1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
|
from Errors import error, warning, message, warn_once, InternalError
import ExprNodes
import Nodes
import Builtin
import PyrexTypes
from Cython import Utils
from PyrexTypes import py_object_type, unspecified_type
from Visitor import CythonTransform
try:
set
except NameError:
# Python 2.3
from sets import Set as set
class TypedExprNode(ExprNodes.ExprNode):
# Used for declaring assignments of a specified type whithout a known entry.
def __init__(self, type):
self.type = type
object_expr = TypedExprNode(py_object_type)
class MarkAssignments(CythonTransform):
# tells us whether we're in a normal loop
in_loop = False
parallel_errors = False
def __init__(self, context):
super(CythonTransform, self).__init__()
self.context = context
# Track the parallel block scopes (with parallel, for i in prange())
self.parallel_block_stack = []
def mark_assignment(self, lhs, rhs, inplace_op=None):
if isinstance(lhs, (ExprNodes.NameNode, Nodes.PyArgDeclNode)):
if lhs.entry is None:
# TODO: This shouldn't happen...
return
lhs.entry.assignments.append(rhs)
if self.parallel_block_stack:
parallel_node = self.parallel_block_stack[-1]
previous_assignment = parallel_node.assignments.get(lhs.entry)
# If there was a previous assignment to the variable, keep the
# previous assignment position
if previous_assignment:
pos, previous_inplace_op = previous_assignment
if (inplace_op and previous_inplace_op and
inplace_op != previous_inplace_op):
# x += y; x *= y
t = (inplace_op, previous_inplace_op)
error(lhs.pos,
"Reduction operator '%s' is inconsistent "
"with previous reduction operator '%s'" % t)
else:
pos = lhs.pos
parallel_node.assignments[lhs.entry] = (pos, inplace_op)
parallel_node.assigned_nodes.append(lhs)
elif isinstance(lhs, ExprNodes.SequenceNode):
for arg in lhs.args:
self.mark_assignment(arg, object_expr)
else:
# Could use this info to infer cdef class attributes...
pass
def visit_SingleAssignmentNode(self, node):
self.mark_assignment(node.lhs, node.rhs)
self.visitchildren(node)
return node
def visit_CascadedAssignmentNode(self, node):
for lhs in node.lhs_list:
self.mark_assignment(lhs, node.rhs)
self.visitchildren(node)
return node
def visit_InPlaceAssignmentNode(self, node):
self.mark_assignment(node.lhs, node.create_binop_node(), node.operator)
self.visitchildren(node)
return node
def visit_ForInStatNode(self, node):
# TODO: Remove redundancy with range optimization...
is_special = False
sequence = node.iterator.sequence
if isinstance(sequence, ExprNodes.SimpleCallNode):
function = sequence.function
if sequence.self is None and function.is_name:
if function.name == 'reversed' and len(sequence.args) == 1:
sequence = sequence.args[0]
if isinstance(sequence, ExprNodes.SimpleCallNode):
function = sequence.function
if sequence.self is None and function.is_name:
if function.name in ('range', 'xrange'):
is_special = True
for arg in sequence.args[:2]:
self.mark_assignment(node.target, arg)
if len(sequence.args) > 2:
self.mark_assignment(
node.target,
ExprNodes.binop_node(node.pos,
'+',
sequence.args[0],
sequence.args[2]))
if not is_special:
# A for-loop basically translates to subsequent calls to
# __getitem__(), so using an IndexNode here allows us to
# naturally infer the base type of pointers, C arrays,
# Python strings, etc., while correctly falling back to an
# object type when the base type cannot be handled.
self.mark_assignment(node.target, ExprNodes.IndexNode(
node.pos,
base = sequence,
index = ExprNodes.IntNode(node.pos, value = '0')))
self.visitchildren(node)
return node
def visit_ForFromStatNode(self, node):
self.mark_assignment(node.target, node.bound1)
if node.step is not None:
self.mark_assignment(node.target,
ExprNodes.binop_node(node.pos,
'+',
node.bound1,
node.step))
self.visitchildren(node)
return node
def visit_WhileStatNode(self, node):
self.visitchildren(node)
return node
def visit_ExceptClauseNode(self, node):
if node.target is not None:
self.mark_assignment(node.target, object_expr)
self.visitchildren(node)
return node
def visit_FromCImportStatNode(self, node):
pass # Can't be assigned to...
def visit_FromImportStatNode(self, node):
for name, target in node.items:
if name != "*":
self.mark_assignment(target, object_expr)
self.visitchildren(node)
return node
def visit_DefNode(self, node):
# use fake expressions with the right result type
if node.star_arg:
self.mark_assignment(
node.star_arg, TypedExprNode(Builtin.tuple_type))
if node.starstar_arg:
self.mark_assignment(
node.starstar_arg, TypedExprNode(Builtin.dict_type))
self.visitchildren(node)
return node
def visit_DelStatNode(self, node):
for arg in node.args:
self.mark_assignment(arg, arg)
self.visitchildren(node)
return node
def visit_ParallelStatNode(self, node):
if self.parallel_block_stack:
node.parent = self.parallel_block_stack[-1]
else:
node.parent = None
nested = False
if node.is_prange:
if not node.parent:
node.is_parallel = True
else:
node.is_parallel = (node.parent.is_prange or not
node.parent.is_parallel)
nested = node.parent.is_prange
else:
node.is_parallel = True
# Note: nested with parallel() blocks are handled by
# ParallelRangeTransform!
# nested = node.parent
nested = node.parent and node.parent.is_prange
self.parallel_block_stack.append(node)
nested = nested or len(self.parallel_block_stack) > 2
if not self.parallel_errors and nested:
error(node.pos,
"Parallel nesting not supported due to bugs in gcc 4.5")
self.parallel_errors = True
if node.is_prange:
child_attrs = node.child_attrs
node.child_attrs = ['body', 'target', 'args']
self.visitchildren(node)
node.child_attrs = child_attrs
self.parallel_block_stack.pop()
if node.else_clause:
node.else_clause = self.visit(node.else_clause)
else:
self.visitchildren(node)
self.parallel_block_stack.pop()
self.parallel_errors = False
return node
def visit_YieldExprNode(self, node):
if self.parallel_block_stack:
error(node.pos, "Yield not allowed in parallel sections")
return node
def visit_ReturnStatNode(self, node):
node.in_parallel = bool(self.parallel_block_stack)
return node
class MarkOverflowingArithmetic(CythonTransform):
# It may be possible to integrate this with the above for
# performance improvements (though likely not worth it).
might_overflow = False
def __call__(self, root):
self.env_stack = []
self.env = root.scope
return super(MarkOverflowingArithmetic, self).__call__(root)
def visit_safe_node(self, node):
self.might_overflow, saved = False, self.might_overflow
self.visitchildren(node)
self.might_overflow = saved
return node
def visit_neutral_node(self, node):
self.visitchildren(node)
return node
def visit_dangerous_node(self, node):
self.might_overflow, saved = True, self.might_overflow
self.visitchildren(node)
self.might_overflow = saved
return node
def visit_FuncDefNode(self, node):
self.env_stack.append(self.env)
self.env = node.local_scope
self.visit_safe_node(node)
self.env = self.env_stack.pop()
return node
def visit_NameNode(self, node):
if self.might_overflow:
entry = node.entry or self.env.lookup(node.name)
if entry:
entry.might_overflow = True
return node
def visit_BinopNode(self, node):
if node.operator in '&|^':
return self.visit_neutral_node(node)
else:
return self.visit_dangerous_node(node)
visit_UnopNode = visit_neutral_node
visit_UnaryMinusNode = visit_dangerous_node
visit_InPlaceAssignmentNode = visit_dangerous_node
visit_Node = visit_safe_node
def visit_assignment(self, lhs, rhs):
if (isinstance(rhs, ExprNodes.IntNode)
and isinstance(lhs, ExprNodes.NameNode)
and Utils.long_literal(rhs.value)):
entry = lhs.entry or self.env.lookup(lhs.name)
if entry:
entry.might_overflow = True
def visit_SingleAssignmentNode(self, node):
self.visit_assignment(node.lhs, node.rhs)
self.visitchildren(node)
return node
def visit_CascadedAssignmentNode(self, node):
for lhs in node.lhs_list:
self.visit_assignment(lhs, node.rhs)
self.visitchildren(node)
return node
class PyObjectTypeInferer(object):
"""
If it's not declared, it's a PyObject.
"""
def infer_types(self, scope):
"""
Given a dict of entries, map all unspecified types to a specified type.
"""
for name, entry in scope.entries.items():
if entry.type is unspecified_type:
entry.type = py_object_type
class SimpleAssignmentTypeInferer(object):
"""
Very basic type inference.
"""
# TODO: Implement a real type inference algorithm.
# (Something more powerful than just extending this one...)
def infer_types(self, scope):
enabled = scope.directives['infer_types']
verbose = scope.directives['infer_types.verbose']
if enabled == True:
spanning_type = aggressive_spanning_type
elif enabled is None: # safe mode
spanning_type = safe_spanning_type
else:
for entry in scope.entries.values():
if entry.type is unspecified_type:
entry.type = py_object_type
return
dependancies_by_entry = {} # entry -> dependancies
entries_by_dependancy = {} # dependancy -> entries
ready_to_infer = []
for name, entry in scope.entries.items():
if entry.type is unspecified_type:
if entry.in_closure or entry.from_closure:
# cross-closure type inference is not currently supported
entry.type = py_object_type
continue
all = set()
for expr in entry.assignments:
all.update(expr.type_dependencies(scope))
if all:
dependancies_by_entry[entry] = all
for dep in all:
if dep not in entries_by_dependancy:
entries_by_dependancy[dep] = set([entry])
else:
entries_by_dependancy[dep].add(entry)
else:
ready_to_infer.append(entry)
def resolve_dependancy(dep):
if dep in entries_by_dependancy:
for entry in entries_by_dependancy[dep]:
entry_deps = dependancies_by_entry[entry]
entry_deps.remove(dep)
if not entry_deps and entry != dep:
del dependancies_by_entry[entry]
ready_to_infer.append(entry)
# Try to infer things in order...
while True:
while ready_to_infer:
entry = ready_to_infer.pop()
types = [expr.infer_type(scope) for expr in entry.assignments]
if types:
entry.type = spanning_type(types, entry.might_overflow)
else:
# FIXME: raise a warning?
# print "No assignments", entry.pos, entry
entry.type = py_object_type
if verbose:
message(entry.pos, "inferred '%s' to be of type '%s'" % (entry.name, entry.type))
resolve_dependancy(entry)
# Deal with simple circular dependancies...
for entry, deps in dependancies_by_entry.items():
if len(deps) == 1 and deps == set([entry]):
types = [expr.infer_type(scope) for expr in entry.assignments if expr.type_dependencies(scope) == ()]
if types:
entry.type = spanning_type(types, entry.might_overflow)
types = [expr.infer_type(scope) for expr in entry.assignments]
entry.type = spanning_type(types, entry.might_overflow) # might be wider...
resolve_dependancy(entry)
del dependancies_by_entry[entry]
if ready_to_infer:
break
if not ready_to_infer:
break
# We can't figure out the rest with this algorithm, let them be objects.
for entry in dependancies_by_entry:
entry.type = py_object_type
if verbose:
message(entry.pos, "inferred '%s' to be of type '%s' (default)" % (entry.name, entry.type))
def find_spanning_type(type1, type2):
if type1 is type2:
result_type = type1
elif type1 is PyrexTypes.c_bint_type or type2 is PyrexTypes.c_bint_type:
# type inference can break the coercion back to a Python bool
# if it returns an arbitrary int type here
return py_object_type
else:
result_type = PyrexTypes.spanning_type(type1, type2)
if result_type in (PyrexTypes.c_double_type, PyrexTypes.c_float_type,
Builtin.float_type):
# Python's float type is just a C double, so it's safe to
# use the C type instead
return PyrexTypes.c_double_type
return result_type
def aggressive_spanning_type(types, might_overflow):
result_type = reduce(find_spanning_type, types)
if result_type.is_reference:
result_type = result_type.ref_base_type
return result_type
def safe_spanning_type(types, might_overflow):
result_type = reduce(find_spanning_type, types)
if result_type.is_reference:
result_type = result_type.ref_base_type
if result_type.is_pyobject:
# In theory, any specific Python type is always safe to
# infer. However, inferring str can cause some existing code
# to break, since we are also now much more strict about
# coercion from str to char *. See trac #553.
if result_type.name == 'str':
return py_object_type
else:
return result_type
elif result_type is PyrexTypes.c_double_type:
# Python's float type is just a C double, so it's safe to use
# the C type instead
return result_type
elif result_type is PyrexTypes.c_bint_type:
# find_spanning_type() only returns 'bint' for clean boolean
# operations without other int types, so this is safe, too
return result_type
elif result_type.is_ptr and not (result_type.is_int and result_type.rank == 0):
# Any pointer except (signed|unsigned|) char* can't implicitly
# become a PyObject.
return result_type
elif result_type.is_cpp_class:
# These can't implicitly become Python objects either.
return result_type
elif result_type.is_struct:
# Though we have struct -> object for some structs, this is uncommonly
# used, won't arise in pure Python, and there shouldn't be side
# effects, so I'm declaring this safe.
return result_type
# TODO: double complex should be OK as well, but we need
# to make sure everything is supported.
elif result_type.is_int and not might_overflow:
return result_type
return py_object_type
def get_type_inferer():
return SimpleAssignmentTypeInferer()
|