py_TYPE(res)->tp_name);
Py_DECREF(res);
return NULL;
}
}
else if (!PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError,
"an integer is required");
}
return res;
}
static CYTHON_INLINE Py_ssize_t __Pyx_PyIndex_AsSsize_t(PyObject* b) {
Py_ssize_t ival;
PyObject* x = PyNumber_Index(b);
if (!x) return -1;
ival = PyInt_AsSsize_t(x);
Py_DECREF(x);
return ival;
}
static CYTHON_INLINE PyObject * __Pyx_PyInt_FromSize_t(size_t ival) {
#if PY_VERSION_HEX < 0x02050000
if (ival <= LONG_MAX)
return PyInt_FromLong((long)ival);
else {
unsigned char *bytes = (unsigned char *) &ival;
int one = 1; int little = (int)*(unsigned char*)&one;
return _PyLong_FromByteArray(bytes, sizeof(size_t), little, 0);
}
#else
return PyInt_FromSize_t(ival);
#endif
}
static CYTHON_INLINE size_t __Pyx_PyInt_AsSize_t(PyObject* x) {
unsigned PY_LONG_LONG val = __Pyx_PyInt_AsUnsignedLongLong(x);
if (unlikely(val == (unsigned PY_LONG_LONG)-1 && PyErr_Occurred())) {
return (size_t)-1;
} else if (unlikely(val != (unsigned PY_LONG_LONG)(size_t)val)) {
PyErr_SetString(PyExc_OverflowError,
"value too large to convert to size_t");
return (size_t)-1;
}
return (size_t)val;
}
""" + type_conversion_functions
|