File: PyrexTypes.py

package info (click to toggle)
cython 0.21.1-1
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 23,804 kB
  • ctags: 31,405
  • sloc: python: 55,862; ansic: 8,318; xml: 1,031; cpp: 777; makefile: 383; lisp: 206; sh: 7
file content (3909 lines) | stat: -rw-r--r-- 138,121 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
#
#   Cython/Python language types
#

from __future__ import absolute_import

import copy

from .Code import UtilityCode, LazyUtilityCode, TempitaUtilityCode
from . import StringEncoding
from . import Naming

from .Errors import error


class BaseType(object):
    #
    #  Base class for all Cython types including pseudo-types.

    # List of attribute names of any subtypes
    subtypes = []

    def can_coerce_to_pyobject(self, env):
        return False

    def cast_code(self, expr_code):
        return "((%s)%s)" % (self.declaration_code(""), expr_code)

    def specialization_name(self):
        # This is not entirely robust.
        safe = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_0123456789'
        all = []
        for c in self.declaration_code("").replace("unsigned ", "unsigned_").replace("long long", "long_long").replace(" ", "__"):
            if c in safe:
                all.append(c)
            else:
                all.append('_%x_' % ord(c))
        return ''.join(all)

    def base_declaration_code(self, base_code, entity_code):
        if entity_code:
            return "%s %s" % (base_code, entity_code)
        else:
            return base_code

    def __deepcopy__(self, memo):
        """
        Types never need to be copied, if we do copy, Unfortunate Things
        Will Happen!
        """
        return self

    def get_fused_types(self, result=None, seen=None, subtypes=None):
        subtypes = subtypes or self.subtypes
        if not subtypes:
            return None

        if result is None:
            result = []
            seen = set()

        for attr in subtypes:
            list_or_subtype = getattr(self, attr)
            if list_or_subtype:
                if isinstance(list_or_subtype, BaseType):
                    list_or_subtype.get_fused_types(result, seen)
                else:
                    for subtype in list_or_subtype:
                        subtype.get_fused_types(result, seen)

        return result

    def specialize_fused(self, env):
        if env.fused_to_specific:
            return self.specialize(env.fused_to_specific)

        return self

    @property
    def is_fused(self):
        """
        Whether this type or any of its subtypes is a fused type
        """
        # Add this indirection for the is_fused property to allow overriding
        # get_fused_types in subclasses.
        return self.get_fused_types()

    def deduce_template_params(self, actual):
        """
        Deduce any template params in this (argument) type given the actual
        argument type.

        http://en.cppreference.com/w/cpp/language/function_template#Template_argument_deduction
        """
        if self == actual:
            return {}
        else:
            return None

    def __lt__(self, other):
        """
        For sorting. The sorting order should correspond to the preference of
        conversion from Python types.

        Override to provide something sensible. This is only implemented so that
        python 3 doesn't trip
        """
        return id(type(self)) < id(type(other))

    def py_type_name(self):
        """
        Return the name of the Python type that can coerce to this type.
        """

    def typeof_name(self):
        """
        Return the string with which fused python functions can be indexed.
        """
        if self.is_builtin_type or self.py_type_name() == 'object':
            index_name = self.py_type_name()
        else:
            index_name = str(self)

        return index_name

    def check_for_null_code(self, cname):
        """
        Return the code for a NULL-check in case an UnboundLocalError should
        be raised if an entry of this type is referenced before assignment.
        Returns None if no check should be performed.
        """
        return None

    def invalid_value(self):
        """
        Returns the most invalid value an object of this type can assume as a
        C expression string. Returns None if no such value exists.
        """


class PyrexType(BaseType):
    #
    #  Base class for all Cython types
    #
    #  is_pyobject           boolean     Is a Python object type
    #  is_extension_type     boolean     Is a Python extension type
    #  is_final_type         boolean     Is a final extension type
    #  is_numeric            boolean     Is a C numeric type
    #  is_int                boolean     Is a C integer type
    #  is_float              boolean     Is a C floating point type
    #  is_complex            boolean     Is a C complex type
    #  is_void               boolean     Is the C void type
    #  is_array              boolean     Is a C array type
    #  is_ptr                boolean     Is a C pointer type
    #  is_null_ptr           boolean     Is the type of NULL
    #  is_reference          boolean     Is a C reference type
    #  is_const              boolean     Is a C const type.
    #  is_cfunction          boolean     Is a C function type
    #  is_struct_or_union    boolean     Is a C struct or union type
    #  is_struct             boolean     Is a C struct type
    #  is_enum               boolean     Is a C enum type
    #  is_typedef            boolean     Is a typedef type
    #  is_string             boolean     Is a C char * type
    #  is_pyunicode_ptr      boolean     Is a C PyUNICODE * type
    #  is_cpp_string         boolean     Is a C++ std::string type
    #  is_unicode_char       boolean     Is either Py_UCS4 or Py_UNICODE
    #  is_returncode         boolean     Is used only to signal exceptions
    #  is_error              boolean     Is the dummy error type
    #  is_buffer             boolean     Is buffer access type
    #  has_attributes        boolean     Has C dot-selectable attributes
    #  default_value         string      Initial value
    #  entry                 Entry       The Entry for this type
    #
    #  declaration_code(entity_code,
    #      for_display = 0, dll_linkage = None, pyrex = 0)
    #    Returns a code fragment for the declaration of an entity
    #    of this type, given a code fragment for the entity.
    #    * If for_display, this is for reading by a human in an error
    #      message; otherwise it must be valid C code.
    #    * If dll_linkage is not None, it must be 'DL_EXPORT' or
    #      'DL_IMPORT', and will be added to the base type part of
    #      the declaration.
    #    * If pyrex = 1, this is for use in a 'cdef extern'
    #      statement of a Cython include file.
    #
    #  assignable_from(src_type)
    #    Tests whether a variable of this type can be
    #    assigned a value of type src_type.
    #
    #  same_as(other_type)
    #    Tests whether this type represents the same type
    #    as other_type.
    #
    #  as_argument_type():
    #    Coerces array and C function types into pointer type for use as
    #    a formal argument type.
    #

    is_pyobject = 0
    is_unspecified = 0
    is_extension_type = 0
    is_final_type = 0
    is_builtin_type = 0
    is_numeric = 0
    is_int = 0
    is_float = 0
    is_complex = 0
    is_void = 0
    is_array = 0
    is_ptr = 0
    is_null_ptr = 0
    is_reference = 0
    is_const = 0
    is_cfunction = 0
    is_struct_or_union = 0
    is_cpp_class = 0
    is_cpp_string = 0
    is_struct = 0
    is_enum = 0
    is_typedef = 0
    is_string = 0
    is_pyunicode_ptr = 0
    is_unicode_char = 0
    is_returncode = 0
    is_error = 0
    is_buffer = 0
    is_memoryviewslice = 0
    has_attributes = 0
    default_value = ""

    def resolve(self):
        # If a typedef, returns the base type.
        return self

    def specialize(self, values):
        # TODO(danilo): Override wherever it makes sense.
        return self

    def literal_code(self, value):
        # Returns a C code fragment representing a literal
        # value of this type.
        return str(value)

    def __str__(self):
        return self.declaration_code("", for_display = 1).strip()

    def same_as(self, other_type, **kwds):
        return self.same_as_resolved_type(other_type.resolve(), **kwds)

    def same_as_resolved_type(self, other_type):
        return self == other_type or other_type is error_type

    def subtype_of(self, other_type):
        return self.subtype_of_resolved_type(other_type.resolve())

    def subtype_of_resolved_type(self, other_type):
        return self.same_as(other_type)

    def assignable_from(self, src_type):
        return self.assignable_from_resolved_type(src_type.resolve())

    def assignable_from_resolved_type(self, src_type):
        return self.same_as(src_type)

    def as_argument_type(self):
        return self

    def is_complete(self):
        # A type is incomplete if it is an unsized array,
        # a struct whose attributes are not defined, etc.
        return 1

    def is_simple_buffer_dtype(self):
        return (self.is_int or self.is_float or self.is_complex or self.is_pyobject or
                self.is_extension_type or self.is_ptr)

    def struct_nesting_depth(self):
        # Returns the number levels of nested structs. This is
        # used for constructing a stack for walking the run-time
        # type information of the struct.
        return 1

    def global_init_code(self, entry, code):
        # abstract
        pass

    def needs_nonecheck(self):
        return 0


def public_decl(base_code, dll_linkage):
    if dll_linkage:
        return "%s(%s)" % (dll_linkage, base_code)
    else:
        return base_code

def create_typedef_type(name, base_type, cname, is_external=0):
    is_fused = base_type.is_fused
    if base_type.is_complex or is_fused:
        if is_external:
            if is_fused:
                msg = "Fused"
            else:
                msg = "Complex"

            raise ValueError("%s external typedefs not supported" % msg)

        return base_type
    else:
        return CTypedefType(name, base_type, cname, is_external)


class CTypedefType(BaseType):
    #
    #  Pseudo-type defined with a ctypedef statement in a
    #  'cdef extern from' block.
    #  Delegates most attribute lookups to the base type.
    #  (Anything not defined here or in the BaseType is delegated.)
    #
    #  qualified_name      string
    #  typedef_name        string
    #  typedef_cname       string
    #  typedef_base_type   PyrexType
    #  typedef_is_external bool

    is_typedef = 1
    typedef_is_external = 0

    to_py_utility_code = None
    from_py_utility_code = None

    subtypes = ['typedef_base_type']

    def __init__(self, name, base_type, cname, is_external=0):
        assert not base_type.is_complex
        self.typedef_name = name
        self.typedef_cname = cname
        self.typedef_base_type = base_type
        self.typedef_is_external = is_external

    def invalid_value(self):
        return self.typedef_base_type.invalid_value()

    def resolve(self):
        return self.typedef_base_type.resolve()

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = self.typedef_name
        else:
            base_code = public_decl(self.typedef_cname, dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def as_argument_type(self):
        return self

    def cast_code(self, expr_code):
        # If self is really an array (rather than pointer), we can't cast.
        # For example, the gmp mpz_t.
        if self.typedef_base_type.is_array:
            base_type = self.typedef_base_type.base_type
            return CPtrType(base_type).cast_code(expr_code)
        else:
            return BaseType.cast_code(self, expr_code)

    def __repr__(self):
        return "<CTypedefType %s>" % self.typedef_cname

    def __str__(self):
        return self.typedef_name

    def _create_utility_code(self, template_utility_code,
                             template_function_name):
        type_name = self.typedef_cname.replace(" ","_").replace("::","__")
        utility_code = template_utility_code.specialize(
            type     = self.typedef_cname,
            TypeName = type_name)
        function_name = template_function_name % type_name
        return utility_code, function_name

    def create_to_py_utility_code(self, env):
        if self.typedef_is_external:
            if not self.to_py_utility_code:
                base_type = self.typedef_base_type
                if type(base_type) is CIntType:
                    self.to_py_function = "__Pyx_PyInt_From_" + self.specialization_name()
                    env.use_utility_code(TempitaUtilityCode.load(
                        "CIntToPy", "TypeConversion.c",
                        context={"TYPE": self.declaration_code(''),
                                 "TO_PY_FUNCTION": self.to_py_function}))
                    return True
                elif base_type.is_float:
                    pass # XXX implement!
                elif base_type.is_complex:
                    pass # XXX implement!
                    pass
            if self.to_py_utility_code:
                env.use_utility_code(self.to_py_utility_code)
                return True
        # delegation
        return self.typedef_base_type.create_to_py_utility_code(env)

    def create_from_py_utility_code(self, env):
        if self.typedef_is_external:
            if not self.from_py_utility_code:
                base_type = self.typedef_base_type
                if type(base_type) is CIntType:
                    self.from_py_function = "__Pyx_PyInt_As_" + self.specialization_name()
                    env.use_utility_code(TempitaUtilityCode.load(
                        "CIntFromPy", "TypeConversion.c",
                        context={"TYPE": self.declaration_code(''),
                                 "FROM_PY_FUNCTION": self.from_py_function}))
                    return True
                elif base_type.is_float:
                    pass # XXX implement!
                elif base_type.is_complex:
                    pass # XXX implement!
            if self.from_py_utility_code:
                env.use_utility_code(self.from_py_utility_code)
                return True
        # delegation
        return self.typedef_base_type.create_from_py_utility_code(env)

    def overflow_check_binop(self, binop, env, const_rhs=False):
        env.use_utility_code(UtilityCode.load("Common", "Overflow.c"))
        type = self.declaration_code("")
        name = self.specialization_name()
        if binop == "lshift":
            env.use_utility_code(TempitaUtilityCode.load(
                "LeftShift", "Overflow.c",
                context={'TYPE': type, 'NAME': name, 'SIGNED': self.signed}))
        else:
            if const_rhs:
                binop += "_const"
            _load_overflow_base(env)
            env.use_utility_code(TempitaUtilityCode.load(
                "SizeCheck", "Overflow.c",
                context={'TYPE': type, 'NAME': name}))
            env.use_utility_code(TempitaUtilityCode.load(
                "Binop", "Overflow.c",
                context={'TYPE': type, 'NAME': name, 'BINOP': binop}))
        return "__Pyx_%s_%s_checking_overflow" % (binop, name)

    def error_condition(self, result_code):
        if self.typedef_is_external:
            if self.exception_value:
                condition = "(%s == (%s)%s)" % (
                    result_code, self.typedef_cname, self.exception_value)
                if self.exception_check:
                    condition += " && PyErr_Occurred()"
                return condition
        # delegation
        return self.typedef_base_type.error_condition(result_code)

    def __getattr__(self, name):
        return getattr(self.typedef_base_type, name)

    def py_type_name(self):
        return self.typedef_base_type.py_type_name()

    def can_coerce_to_pyobject(self, env):
        return self.typedef_base_type.can_coerce_to_pyobject(env)


class MemoryViewSliceType(PyrexType):

    is_memoryviewslice = 1

    has_attributes = 1
    scope = None

    # These are special cased in Defnode
    from_py_function = None
    to_py_function = None

    exception_value = None
    exception_check = True

    subtypes = ['dtype']

    def __init__(self, base_dtype, axes):
        """
        MemoryViewSliceType(base, axes)

        Base is the C base type; axes is a list of (access, packing) strings,
        where access is one of 'full', 'direct' or 'ptr' and packing is one of
        'contig', 'strided' or 'follow'.  There is one (access, packing) tuple
        for each dimension.

        the access specifiers determine whether the array data contains
        pointers that need to be dereferenced along that axis when
        retrieving/setting:

        'direct' -- No pointers stored in this dimension.
        'ptr' -- Pointer stored in this dimension.
        'full' -- Check along this dimension, don't assume either.

        the packing specifiers specify how the array elements are layed-out
        in memory.

        'contig' -- The data are contiguous in memory along this dimension.
                At most one dimension may be specified as 'contig'.
        'strided' -- The data aren't contiguous along this dimenison.
        'follow' -- Used for C/Fortran contiguous arrays, a 'follow' dimension
            has its stride automatically computed from extents of the other
            dimensions to ensure C or Fortran memory layout.

        C-contiguous memory has 'direct' as the access spec, 'contig' as the
        *last* axis' packing spec and 'follow' for all other packing specs.

        Fortran-contiguous memory has 'direct' as the access spec, 'contig' as
        the *first* axis' packing spec and 'follow' for all other packing
        specs.
        """
        from . import MemoryView

        self.dtype = base_dtype
        self.axes = axes
        self.ndim = len(axes)
        self.flags = MemoryView.get_buf_flags(self.axes)

        self.is_c_contig, self.is_f_contig = MemoryView.is_cf_contig(self.axes)
        assert not (self.is_c_contig and self.is_f_contig)

        self.mode = MemoryView.get_mode(axes)
        self.writable_needed = False

        if not self.dtype.is_fused:
            self.dtype_name = MemoryView.mangle_dtype_name(self.dtype)

    def same_as_resolved_type(self, other_type):
        return ((other_type.is_memoryviewslice and
            self.dtype.same_as(other_type.dtype) and
            self.axes == other_type.axes) or
            other_type is error_type)

    def needs_nonecheck(self):
        return True

    def is_complete(self):
        # incomplete since the underlying struct doesn't have a cython.memoryview object.
        return 0

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        # XXX: we put these guards in for now...
        assert not pyrex
        assert not dll_linkage
        from . import MemoryView
        return self.base_declaration_code(
                MemoryView.memviewslice_cname,
                entity_code)

    def attributes_known(self):
        if self.scope is None:
            from . import Symtab

            self.scope = scope = Symtab.CClassScope(
                    'mvs_class_'+self.specialization_suffix(),
                    None,
                    visibility='extern')

            scope.parent_type = self
            scope.directives = {}

            scope.declare_var('_data', c_char_ptr_type, None,
                              cname='data', is_cdef=1)

        return True

    def declare_attribute(self, attribute, env, pos):
        from . import MemoryView, Options

        scope = self.scope

        if attribute == 'shape':
            scope.declare_var('shape',
                    c_array_type(c_py_ssize_t_type,
                                 Options.buffer_max_dims),
                    pos,
                    cname='shape',
                    is_cdef=1)

        elif attribute == 'strides':
            scope.declare_var('strides',
                    c_array_type(c_py_ssize_t_type,
                                 Options.buffer_max_dims),
                    pos,
                    cname='strides',
                    is_cdef=1)

        elif attribute == 'suboffsets':
            scope.declare_var('suboffsets',
                    c_array_type(c_py_ssize_t_type,
                                 Options.buffer_max_dims),
                    pos,
                    cname='suboffsets',
                    is_cdef=1)

        elif attribute in ("copy", "copy_fortran"):
            ndim = len(self.axes)

            to_axes_c = [('direct', 'contig')]
            to_axes_f = [('direct', 'contig')]
            if ndim - 1:
                to_axes_c = [('direct', 'follow')]*(ndim-1) + to_axes_c
                to_axes_f = to_axes_f + [('direct', 'follow')]*(ndim-1)

            to_memview_c = MemoryViewSliceType(self.dtype, to_axes_c)
            to_memview_f = MemoryViewSliceType(self.dtype, to_axes_f)

            for to_memview, cython_name in [(to_memview_c, "copy"),
                                            (to_memview_f, "copy_fortran")]:
                entry = scope.declare_cfunction(cython_name,
                            CFuncType(self, [CFuncTypeArg("memviewslice", self, None)]),
                            pos=pos,
                            defining=1,
                            cname=MemoryView.copy_c_or_fortran_cname(to_memview))

                #entry.utility_code_definition = \
                env.use_utility_code(MemoryView.get_copy_new_utility(pos, self, to_memview))

            MemoryView.use_cython_array_utility_code(env)

        elif attribute in ("is_c_contig", "is_f_contig"):
            # is_c_contig and is_f_contig functions
            for (c_or_f, cython_name) in (('c', 'is_c_contig'), ('f', 'is_f_contig')):

                is_contig_name = \
                        MemoryView.get_is_contig_func_name(c_or_f, self.ndim)

                cfunctype = CFuncType(
                        return_type=c_bint_type,
                        args=[CFuncTypeArg("memviewslice", self, None)],
                        exception_value="-1",
                )

                entry = scope.declare_cfunction(cython_name,
                            cfunctype,
                            pos=pos,
                            defining=1,
                            cname=is_contig_name)

                entry.utility_code_definition = MemoryView.get_is_contig_utility(
                                            attribute == 'is_c_contig', self.ndim)

        return True

    def specialization_suffix(self):
        return "%s_%s" % (self.axes_to_name(), self.dtype_name)

    def can_coerce_to_pyobject(self, env):
        return True

    def check_for_null_code(self, cname):
        return cname + '.memview'

    def create_from_py_utility_code(self, env):
        from . import MemoryView, Buffer

        # We don't have 'code', so use a LazyUtilityCode with a callback.
        def lazy_utility_callback(code):
            context['dtype_typeinfo'] = Buffer.get_type_information_cname(
                                                          code, self.dtype)
            return TempitaUtilityCode.load(
                        "ObjectToMemviewSlice", "MemoryView_C.c", context=context)

        env.use_utility_code(Buffer.acquire_utility_code)
        env.use_utility_code(MemoryView.memviewslice_init_code)
        env.use_utility_code(LazyUtilityCode(lazy_utility_callback))

        if self.is_c_contig:
            c_or_f_flag = "__Pyx_IS_C_CONTIG"
        elif self.is_f_contig:
            c_or_f_flag = "__Pyx_IS_F_CONTIG"
        else:
            c_or_f_flag = "0"

        suffix = self.specialization_suffix()
        funcname = "__Pyx_PyObject_to_MemoryviewSlice_" + suffix

        context = dict(
            MemoryView.context,
            buf_flag = self.flags,
            ndim = self.ndim,
            axes_specs = ', '.join(self.axes_to_code()),
            dtype_typedecl = self.dtype.declaration_code(""),
            struct_nesting_depth = self.dtype.struct_nesting_depth(),
            c_or_f_flag = c_or_f_flag,
            funcname = funcname,
        )

        self.from_py_function = funcname
        return True

    def create_to_py_utility_code(self, env):
        return True

    def get_to_py_function(self, env, obj):
        to_py_func, from_py_func = self.dtype_object_conversion_funcs(env)
        to_py_func = "(PyObject *(*)(char *)) " + to_py_func
        from_py_func = "(int (*)(char *, PyObject *)) " + from_py_func

        tup = (obj.result(), self.ndim, to_py_func, from_py_func,
               self.dtype.is_pyobject)
        return "__pyx_memoryview_fromslice(%s, %s, %s, %s, %d);" % tup

    def dtype_object_conversion_funcs(self, env):
        get_function = "__pyx_memview_get_%s" % self.dtype_name
        set_function = "__pyx_memview_set_%s" % self.dtype_name

        context = dict(
            get_function = get_function,
            set_function = set_function,
        )

        if self.dtype.is_pyobject:
            utility_name = "MemviewObjectToObject"
        else:
            to_py = self.dtype.create_to_py_utility_code(env)
            from_py = self.dtype.create_from_py_utility_code(env)
            if not (to_py or from_py):
                return "NULL", "NULL"

            if not self.dtype.to_py_function:
                get_function = "NULL"

            if not self.dtype.from_py_function:
                set_function = "NULL"

            utility_name = "MemviewDtypeToObject"
            error_condition = (self.dtype.error_condition('value') or
                               'PyErr_Occurred()')
            context.update(
                to_py_function = self.dtype.to_py_function,
                from_py_function = self.dtype.from_py_function,
                dtype = self.dtype.declaration_code(""),
                error_condition = error_condition,
            )

        utility = TempitaUtilityCode.load(
                        utility_name, "MemoryView_C.c", context=context)
        env.use_utility_code(utility)
        return get_function, set_function

    def axes_to_code(self):
        """Return a list of code constants for each axis"""
        from . import MemoryView
        d = MemoryView._spec_to_const
        return ["(%s | %s)" % (d[a], d[p]) for a, p in self.axes]

    def axes_to_name(self):
        """Return an abbreviated name for our axes"""
        from . import MemoryView
        d = MemoryView._spec_to_abbrev
        return "".join(["%s%s" % (d[a], d[p]) for a, p in self.axes])

    def error_condition(self, result_code):
        return "!%s.memview" % result_code

    def __str__(self):
        from . import MemoryView

        axes_code_list = []
        for idx, (access, packing) in enumerate(self.axes):
            flag = MemoryView.get_memoryview_flag(access, packing)
            if flag == "strided":
                axes_code_list.append(":")
            else:
                if flag == 'contiguous':
                    have_follow = [p for a, p in self.axes[idx - 1:idx + 2]
                                         if p == 'follow']
                    if have_follow or self.ndim == 1:
                        flag = '1'

                axes_code_list.append("::" + flag)

        if self.dtype.is_pyobject:
            dtype_name = self.dtype.name
        else:
            dtype_name = self.dtype

        return "%s[%s]" % (dtype_name, ", ".join(axes_code_list))

    def specialize(self, values):
        """This does not validate the base type!!"""
        dtype = self.dtype.specialize(values)
        if dtype is not self.dtype:
            return MemoryViewSliceType(dtype, self.axes)

        return self

    def cast_code(self, expr_code):
        return expr_code


class BufferType(BaseType):
    #
    #  Delegates most attribute lookups to the base type.
    #  (Anything not defined here or in the BaseType is delegated.)
    #
    # dtype            PyrexType
    # ndim             int
    # mode             str
    # negative_indices bool
    # cast             bool
    # is_buffer        bool
    # writable         bool

    is_buffer = 1
    writable = True

    subtypes = ['dtype']

    def __init__(self, base, dtype, ndim, mode, negative_indices, cast):
        self.base = base
        self.dtype = dtype
        self.ndim = ndim
        self.buffer_ptr_type = CPtrType(dtype)
        self.mode = mode
        self.negative_indices = negative_indices
        self.cast = cast

    def as_argument_type(self):
        return self

    def specialize(self, values):
        dtype = self.dtype.specialize(values)
        if dtype is not self.dtype:
            return BufferType(self.base, dtype, self.ndim, self.mode,
                              self.negative_indices, self.cast)
        return self

    def __getattr__(self, name):
        return getattr(self.base, name)

    def __repr__(self):
        return "<BufferType %r>" % self.base

    def __str__(self):
        # avoid ', ', as fused functions split the signature string on ', '
        cast_str = ''
        if self.cast:
            cast_str = ',cast=True'

        return "%s[%s,ndim=%d%s]" % (self.base, self.dtype, self.ndim,
                                      cast_str)

    def assignable_from(self, other_type):
        if other_type.is_buffer:
            return (self.same_as(other_type, compare_base=False) and
                    self.base.assignable_from(other_type.base))

        return self.base.assignable_from(other_type)

    def same_as(self, other_type, compare_base=True):
        if not other_type.is_buffer:
            return other_type.same_as(self.base)

        return (self.dtype.same_as(other_type.dtype) and
                self.ndim == other_type.ndim and
                self.mode == other_type.mode and
                self.cast == other_type.cast and
                (not compare_base or self.base.same_as(other_type.base)))


class PyObjectType(PyrexType):
    #
    #  Base class for all Python object types (reference-counted).
    #
    #  buffer_defaults  dict or None     Default options for bu

    name = "object"
    is_pyobject = 1
    default_value = "0"
    buffer_defaults = None
    is_extern = False
    is_subclassed = False
    is_gc_simple = False

    def __str__(self):
        return "Python object"

    def __repr__(self):
        return "<PyObjectType>"

    def can_coerce_to_pyobject(self, env):
        return True

    def default_coerced_ctype(self):
        """The default C type that this Python type coerces to, or None."""
        return None

    def assignable_from(self, src_type):
        # except for pointers, conversion will be attempted
        return not src_type.is_ptr or src_type.is_string or src_type.is_pyunicode_ptr

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = "object"
        else:
            base_code = public_decl("PyObject", dll_linkage)
            entity_code = "*%s" % entity_code
        return self.base_declaration_code(base_code, entity_code)

    def as_pyobject(self, cname):
        if (not self.is_complete()) or self.is_extension_type:
            return "(PyObject *)" + cname
        else:
            return cname

    def py_type_name(self):
        return "object"

    def __lt__(self, other):
        """
        Make sure we sort highest, as instance checking on py_type_name
        ('object') is always true
        """
        return False

    def global_init_code(self, entry, code):
        code.put_init_var_to_py_none(entry, nanny=False)

    def check_for_null_code(self, cname):
        return cname


builtin_types_that_cannot_create_refcycles = set([
    'bool', 'int', 'long', 'float', 'complex',
    'bytearray', 'bytes', 'unicode', 'str', 'basestring'
])


class BuiltinObjectType(PyObjectType):
    #  objstruct_cname  string           Name of PyObject struct

    is_builtin_type = 1
    has_attributes = 1
    base_type = None
    module_name = '__builtin__'

    # fields that let it look like an extension type
    vtabslot_cname = None
    vtabstruct_cname = None
    vtabptr_cname = None
    typedef_flag = True
    is_external = True

    def __init__(self, name, cname, objstruct_cname=None):
        self.name = name
        self.cname = cname
        self.typeptr_cname = "(&%s)" % cname
        self.objstruct_cname = objstruct_cname
        self.is_gc_simple = name in builtin_types_that_cannot_create_refcycles

    def set_scope(self, scope):
        self.scope = scope
        if scope:
            scope.parent_type = self

    def __str__(self):
        return "%s object" % self.name

    def __repr__(self):
        return "<%s>"% self.cname

    def default_coerced_ctype(self):
        if self.name in ('bytes', 'bytearray'):
            return c_char_ptr_type
        elif self.name == 'bool':
            return c_bint_type
        elif self.name == 'float':
            return c_double_type
        return None

    def assignable_from(self, src_type):
        if isinstance(src_type, BuiltinObjectType):
            if self.name == 'basestring':
                return src_type.name in ('str', 'unicode', 'basestring')
            else:
                return src_type.name == self.name
        elif src_type.is_extension_type:
            # FIXME: This is an ugly special case that we currently
            # keep supporting.  It allows users to specify builtin
            # types as external extension types, while keeping them
            # compatible with the real builtin types.  We already
            # generate a warning for it.  Big TODO: remove!
            return (src_type.module_name == '__builtin__' and
                    src_type.name == self.name)
        else:
            return True

    def typeobj_is_available(self):
        return True

    def attributes_known(self):
        return True

    def subtype_of(self, type):
        return type.is_pyobject and type.assignable_from(self)

    def type_check_function(self, exact=True):
        type_name = self.name
        if type_name == 'str':
            type_check = 'PyString_Check'
        elif type_name == 'basestring':
            type_check = '__Pyx_PyBaseString_Check'
        elif type_name == 'bytearray':
            type_check = 'PyByteArray_Check'
        elif type_name == 'frozenset':
            type_check = 'PyFrozenSet_Check'
        else:
            type_check = 'Py%s_Check' % type_name.capitalize()
        if exact and type_name not in ('bool', 'slice'):
            type_check += 'Exact'
        return type_check

    def isinstance_code(self, arg):
        return '%s(%s)' % (self.type_check_function(exact=False), arg)

    def type_test_code(self, arg, notnone=False, exact=True):
        type_check = self.type_check_function(exact=exact)
        check = 'likely(%s(%s))' % (type_check, arg)
        if not notnone:
            check += '||((%s) == Py_None)' % arg
        if self.name == 'basestring':
            name = '(PY_MAJOR_VERSION < 3 ? "basestring" : "str")'
            space_for_name = 16
        else:
            name = '"%s"' % self.name
            # avoid wasting too much space but limit number of different format strings
            space_for_name = (len(self.name) // 16 + 1) * 16
        error = '(PyErr_Format(PyExc_TypeError, "Expected %%.%ds, got %%.200s", %s, Py_TYPE(%s)->tp_name), 0)' % (
            space_for_name, name, arg)
        return check + '||' + error

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = self.name
        else:
            base_code = public_decl("PyObject", dll_linkage)
            entity_code = "*%s" % entity_code
        return self.base_declaration_code(base_code, entity_code)

    def cast_code(self, expr_code, to_object_struct = False):
        return "((%s*)%s)" % (
            to_object_struct and self.objstruct_cname or "PyObject", # self.objstruct_cname may be None
            expr_code)

    def py_type_name(self):
        return self.name



class PyExtensionType(PyObjectType):
    #
    #  A Python extension type.
    #
    #  name             string
    #  scope            CClassScope      Attribute namespace
    #  visibility       string
    #  typedef_flag     boolean
    #  base_type        PyExtensionType or None
    #  module_name      string or None   Qualified name of defining module
    #  objstruct_cname  string           Name of PyObject struct
    #  objtypedef_cname string           Name of PyObject struct typedef
    #  typeobj_cname    string or None   C code fragment referring to type object
    #  typeptr_cname    string or None   Name of pointer to external type object
    #  vtabslot_cname   string           Name of C method table member
    #  vtabstruct_cname string           Name of C method table struct
    #  vtabptr_cname    string           Name of pointer to C method table
    #  vtable_cname     string           Name of C method table definition
    #  defered_declarations [thunk]      Used to declare class hierarchies in order

    is_extension_type = 1
    has_attributes = 1

    objtypedef_cname = None

    def __init__(self, name, typedef_flag, base_type, is_external=0):
        self.name = name
        self.scope = None
        self.typedef_flag = typedef_flag
        if base_type is not None:
            base_type.is_subclassed = True
        self.base_type = base_type
        self.module_name = None
        self.objstruct_cname = None
        self.typeobj_cname = None
        self.typeptr_cname = None
        self.vtabslot_cname = None
        self.vtabstruct_cname = None
        self.vtabptr_cname = None
        self.vtable_cname = None
        self.is_external = is_external
        self.defered_declarations = []

    def set_scope(self, scope):
        self.scope = scope
        if scope:
            scope.parent_type = self

    def needs_nonecheck(self):
        return True

    def subtype_of_resolved_type(self, other_type):
        if other_type.is_extension_type or other_type.is_builtin_type:
            return self is other_type or (
                self.base_type and self.base_type.subtype_of(other_type))
        else:
            return other_type is py_object_type

    def typeobj_is_available(self):
        # Do we have a pointer to the type object?
        return self.typeptr_cname

    def typeobj_is_imported(self):
        # If we don't know the C name of the type object but we do
        # know which module it's defined in, it will be imported.
        return self.typeobj_cname is None and self.module_name is not None

    def assignable_from(self, src_type):
        if self == src_type:
            return True
        if isinstance(src_type, PyExtensionType):
            if src_type.base_type is not None:
                return self.assignable_from(src_type.base_type)
        if isinstance(src_type, BuiltinObjectType):
            # FIXME: This is an ugly special case that we currently
            # keep supporting.  It allows users to specify builtin
            # types as external extension types, while keeping them
            # compatible with the real builtin types.  We already
            # generate a warning for it.  Big TODO: remove!
            return (self.module_name == '__builtin__' and
                    self.name == src_type.name)
        return False

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0, deref = 0):
        if pyrex or for_display:
            base_code = self.name
        else:
            if self.typedef_flag:
                objstruct = self.objstruct_cname
            else:
                objstruct = "struct %s" % self.objstruct_cname
            base_code = public_decl(objstruct, dll_linkage)
            if deref:
                assert not entity_code
            else:
                entity_code = "*%s" % entity_code
        return self.base_declaration_code(base_code, entity_code)

    def type_test_code(self, py_arg, notnone=False):

        none_check = "((%s) == Py_None)" % py_arg
        type_check = "likely(__Pyx_TypeTest(%s, %s))" % (
            py_arg, self.typeptr_cname)
        if notnone:
            return type_check
        else:
            return "likely(%s || %s)" % (none_check, type_check)

    def attributes_known(self):
        return self.scope is not None

    def __str__(self):
        return self.name

    def __repr__(self):
        return "<PyExtensionType %s%s>" % (self.scope.class_name,
            ("", " typedef")[self.typedef_flag])

    def py_type_name(self):
        if not self.module_name:
            return self.name

        return "__import__(%r, None, None, ['']).%s" % (self.module_name,
                                                        self.name)

class CType(PyrexType):
    #
    #  Base class for all C types (non-reference-counted).
    #
    #  to_py_function     string     C function for converting to Python object
    #  from_py_function   string     C function for constructing from Python object
    #

    to_py_function = None
    from_py_function = None
    exception_value = None
    exception_check = 1

    def create_to_py_utility_code(self, env):
        return self.to_py_function is not None

    def create_from_py_utility_code(self, env):
        return self.from_py_function is not None

    def can_coerce_to_pyobject(self, env):
        return self.create_to_py_utility_code(env)

    def error_condition(self, result_code):
        conds = []
        if self.is_string or self.is_pyunicode_ptr:
            conds.append("(!%s)" % result_code)
        elif self.exception_value is not None:
            conds.append("(%s == (%s)%s)" % (result_code, self.sign_and_name(), self.exception_value))
        if self.exception_check:
            conds.append("PyErr_Occurred()")
        if len(conds) > 0:
            return " && ".join(conds)
        else:
            return 0


class CConstType(BaseType):

    is_const = 1

    def __init__(self, const_base_type):
        self.const_base_type = const_base_type
        if const_base_type.has_attributes and const_base_type.scope is not None:
            from . import Symtab
            self.scope = Symtab.CConstScope(const_base_type.scope)

    def __repr__(self):
        return "<CConstType %s>" % repr(self.const_base_type)

    def __str__(self):
        return self.declaration_code("", for_display=1)

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        return self.const_base_type.declaration_code("const %s" % entity_code, for_display, dll_linkage, pyrex)

    def specialize(self, values):
        base_type = self.const_base_type.specialize(values)
        if base_type == self.const_base_type:
            return self
        else:
            return CConstType(base_type)

    def deduce_template_params(self, actual):
        return self.const_base_type.deduce_template_params(actual)

    def create_to_py_utility_code(self, env):
        if self.const_base_type.create_to_py_utility_code(env):
            self.to_py_function = self.const_base_type.to_py_function
            return True

    def __getattr__(self, name):
        return getattr(self.const_base_type, name)


class FusedType(CType):
    """
    Represents a Fused Type. All it needs to do is keep track of the types
    it aggregates, as it will be replaced with its specific version wherever
    needed.

    See http://wiki.cython.org/enhancements/fusedtypes

    types           [PyrexType]             is the list of types to be fused
    name            str                     the name of the ctypedef
    """

    is_fused = 1
    exception_check = 0

    def __init__(self, types, name=None):
        self.types = types
        self.name = name

    def declaration_code(self, entity_code, for_display = 0,
                         dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            return self.name

        raise Exception("This may never happen, please report a bug")

    def __repr__(self):
        return 'FusedType(name=%r)' % self.name

    def specialize(self, values):
        return values[self]

    def get_fused_types(self, result=None, seen=None):
        if result is None:
            return [self]

        if self not in seen:
            result.append(self)
            seen.add(self)


class CVoidType(CType):
    #
    #   C "void" type
    #

    is_void = 1

    def __repr__(self):
        return "<CVoidType>"

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = "void"
        else:
            base_code = public_decl("void", dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def is_complete(self):
        return 0

class InvisibleVoidType(CVoidType):
    #
    #   For use with C++ constructors and destructors return types.
    #   Acts like void, but does not print out a declaration.
    #
    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = "[void]"
        else:
            base_code = public_decl("", dll_linkage)
        return self.base_declaration_code(base_code, entity_code)


class CNumericType(CType):
    #
    #   Base class for all C numeric types.
    #
    #   rank      integer     Relative size
    #   signed    integer     0 = unsigned, 1 = unspecified, 2 = explicitly signed
    #

    is_numeric = 1
    default_value = "0"
    has_attributes = True
    scope = None

    sign_words = ("unsigned ", "", "signed ")

    def __init__(self, rank, signed = 1):
        self.rank = rank
        self.signed = signed

    def sign_and_name(self):
        s = self.sign_words[self.signed]
        n = rank_to_type_name[self.rank]
        return s + n

    def __repr__(self):
        return "<CNumericType %s>" % self.sign_and_name()

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        type_name = self.sign_and_name()
        if pyrex or for_display:
            base_code = type_name.replace('PY_LONG_LONG', 'long long')
        else:
            base_code = public_decl(type_name, dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def attributes_known(self):
        if self.scope is None:
            from . import Symtab
            self.scope = scope = Symtab.CClassScope(
                    '',
                    None,
                    visibility="extern")
            scope.parent_type = self
            scope.directives = {}
            scope.declare_cfunction(
                    "conjugate",
                    CFuncType(self, [CFuncTypeArg("self", self, None)], nogil=True),
                    pos=None,
                    defining=1,
                    cname=" ")
        return True

    def __lt__(self, other):
        """Sort based on rank, preferring signed over unsigned"""
        if other.is_numeric:
            return self.rank > other.rank and self.signed >= other.signed

        # Prefer numeric types over others
        return True

    def py_type_name(self):
        if self.rank <= 4:
            return "(int, long)"
        return "float"


class ForbidUseClass:
    def __repr__(self):
        raise RuntimeError()
    def __str__(self):
        raise RuntimeError()
ForbidUse = ForbidUseClass()


class CIntType(CNumericType):

    is_int = 1
    typedef_flag = 0
    to_py_function = None
    from_py_function = None
    exception_value = -1

    def create_to_py_utility_code(self, env):
        if type(self).to_py_function is None:
            self.to_py_function = "__Pyx_PyInt_From_" + self.specialization_name()
            env.use_utility_code(TempitaUtilityCode.load(
                "CIntToPy", "TypeConversion.c",
                context={"TYPE": self.declaration_code(''),
                         "TO_PY_FUNCTION": self.to_py_function}))
        return True

    def create_from_py_utility_code(self, env):
        if type(self).from_py_function is None:
            self.from_py_function = "__Pyx_PyInt_As_" + self.specialization_name()
            env.use_utility_code(TempitaUtilityCode.load(
                "CIntFromPy", "TypeConversion.c",
                context={"TYPE": self.declaration_code(''),
                         "FROM_PY_FUNCTION": self.from_py_function}))
        return True

    def get_to_py_type_conversion(self):
        if self.rank < list(rank_to_type_name).index('int'):
            # This assumes sizeof(short) < sizeof(int)
            return "PyInt_FromLong"
        else:
            # Py{Int|Long}_From[Unsigned]Long[Long]
            Prefix = "Int"
            SignWord = ""
            TypeName = "Long"
            if not self.signed:
                Prefix = "Long"
                SignWord = "Unsigned"
            if self.rank >= list(rank_to_type_name).index('PY_LONG_LONG'):
                Prefix = "Long"
                TypeName = "LongLong"
            return "Py%s_From%s%s" % (Prefix, SignWord, TypeName)

    def assignable_from_resolved_type(self, src_type):
        return src_type.is_int or src_type.is_enum or src_type is error_type

    def invalid_value(self):
        if rank_to_type_name[int(self.rank)] == 'char':
            return "'?'"
        else:
            # We do not really know the size of the type, so return
            # a 32-bit literal and rely on casting to final type. It will
            # be negative for signed ints, which is good.
            return "0xbad0bad0"

    def overflow_check_binop(self, binop, env, const_rhs=False):
        env.use_utility_code(UtilityCode.load("Common", "Overflow.c"))
        type = self.declaration_code("")
        name = self.specialization_name()
        if binop == "lshift":
            env.use_utility_code(TempitaUtilityCode.load(
                "LeftShift", "Overflow.c",
                context={'TYPE': type, 'NAME': name, 'SIGNED': self.signed}))
        else:
            if const_rhs:
                binop += "_const"
            if type in ('int', 'long', 'long long'):
                env.use_utility_code(TempitaUtilityCode.load(
                    "BaseCaseSigned", "Overflow.c",
                    context={'INT': type, 'NAME': name}))
            elif type in ('unsigned int', 'unsigned long', 'unsigned long long'):
                env.use_utility_code(TempitaUtilityCode.load(
                    "BaseCaseUnsigned", "Overflow.c",
                    context={'UINT': type, 'NAME': name}))
            elif self.rank <= 1:
                # sizeof(short) < sizeof(int)
                return "__Pyx_%s_%s_no_overflow" % (binop, name)
            else:
                _load_overflow_base(env)
                env.use_utility_code(TempitaUtilityCode.load(
                    "SizeCheck", "Overflow.c",
                    context={'TYPE': type, 'NAME': name}))
                env.use_utility_code(TempitaUtilityCode.load(
                    "Binop", "Overflow.c",
                    context={'TYPE': type, 'NAME': name, 'BINOP': binop}))
        return "__Pyx_%s_%s_checking_overflow" % (binop, name)

def _load_overflow_base(env):
    env.use_utility_code(UtilityCode.load("Common", "Overflow.c"))
    for type in ('int', 'long', 'long long'):
        env.use_utility_code(TempitaUtilityCode.load(
            "BaseCaseSigned", "Overflow.c",
            context={'INT': type, 'NAME': type.replace(' ', '_')}))
    for type in ('unsigned int', 'unsigned long', 'unsigned long long'):
        env.use_utility_code(TempitaUtilityCode.load(
            "BaseCaseUnsigned", "Overflow.c",
            context={'UINT': type, 'NAME': type.replace(' ', '_')}))


class CAnonEnumType(CIntType):

    is_enum = 1

    def sign_and_name(self):
        return 'int'


class CReturnCodeType(CIntType):

    to_py_function = "__Pyx_Owned_Py_None"

    is_returncode = True
    exception_check = False


class CBIntType(CIntType):

    to_py_function = "__Pyx_PyBool_FromLong"
    from_py_function = "__Pyx_PyObject_IsTrue"
    exception_check = 1 # for C++ bool

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = 'bool'
        else:
            base_code = public_decl('int', dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def __repr__(self):
        return "<CNumericType bint>"

    def __str__(self):
        return 'bint'

    def py_type_name(self):
        return "bool"


class CPyUCS4IntType(CIntType):
    # Py_UCS4

    is_unicode_char = True

    # Py_UCS4 coerces from and to single character unicode strings (or
    # at most two characters on 16bit Unicode builds), but we also
    # allow Python integers as input.  The value range for Py_UCS4
    # is 0..1114111, which is checked when converting from an integer
    # value.

    to_py_function = "PyUnicode_FromOrdinal"
    from_py_function = "__Pyx_PyObject_AsPy_UCS4"

    def create_from_py_utility_code(self, env):
        env.use_utility_code(UtilityCode.load_cached("ObjectAsUCS4", "TypeConversion.c"))
        return True

    def sign_and_name(self):
        return "Py_UCS4"


class CPyUnicodeIntType(CIntType):
    # Py_UNICODE

    is_unicode_char = True

    # Py_UNICODE coerces from and to single character unicode strings,
    # but we also allow Python integers as input.  The value range for
    # Py_UNICODE is 0..1114111, which is checked when converting from
    # an integer value.

    to_py_function = "PyUnicode_FromOrdinal"
    from_py_function = "__Pyx_PyObject_AsPy_UNICODE"

    def create_from_py_utility_code(self, env):
        env.use_utility_code(UtilityCode.load_cached("ObjectAsPyUnicode", "TypeConversion.c"))
        return True

    def sign_and_name(self):
        return "Py_UNICODE"


class CPyHashTType(CIntType):

    to_py_function = "__Pyx_PyInt_FromHash_t"
    from_py_function = "__Pyx_PyInt_AsHash_t"

    def sign_and_name(self):
        return "Py_hash_t"

class CPySSizeTType(CIntType):

    to_py_function = "PyInt_FromSsize_t"
    from_py_function = "__Pyx_PyIndex_AsSsize_t"

    def sign_and_name(self):
        return "Py_ssize_t"

class CSSizeTType(CIntType):

    to_py_function = "PyInt_FromSsize_t"
    from_py_function = "PyInt_AsSsize_t"

    def sign_and_name(self):
        return "Py_ssize_t"

class CSizeTType(CIntType):

    to_py_function = "__Pyx_PyInt_FromSize_t"

    def sign_and_name(self):
        return "size_t"

class CPtrdiffTType(CIntType):

    def sign_and_name(self):
        return "ptrdiff_t"


class CFloatType(CNumericType):

    is_float = 1
    to_py_function = "PyFloat_FromDouble"
    from_py_function = "__pyx_PyFloat_AsDouble"

    exception_value = -1

    def __init__(self, rank, math_h_modifier = ''):
        CNumericType.__init__(self, rank, 1)
        self.math_h_modifier = math_h_modifier
        if rank == RANK_FLOAT:
            self.from_py_function = "__pyx_PyFloat_AsFloat"

    def assignable_from_resolved_type(self, src_type):
        return (src_type.is_numeric and not src_type.is_complex) or src_type is error_type

    def invalid_value(self):
        return Naming.PYX_NAN

class CComplexType(CNumericType):

    is_complex = 1
    to_py_function = "__pyx_PyComplex_FromComplex"
    has_attributes = 1
    scope = None

    def __init__(self, real_type):
        while real_type.is_typedef and not real_type.typedef_is_external:
            real_type = real_type.typedef_base_type
        if real_type.is_typedef and real_type.typedef_is_external:
            # The below is not actually used: Coercions are currently disabled
            # so that complex types of external types can not be created
            self.funcsuffix = "_%s" % real_type.specialization_name()
        elif hasattr(real_type, 'math_h_modifier'):
            self.funcsuffix = real_type.math_h_modifier
        else:
            self.funcsuffix = "_%s" % real_type.specialization_name()

        self.real_type = real_type
        CNumericType.__init__(self, real_type.rank + 0.5, real_type.signed)
        self.binops = {}
        self.from_parts = "%s_from_parts" % self.specialization_name()
        self.default_value = "%s(0, 0)" % self.from_parts

    def __eq__(self, other):
        if isinstance(self, CComplexType) and isinstance(other, CComplexType):
            return self.real_type == other.real_type
        else:
            return False

    def __ne__(self, other):
        if isinstance(self, CComplexType) and isinstance(other, CComplexType):
            return self.real_type != other.real_type
        else:
            return True

    def __lt__(self, other):
        if isinstance(self, CComplexType) and isinstance(other, CComplexType):
            return self.real_type < other.real_type
        else:
            # this is arbitrary, but it makes sure we always have
            # *some* kind of order
            return False

    def __hash__(self):
        return ~hash(self.real_type)

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            real_code = self.real_type.declaration_code("", for_display, dll_linkage, pyrex)
            base_code = "%s complex" % real_code
        else:
            base_code = public_decl(self.sign_and_name(), dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def sign_and_name(self):
        real_type_name = self.real_type.specialization_name()
        real_type_name = real_type_name.replace('long__double','long_double')
        real_type_name = real_type_name.replace('PY_LONG_LONG','long_long')
        return Naming.type_prefix + real_type_name + "_complex"

    def assignable_from(self, src_type):
        # Temporary hack/feature disabling, see #441
        if (not src_type.is_complex and src_type.is_numeric and src_type.is_typedef
            and src_type.typedef_is_external):
             return False
        else:
            return super(CComplexType, self).assignable_from(src_type)

    def assignable_from_resolved_type(self, src_type):
        return (src_type.is_complex and self.real_type.assignable_from_resolved_type(src_type.real_type)
                    or src_type.is_numeric and self.real_type.assignable_from_resolved_type(src_type)
                    or src_type is error_type)

    def attributes_known(self):
        if self.scope is None:
            from . import Symtab
            self.scope = scope = Symtab.CClassScope(
                    '',
                    None,
                    visibility="extern")
            scope.parent_type = self
            scope.directives = {}
            scope.declare_var("real", self.real_type, None, cname="real", is_cdef=True)
            scope.declare_var("imag", self.real_type, None, cname="imag", is_cdef=True)
            scope.declare_cfunction(
                    "conjugate",
                    CFuncType(self, [CFuncTypeArg("self", self, None)], nogil=True),
                    pos=None,
                    defining=1,
                    cname="__Pyx_c_conj%s" % self.funcsuffix)

        return True

    def create_declaration_utility_code(self, env):
        # This must always be run, because a single CComplexType instance can be shared
        # across multiple compilations (the one created in the module scope)
        env.use_utility_code(complex_header_utility_code)
        env.use_utility_code(complex_real_imag_utility_code)
        for utility_code in (complex_type_utility_code,
                             complex_from_parts_utility_code,
                             complex_arithmetic_utility_code):
            env.use_utility_code(
                utility_code.specialize(
                    self,
                    real_type = self.real_type.declaration_code(''),
                    m = self.funcsuffix,
                    is_float = self.real_type.is_float))
        return True

    def create_to_py_utility_code(self, env):
        env.use_utility_code(complex_real_imag_utility_code)
        env.use_utility_code(complex_to_py_utility_code)
        return True

    def create_from_py_utility_code(self, env):
        self.real_type.create_from_py_utility_code(env)

        for utility_code in (complex_from_parts_utility_code,
                             complex_from_py_utility_code):
            env.use_utility_code(
                utility_code.specialize(
                    self,
                    real_type = self.real_type.declaration_code(''),
                    m = self.funcsuffix,
                    is_float = self.real_type.is_float))
        self.from_py_function = "__Pyx_PyComplex_As_" + self.specialization_name()
        return True

    def lookup_op(self, nargs, op):
        try:
            return self.binops[nargs, op]
        except KeyError:
            pass
        try:
            op_name = complex_ops[nargs, op]
            self.binops[nargs, op] = func_name = "__Pyx_c_%s%s" % (op_name, self.funcsuffix)
            return func_name
        except KeyError:
            return None

    def unary_op(self, op):
        return self.lookup_op(1, op)

    def binary_op(self, op):
        return self.lookup_op(2, op)

    def py_type_name(self):
        return "complex"

    def cast_code(self, expr_code):
        return expr_code

complex_ops = {
    (1, '-'): 'neg',
    (1, 'zero'): 'is_zero',
    (2, '+'): 'sum',
    (2, '-'): 'diff',
    (2, '*'): 'prod',
    (2, '/'): 'quot',
    (2, '=='): 'eq',
}

complex_header_utility_code = UtilityCode(
proto_block='h_code',
proto="""
#if !defined(CYTHON_CCOMPLEX)
  #if defined(__cplusplus)
    #define CYTHON_CCOMPLEX 1
  #elif defined(_Complex_I)
    #define CYTHON_CCOMPLEX 1
  #else
    #define CYTHON_CCOMPLEX 0
  #endif
#endif

#if CYTHON_CCOMPLEX
  #ifdef __cplusplus
    #include <complex>
  #else
    #include <complex.h>
  #endif
#endif

#if CYTHON_CCOMPLEX && !defined(__cplusplus) && defined(__sun__) && defined(__GNUC__)
  #undef _Complex_I
  #define _Complex_I 1.0fj
#endif
""")

complex_real_imag_utility_code = UtilityCode(
proto="""
#if CYTHON_CCOMPLEX
  #ifdef __cplusplus
    #define __Pyx_CREAL(z) ((z).real())
    #define __Pyx_CIMAG(z) ((z).imag())
  #else
    #define __Pyx_CREAL(z) (__real__(z))
    #define __Pyx_CIMAG(z) (__imag__(z))
  #endif
#else
    #define __Pyx_CREAL(z) ((z).real)
    #define __Pyx_CIMAG(z) ((z).imag)
#endif

#if (defined(_WIN32) || defined(__clang__)) && defined(__cplusplus) && CYTHON_CCOMPLEX
    #define __Pyx_SET_CREAL(z,x) ((z).real(x))
    #define __Pyx_SET_CIMAG(z,y) ((z).imag(y))
#else
    #define __Pyx_SET_CREAL(z,x) __Pyx_CREAL(z) = (x)
    #define __Pyx_SET_CIMAG(z,y) __Pyx_CIMAG(z) = (y)
#endif
""")

complex_type_utility_code = UtilityCode(
proto_block='complex_type_declarations',
proto="""
#if CYTHON_CCOMPLEX
  #ifdef __cplusplus
    typedef ::std::complex< %(real_type)s > %(type_name)s;
  #else
    typedef %(real_type)s _Complex %(type_name)s;
  #endif
#else
    typedef struct { %(real_type)s real, imag; } %(type_name)s;
#endif
""")

complex_from_parts_utility_code = UtilityCode(
proto_block='utility_code_proto',
proto="""
static CYTHON_INLINE %(type)s %(type_name)s_from_parts(%(real_type)s, %(real_type)s);
""",
impl="""
#if CYTHON_CCOMPLEX
  #ifdef __cplusplus
    static CYTHON_INLINE %(type)s %(type_name)s_from_parts(%(real_type)s x, %(real_type)s y) {
      return ::std::complex< %(real_type)s >(x, y);
    }
  #else
    static CYTHON_INLINE %(type)s %(type_name)s_from_parts(%(real_type)s x, %(real_type)s y) {
      return x + y*(%(type)s)_Complex_I;
    }
  #endif
#else
    static CYTHON_INLINE %(type)s %(type_name)s_from_parts(%(real_type)s x, %(real_type)s y) {
      %(type)s z;
      z.real = x;
      z.imag = y;
      return z;
    }
#endif
""")

complex_to_py_utility_code = UtilityCode(
proto="""
#define __pyx_PyComplex_FromComplex(z) \\
        PyComplex_FromDoubles((double)__Pyx_CREAL(z), \\
                              (double)__Pyx_CIMAG(z))
""")

complex_from_py_utility_code = UtilityCode(
proto="""
static %(type)s __Pyx_PyComplex_As_%(type_name)s(PyObject*);
""",
impl="""
static %(type)s __Pyx_PyComplex_As_%(type_name)s(PyObject* o) {
    Py_complex cval;
#if CYTHON_COMPILING_IN_CPYTHON
    if (PyComplex_CheckExact(o))
        cval = ((PyComplexObject *)o)->cval;
    else
#endif
        cval = PyComplex_AsCComplex(o);
    return %(type_name)s_from_parts(
               (%(real_type)s)cval.real,
               (%(real_type)s)cval.imag);
}
""")

complex_arithmetic_utility_code = UtilityCode(
proto="""
#if CYTHON_CCOMPLEX
    #define __Pyx_c_eq%(m)s(a, b)   ((a)==(b))
    #define __Pyx_c_sum%(m)s(a, b)  ((a)+(b))
    #define __Pyx_c_diff%(m)s(a, b) ((a)-(b))
    #define __Pyx_c_prod%(m)s(a, b) ((a)*(b))
    #define __Pyx_c_quot%(m)s(a, b) ((a)/(b))
    #define __Pyx_c_neg%(m)s(a)     (-(a))
  #ifdef __cplusplus
    #define __Pyx_c_is_zero%(m)s(z) ((z)==(%(real_type)s)0)
    #define __Pyx_c_conj%(m)s(z)    (::std::conj(z))
    #if %(is_float)s
        #define __Pyx_c_abs%(m)s(z)     (::std::abs(z))
        #define __Pyx_c_pow%(m)s(a, b)  (::std::pow(a, b))
    #endif
  #else
    #define __Pyx_c_is_zero%(m)s(z) ((z)==0)
    #define __Pyx_c_conj%(m)s(z)    (conj%(m)s(z))
    #if %(is_float)s
        #define __Pyx_c_abs%(m)s(z)     (cabs%(m)s(z))
        #define __Pyx_c_pow%(m)s(a, b)  (cpow%(m)s(a, b))
    #endif
 #endif
#else
    static CYTHON_INLINE int __Pyx_c_eq%(m)s(%(type)s, %(type)s);
    static CYTHON_INLINE %(type)s __Pyx_c_sum%(m)s(%(type)s, %(type)s);
    static CYTHON_INLINE %(type)s __Pyx_c_diff%(m)s(%(type)s, %(type)s);
    static CYTHON_INLINE %(type)s __Pyx_c_prod%(m)s(%(type)s, %(type)s);
    static CYTHON_INLINE %(type)s __Pyx_c_quot%(m)s(%(type)s, %(type)s);
    static CYTHON_INLINE %(type)s __Pyx_c_neg%(m)s(%(type)s);
    static CYTHON_INLINE int __Pyx_c_is_zero%(m)s(%(type)s);
    static CYTHON_INLINE %(type)s __Pyx_c_conj%(m)s(%(type)s);
    #if %(is_float)s
        static CYTHON_INLINE %(real_type)s __Pyx_c_abs%(m)s(%(type)s);
        static CYTHON_INLINE %(type)s __Pyx_c_pow%(m)s(%(type)s, %(type)s);
    #endif
#endif
""",
impl="""
#if CYTHON_CCOMPLEX
#else
    static CYTHON_INLINE int __Pyx_c_eq%(m)s(%(type)s a, %(type)s b) {
       return (a.real == b.real) && (a.imag == b.imag);
    }
    static CYTHON_INLINE %(type)s __Pyx_c_sum%(m)s(%(type)s a, %(type)s b) {
        %(type)s z;
        z.real = a.real + b.real;
        z.imag = a.imag + b.imag;
        return z;
    }
    static CYTHON_INLINE %(type)s __Pyx_c_diff%(m)s(%(type)s a, %(type)s b) {
        %(type)s z;
        z.real = a.real - b.real;
        z.imag = a.imag - b.imag;
        return z;
    }
    static CYTHON_INLINE %(type)s __Pyx_c_prod%(m)s(%(type)s a, %(type)s b) {
        %(type)s z;
        z.real = a.real * b.real - a.imag * b.imag;
        z.imag = a.real * b.imag + a.imag * b.real;
        return z;
    }
    static CYTHON_INLINE %(type)s __Pyx_c_quot%(m)s(%(type)s a, %(type)s b) {
        %(type)s z;
        %(real_type)s denom = b.real * b.real + b.imag * b.imag;
        z.real = (a.real * b.real + a.imag * b.imag) / denom;
        z.imag = (a.imag * b.real - a.real * b.imag) / denom;
        return z;
    }
    static CYTHON_INLINE %(type)s __Pyx_c_neg%(m)s(%(type)s a) {
        %(type)s z;
        z.real = -a.real;
        z.imag = -a.imag;
        return z;
    }
    static CYTHON_INLINE int __Pyx_c_is_zero%(m)s(%(type)s a) {
       return (a.real == 0) && (a.imag == 0);
    }
    static CYTHON_INLINE %(type)s __Pyx_c_conj%(m)s(%(type)s a) {
        %(type)s z;
        z.real =  a.real;
        z.imag = -a.imag;
        return z;
    }
    #if %(is_float)s
        static CYTHON_INLINE %(real_type)s __Pyx_c_abs%(m)s(%(type)s z) {
          #if !defined(HAVE_HYPOT) || defined(_MSC_VER)
            return sqrt%(m)s(z.real*z.real + z.imag*z.imag);
          #else
            return hypot%(m)s(z.real, z.imag);
          #endif
        }
        static CYTHON_INLINE %(type)s __Pyx_c_pow%(m)s(%(type)s a, %(type)s b) {
            %(type)s z;
            %(real_type)s r, lnr, theta, z_r, z_theta;
            if (b.imag == 0 && b.real == (int)b.real) {
                if (b.real < 0) {
                    %(real_type)s denom = a.real * a.real + a.imag * a.imag;
                    a.real = a.real / denom;
                    a.imag = -a.imag / denom;
                    b.real = -b.real;
                }
                switch ((int)b.real) {
                    case 0:
                        z.real = 1;
                        z.imag = 0;
                        return z;
                    case 1:
                        return a;
                    case 2:
                        z = __Pyx_c_prod%(m)s(a, a);
                        return __Pyx_c_prod%(m)s(a, a);
                    case 3:
                        z = __Pyx_c_prod%(m)s(a, a);
                        return __Pyx_c_prod%(m)s(z, a);
                    case 4:
                        z = __Pyx_c_prod%(m)s(a, a);
                        return __Pyx_c_prod%(m)s(z, z);
                }
            }
            if (a.imag == 0) {
                if (a.real == 0) {
                    return a;
                }
                r = a.real;
                theta = 0;
            } else {
                r = __Pyx_c_abs%(m)s(a);
                theta = atan2%(m)s(a.imag, a.real);
            }
            lnr = log%(m)s(r);
            z_r = exp%(m)s(lnr * b.real - theta * b.imag);
            z_theta = theta * b.real + lnr * b.imag;
            z.real = z_r * cos%(m)s(z_theta);
            z.imag = z_r * sin%(m)s(z_theta);
            return z;
        }
    #endif
#endif
""")

class CPointerBaseType(CType):
    # common base type for pointer/array types
    #
    #  base_type     CType              Reference type

    subtypes = ['base_type']

    def __init__(self, base_type):
        self.base_type = base_type
        for char_type in (c_char_type, c_uchar_type, c_schar_type):
            if base_type.same_as(char_type):
                self.is_string = 1
                break
        else:
            if base_type.same_as(c_py_unicode_type):
                self.is_pyunicode_ptr = 1

        if self.is_string and not base_type.is_error:
            if base_type.signed:
                self.to_py_function = "__Pyx_PyObject_FromString"
                if self.is_ptr:
                    if base_type.signed == 2:
                        self.from_py_function = "__Pyx_PyObject_AsSString"
                    else:
                        self.from_py_function = "__Pyx_PyObject_AsString"
            else:
                self.to_py_function = "__Pyx_PyObject_FromUString"
                if self.is_ptr:
                    self.from_py_function = "__Pyx_PyObject_AsUString"
            self.exception_value = "NULL"
        elif self.is_pyunicode_ptr and not base_type.is_error:
            self.to_py_function = "__Pyx_PyUnicode_FromUnicode"
            if self.is_ptr:
                self.from_py_function = "__Pyx_PyUnicode_AsUnicode"
            self.exception_value = "NULL"

    def py_type_name(self):
        if self.is_string:
            return "bytes"
        elif self.is_pyunicode_ptr:
            return "unicode"
        else:
            return super(CPointerBaseType, self).py_type_name()

    def literal_code(self, value):
        if self.is_string:
            assert isinstance(value, str)
            return '"%s"' % StringEncoding.escape_byte_string(value)


class CArrayType(CPointerBaseType):
    #  base_type     CType              Element type
    #  size          integer or None    Number of elements

    is_array = 1

    def __init__(self, base_type, size):
        super(CArrayType, self).__init__(base_type)
        self.size = size

    def __eq__(self, other):
        if isinstance(other, CType) and other.is_array and self.size == other.size:
            return self.base_type.same_as(other.base_type)
        return False

    def __hash__(self):
        return hash(self.base_type) + 28 # arbitrarily chosen offset

    def __repr__(self):
        return "<CArrayType %s %s>" % (self.size, repr(self.base_type))

    def same_as_resolved_type(self, other_type):
        return ((other_type.is_array and
            self.base_type.same_as(other_type.base_type))
                or other_type is error_type)

    def assignable_from_resolved_type(self, src_type):
        # Can't assign to a variable of an array type
        return 0

    def element_ptr_type(self):
        return c_ptr_type(self.base_type)

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if self.size is not None:
            dimension_code = self.size
        else:
            dimension_code = ""
        if entity_code.startswith("*"):
            entity_code = "(%s)" % entity_code
        return self.base_type.declaration_code(
            "%s[%s]" % (entity_code, dimension_code),
            for_display, dll_linkage, pyrex)

    def as_argument_type(self):
        return c_ptr_type(self.base_type)

    def is_complete(self):
        return self.size is not None

    def specialize(self, values):
        base_type = self.base_type.specialize(values)
        if base_type == self.base_type:
            return self
        else:
            return CArrayType(base_type)

    def deduce_template_params(self, actual):
        if isinstance(actual, CArrayType):
            return self.base_type.deduce_template_params(actual.base_type)
        else:
            return None


class CPtrType(CPointerBaseType):
    #  base_type     CType              Reference type

    is_ptr = 1
    default_value = "0"

    def __hash__(self):
        return hash(self.base_type) + 27 # arbitrarily chosen offset

    def __eq__(self, other):
        if isinstance(other, CType) and other.is_ptr:
            return self.base_type.same_as(other.base_type)
        return False

    def __ne__(self, other):
        return not (self == other)

    def __repr__(self):
        return "<CPtrType %s>" % repr(self.base_type)

    def same_as_resolved_type(self, other_type):
        return ((other_type.is_ptr and
            self.base_type.same_as(other_type.base_type))
                or other_type is error_type)

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        #print "CPtrType.declaration_code: pointer to", self.base_type ###
        return self.base_type.declaration_code(
            "*%s" % entity_code,
            for_display, dll_linkage, pyrex)

    def assignable_from_resolved_type(self, other_type):
        if other_type is error_type:
            return 1
        if other_type.is_null_ptr:
            return 1
        if self.base_type.is_const:
            self = CPtrType(self.base_type.const_base_type)
        if self.base_type.is_cfunction:
            if other_type.is_ptr:
                other_type = other_type.base_type.resolve()
            if other_type.is_cfunction:
                return self.base_type.pointer_assignable_from_resolved_type(other_type)
            else:
                return 0
        if (self.base_type.is_cpp_class and other_type.is_ptr
                and other_type.base_type.is_cpp_class and other_type.base_type.is_subclass(self.base_type)):
            return 1
        if other_type.is_array or other_type.is_ptr:
            return self.base_type.is_void or self.base_type.same_as(other_type.base_type)
        return 0

    def specialize(self, values):
        base_type = self.base_type.specialize(values)
        if base_type == self.base_type:
            return self
        else:
            return CPtrType(base_type)

    def deduce_template_params(self, actual):
        if isinstance(actual, CPtrType):
            return self.base_type.deduce_template_params(actual.base_type)
        else:
            return None

    def invalid_value(self):
        return "1"

    def find_cpp_operation_type(self, operator, operand_type=None):
        if self.base_type.is_cpp_class:
            return self.base_type.find_cpp_operation_type(operator, operand_type)
        return None

class CNullPtrType(CPtrType):

    is_null_ptr = 1


class CReferenceType(BaseType):

    is_reference = 1

    def __init__(self, base_type):
        self.ref_base_type = base_type

    def __repr__(self):
        return "<CReferenceType %s>" % repr(self.ref_base_type)

    def __str__(self):
        return "%s &" % self.ref_base_type

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        #print "CReferenceType.declaration_code: pointer to", self.base_type ###
        return self.ref_base_type.declaration_code(
            "&%s" % entity_code,
            for_display, dll_linkage, pyrex)

    def specialize(self, values):
        base_type = self.ref_base_type.specialize(values)
        if base_type == self.ref_base_type:
            return self
        else:
            return CReferenceType(base_type)

    def deduce_template_params(self, actual):
        return self.ref_base_type.deduce_template_params(actual)

    def __getattr__(self, name):
        return getattr(self.ref_base_type, name)


class CFuncType(CType):
    #  return_type      CType
    #  args             [CFuncTypeArg]
    #  has_varargs      boolean
    #  exception_value  string
    #  exception_check  boolean    True if PyErr_Occurred check needed
    #  calling_convention  string  Function calling convention
    #  nogil            boolean    Can be called without gil
    #  with_gil         boolean    Acquire gil around function body
    #  templates        [string] or None
    #  cached_specialized_types [CFuncType]   cached specialized versions of the CFuncType if defined in a pxd
    #  from_fused       boolean    Indicates whether this is a specialized
    #                              C function
    #  is_strict_signature boolean  function refuses to accept coerced arguments
    #                               (used for optimisation overrides)
    #  is_const_method  boolean
    #  is_static_method boolean

    is_cfunction = 1
    original_sig = None
    cached_specialized_types = None
    from_fused = False
    is_const_method = False

    subtypes = ['return_type', 'args']

    def __init__(self, return_type, args, has_varargs = 0,
            exception_value = None, exception_check = 0, calling_convention = "",
            nogil = 0, with_gil = 0, is_overridable = 0, optional_arg_count = 0,
            is_const_method = False, is_static_method=False,
            templates = None, is_strict_signature = False):
        self.return_type = return_type
        self.args = args
        self.has_varargs = has_varargs
        self.optional_arg_count = optional_arg_count
        self.exception_value = exception_value
        self.exception_check = exception_check
        self.calling_convention = calling_convention
        self.nogil = nogil
        self.with_gil = with_gil
        self.is_overridable = is_overridable
        self.is_const_method = is_const_method
        self.is_static_method = is_static_method
        self.templates = templates
        self.is_strict_signature = is_strict_signature

    def __repr__(self):
        arg_reprs = map(repr, self.args)
        if self.has_varargs:
            arg_reprs.append("...")
        if self.exception_value:
            except_clause = " %r" % self.exception_value
        else:
            except_clause = ""
        if self.exception_check:
            except_clause += "?"
        return "<CFuncType %s %s[%s]%s>" % (
            repr(self.return_type),
            self.calling_convention_prefix(),
            ",".join(arg_reprs),
            except_clause)

    def calling_convention_prefix(self):
        cc = self.calling_convention
        if cc:
            return cc + " "
        else:
            return ""

    def as_argument_type(self):
        return c_ptr_type(self)

    def same_c_signature_as(self, other_type, as_cmethod = 0):
        return self.same_c_signature_as_resolved_type(
            other_type.resolve(), as_cmethod)

    def same_c_signature_as_resolved_type(self, other_type, as_cmethod = 0):
        #print "CFuncType.same_c_signature_as_resolved_type:", \
        #    self, other_type, "as_cmethod =", as_cmethod ###
        if other_type is error_type:
            return 1
        if not other_type.is_cfunction:
            return 0
        if self.is_overridable != other_type.is_overridable:
            return 0
        nargs = len(self.args)
        if nargs != len(other_type.args):
            return 0
        # When comparing C method signatures, the first argument
        # is exempt from compatibility checking (the proper check
        # is performed elsewhere).
        for i in range(as_cmethod, nargs):
            if not self.args[i].type.same_as(
                other_type.args[i].type):
                    return 0
        if self.has_varargs != other_type.has_varargs:
            return 0
        if self.optional_arg_count != other_type.optional_arg_count:
            return 0
        if not self.return_type.same_as(other_type.return_type):
            return 0
        if not self.same_calling_convention_as(other_type):
            return 0
        return 1

    def compatible_signature_with(self, other_type, as_cmethod = 0):
        return self.compatible_signature_with_resolved_type(other_type.resolve(), as_cmethod)

    def compatible_signature_with_resolved_type(self, other_type, as_cmethod):
        #print "CFuncType.same_c_signature_as_resolved_type:", \
        #    self, other_type, "as_cmethod =", as_cmethod ###
        if other_type is error_type:
            return 1
        if not other_type.is_cfunction:
            return 0
        if not self.is_overridable and other_type.is_overridable:
            return 0
        nargs = len(self.args)
        if nargs - self.optional_arg_count != len(other_type.args) - other_type.optional_arg_count:
            return 0
        if self.optional_arg_count < other_type.optional_arg_count:
            return 0
        # When comparing C method signatures, the first argument
        # is exempt from compatibility checking (the proper check
        # is performed elsewhere).
        for i in range(as_cmethod, len(other_type.args)):
            if not self.args[i].type.same_as(
                other_type.args[i].type):
                    return 0
        if self.has_varargs != other_type.has_varargs:
            return 0
        if not self.return_type.subtype_of_resolved_type(other_type.return_type):
            return 0
        if not self.same_calling_convention_as(other_type):
            return 0
        if self.nogil != other_type.nogil:
            return 0
        self.original_sig = other_type.original_sig or other_type
        return 1


    def narrower_c_signature_than(self, other_type, as_cmethod = 0):
        return self.narrower_c_signature_than_resolved_type(other_type.resolve(), as_cmethod)

    def narrower_c_signature_than_resolved_type(self, other_type, as_cmethod):
        if other_type is error_type:
            return 1
        if not other_type.is_cfunction:
            return 0
        nargs = len(self.args)
        if nargs != len(other_type.args):
            return 0
        for i in range(as_cmethod, nargs):
            if not self.args[i].type.subtype_of_resolved_type(other_type.args[i].type):
                return 0
            else:
                self.args[i].needs_type_test = other_type.args[i].needs_type_test \
                        or not self.args[i].type.same_as(other_type.args[i].type)
        if self.has_varargs != other_type.has_varargs:
            return 0
        if self.optional_arg_count != other_type.optional_arg_count:
            return 0
        if not self.return_type.subtype_of_resolved_type(other_type.return_type):
            return 0
        return 1

    def same_calling_convention_as(self, other):
        ## XXX Under discussion ...
        ## callspec_words = ("__stdcall", "__cdecl", "__fastcall")
        ## cs1 = self.calling_convention
        ## cs2 = other.calling_convention
        ## if (cs1 in callspec_words or
        ##     cs2 in callspec_words):
        ##     return cs1 == cs2
        ## else:
        ##     return True
        sc1 = self.calling_convention == '__stdcall'
        sc2 = other.calling_convention == '__stdcall'
        return sc1 == sc2

    def same_exception_signature_as(self, other_type):
        return self.same_exception_signature_as_resolved_type(
            other_type.resolve())

    def same_exception_signature_as_resolved_type(self, other_type):
        return self.exception_value == other_type.exception_value \
            and self.exception_check == other_type.exception_check

    def same_as_resolved_type(self, other_type, as_cmethod = 0):
        return self.same_c_signature_as_resolved_type(other_type, as_cmethod) \
            and self.same_exception_signature_as_resolved_type(other_type) \
            and self.nogil == other_type.nogil

    def pointer_assignable_from_resolved_type(self, other_type):
        return self.same_c_signature_as_resolved_type(other_type) \
            and self.same_exception_signature_as_resolved_type(other_type) \
            and not (self.nogil and not other_type.nogil)

    def declaration_code(self, entity_code,
                         for_display = 0, dll_linkage = None, pyrex = 0,
                         with_calling_convention = 1):
        arg_decl_list = []
        for arg in self.args[:len(self.args)-self.optional_arg_count]:
            arg_decl_list.append(
                arg.type.declaration_code("", for_display, pyrex = pyrex))
        if self.is_overridable:
            arg_decl_list.append("int %s" % Naming.skip_dispatch_cname)
        if self.optional_arg_count:
            arg_decl_list.append(self.op_arg_struct.declaration_code(Naming.optional_args_cname))
        if self.has_varargs:
            arg_decl_list.append("...")
        arg_decl_code = ", ".join(arg_decl_list)
        if not arg_decl_code and not pyrex:
            arg_decl_code = "void"
        trailer = ""
        if (pyrex or for_display) and not self.return_type.is_pyobject:
            if self.exception_value and self.exception_check:
                trailer = " except? %s" % self.exception_value
            elif self.exception_value:
                trailer = " except %s" % self.exception_value
            elif self.exception_check == '+':
                trailer = " except +"
            else:
                " except *" # ignored
            if self.nogil:
                trailer += " nogil"
        if not with_calling_convention:
            cc = ''
        else:
            cc = self.calling_convention_prefix()
            if (not entity_code and cc) or entity_code.startswith("*"):
                entity_code = "(%s%s)" % (cc, entity_code)
                cc = ""
        if self.is_const_method:
            trailer += " const"
        return self.return_type.declaration_code(
            "%s%s(%s)%s" % (cc, entity_code, arg_decl_code, trailer),
            for_display, dll_linkage, pyrex)

    def function_header_code(self, func_name, arg_code):
        if self.is_const_method:
            trailer = " const"
        else:
            trailer = ""
        return "%s%s(%s)%s" % (self.calling_convention_prefix(),
            func_name, arg_code, trailer)

    def signature_string(self):
        s = self.declaration_code("")
        return s

    def signature_cast_string(self):
        s = self.declaration_code("(*)", with_calling_convention=False)
        return '(%s)' % s

    def specialize(self, values):
        result = CFuncType(self.return_type.specialize(values),
                           [arg.specialize(values) for arg in self.args],
                           has_varargs = self.has_varargs,
                           exception_value = self.exception_value,
                           exception_check = self.exception_check,
                           calling_convention = self.calling_convention,
                           nogil = self.nogil,
                           with_gil = self.with_gil,
                           is_overridable = self.is_overridable,
                           optional_arg_count = self.optional_arg_count,
                           is_const_method = self.is_const_method,
                           is_static_method = self.is_static_method,
                           templates = self.templates)

        result.from_fused = self.is_fused
        return result

    def opt_arg_cname(self, arg_name):
        return self.op_arg_struct.base_type.scope.lookup(arg_name).cname

    # Methods that deal with Fused Types
    # All but map_with_specific_entries should be called only on functions
    # with fused types (and not on their corresponding specific versions).

    def get_all_specialized_permutations(self, fused_types=None):
        """
        Permute all the types. For every specific instance of a fused type, we
        want all other specific instances of all other fused types.

        It returns an iterable of two-tuples of the cname that should prefix
        the cname of the function, and a dict mapping any fused types to their
        respective specific types.
        """
        assert self.is_fused

        if fused_types is None:
            fused_types = self.get_fused_types()

        return get_all_specialized_permutations(fused_types)

    def get_all_specialized_function_types(self):
        """
        Get all the specific function types of this one.
        """
        assert self.is_fused

        if self.entry.fused_cfunction:
            return [n.type for n in self.entry.fused_cfunction.nodes]
        elif self.cached_specialized_types is not None:
            return self.cached_specialized_types

        cfunc_entries = self.entry.scope.cfunc_entries
        cfunc_entries.remove(self.entry)

        result = []
        permutations = self.get_all_specialized_permutations()

        for cname, fused_to_specific in permutations:
            new_func_type = self.entry.type.specialize(fused_to_specific)

            if self.optional_arg_count:
                # Remember, this method is set by CFuncDeclaratorNode
                self.declare_opt_arg_struct(new_func_type, cname)

            new_entry = copy.deepcopy(self.entry)
            new_func_type.specialize_entry(new_entry, cname)

            new_entry.type = new_func_type
            new_func_type.entry = new_entry
            result.append(new_func_type)

            cfunc_entries.append(new_entry)

        self.cached_specialized_types = result

        return result

    def get_fused_types(self, result=None, seen=None, subtypes=None):
        """Return fused types in the order they appear as parameter types"""
        return super(CFuncType, self).get_fused_types(result, seen,
                                                      subtypes=['args'])

    def specialize_entry(self, entry, cname):
        assert not self.is_fused
        specialize_entry(entry, cname)


def specialize_entry(entry, cname):
    """
    Specialize an entry of a copied fused function or method
    """
    entry.is_fused_specialized = True
    entry.name = get_fused_cname(cname, entry.name)

    if entry.is_cmethod:
        entry.cname = entry.name
        if entry.is_inherited:
            entry.cname = StringEncoding.EncodedString(
                    "%s.%s" % (Naming.obj_base_cname, entry.cname))
    else:
        entry.cname = get_fused_cname(cname, entry.cname)

    if entry.func_cname:
        entry.func_cname = get_fused_cname(cname, entry.func_cname)

def get_fused_cname(fused_cname, orig_cname):
    """
    Given the fused cname id and an original cname, return a specialized cname
    """
    assert fused_cname and orig_cname
    return StringEncoding.EncodedString('%s%s%s' % (Naming.fused_func_prefix,
                                                    fused_cname, orig_cname))

def unique(somelist):
    seen = set()
    result = []
    for obj in somelist:
        if obj not in seen:
            result.append(obj)
            seen.add(obj)

    return result

def get_all_specialized_permutations(fused_types):
    return _get_all_specialized_permutations(unique(fused_types))

def _get_all_specialized_permutations(fused_types, id="", f2s=()):
    fused_type, = fused_types[0].get_fused_types()
    result = []

    for newid, specific_type in enumerate(fused_type.types):
        # f2s = dict(f2s, **{ fused_type: specific_type })
        f2s = dict(f2s)
        f2s.update({ fused_type: specific_type })

        if id:
            cname = '%s_%s' % (id, newid)
        else:
            cname = str(newid)

        if len(fused_types) > 1:
            result.extend(_get_all_specialized_permutations(
                                            fused_types[1:], cname, f2s))
        else:
            result.append((cname, f2s))

    return result

def specialization_signature_string(fused_compound_type, fused_to_specific):
    """
    Return the signature for a specialization of a fused type. e.g.

        floating[:] ->
            'float' or 'double'

        cdef fused ft:
            float[:]
            double[:]

        ft ->
            'float[:]' or 'double[:]'

        integral func(floating) ->
            'int (*func)(float)' or ...
    """
    fused_types = fused_compound_type.get_fused_types()
    if len(fused_types) == 1:
        fused_type = fused_types[0]
    else:
        fused_type = fused_compound_type

    return fused_type.specialize(fused_to_specific).typeof_name()

def get_specialized_types(type):
    """
    Return a list of specialized types sorted in reverse order in accordance
    with their preference in runtime fused-type dispatch
    """
    assert type.is_fused

    if isinstance(type, FusedType):
        result = type.types
        for specialized_type in result:
            specialized_type.specialization_string = specialized_type.typeof_name()
    else:
        result = []
        for cname, f2s in get_all_specialized_permutations(type.get_fused_types()):
            specialized_type = type.specialize(f2s)
            specialized_type.specialization_string = (
                            specialization_signature_string(type, f2s))
            result.append(specialized_type)

    return sorted(result)


class CFuncTypeArg(BaseType):
    #  name       string
    #  cname      string
    #  type       PyrexType
    #  pos        source file position

    # FIXME: is this the right setup? should None be allowed here?
    not_none = False
    or_none = False
    accept_none = True
    accept_builtin_subtypes = False

    subtypes = ['type']

    def __init__(self, name, type, pos, cname=None):
        self.name = name
        if cname is not None:
            self.cname = cname
        else:
            self.cname = Naming.var_prefix + name
        self.type = type
        self.pos = pos
        self.needs_type_test = False # TODO: should these defaults be set in analyse_types()?

    def __repr__(self):
        return "%s:%s" % (self.name, repr(self.type))

    def declaration_code(self, for_display = 0):
        return self.type.declaration_code(self.cname, for_display)

    def specialize(self, values):
        return CFuncTypeArg(self.name, self.type.specialize(values), self.pos, self.cname)

class ToPyStructUtilityCode(object):

    requires = None

    def __init__(self, type, forward_decl):
        self.type = type
        self.header = "static PyObject* %s(%s)" % (type.to_py_function,
                                                   type.declaration_code('s'))
        self.forward_decl = forward_decl

    def __eq__(self, other):
        return isinstance(other, ToPyStructUtilityCode) and self.header == other.header

    def __hash__(self):
        return hash(self.header)

    def get_tree(self):
        pass

    def put_code(self, output):
        code = output['utility_code_def']
        proto = output['utility_code_proto']

        code.putln("%s {" % self.header)
        code.putln("PyObject* res;")
        code.putln("PyObject* member;")
        code.putln("res = PyDict_New(); if (res == NULL) return NULL;")
        for member in self.type.scope.var_entries:
            nameconst_cname = code.get_py_string_const(member.name, identifier=True)
            code.putln("member = %s(s.%s); if (member == NULL) goto bad;" % (
                member.type.to_py_function, member.cname))
            code.putln("if (PyDict_SetItem(res, %s, member) < 0) goto bad;" % nameconst_cname)
            code.putln("Py_DECREF(member);")
        code.putln("return res;")
        code.putln("bad:")
        code.putln("Py_XDECREF(member);")
        code.putln("Py_DECREF(res);")
        code.putln("return NULL;")
        code.putln("}")

        # This is a bit of a hack, we need a forward declaration
        # due to the way things are ordered in the module...
        if self.forward_decl:
            proto.putln(self.type.declaration_code('') + ';')
        proto.putln(self.header + ";")

    def inject_tree_and_scope_into(self, module_node):
        pass


class CStructOrUnionType(CType):
    #  name          string
    #  cname         string
    #  kind          string              "struct" or "union"
    #  scope         StructOrUnionScope, or None if incomplete
    #  typedef_flag  boolean
    #  packed        boolean

    # entry          Entry

    is_struct_or_union = 1
    has_attributes = 1
    exception_check = True

    def __init__(self, name, kind, scope, typedef_flag, cname, packed=False):
        self.name = name
        self.cname = cname
        self.kind = kind
        self.scope = scope
        self.typedef_flag = typedef_flag
        self.is_struct = kind == 'struct'
        if self.is_struct:
            self.to_py_function = "%s_to_py_%s" % (Naming.convert_func_prefix, self.cname)
            self.from_py_function = "%s_from_py_%s" % (Naming.convert_func_prefix, self.cname)
        self.exception_check = True
        self._convert_to_py_code = None
        self._convert_from_py_code = None
        self.packed = packed

    def create_to_py_utility_code(self, env):
        if env.outer_scope is None:
            return False

        if self._convert_to_py_code is False:
            return None  # tri-state-ish

        if self._convert_to_py_code is None:
            for member in self.scope.var_entries:
                if not member.type.create_to_py_utility_code(env):
                    self.to_py_function = None
                    self._convert_to_py_code = False
                    return False
            forward_decl = (self.entry.visibility != 'extern')
            self._convert_to_py_code = ToPyStructUtilityCode(self, forward_decl)

        env.use_utility_code(self._convert_to_py_code)
        return True

    def create_from_py_utility_code(self, env):
        if env.outer_scope is None:
            return False

        if self._convert_from_py_code is False:
            return None  # tri-state-ish

        if self._convert_from_py_code is None:
            for member in self.scope.var_entries:
                if not member.type.create_from_py_utility_code(env):
                    self.from_py_function = None
                    self._convert_from_py_code = False
                    return False

            context = dict(
                struct_type_decl=self.declaration_code(""),
                var_entries=self.scope.var_entries,
                funcname=self.from_py_function,
            )
            self._convert_from_py_code = TempitaUtilityCode.load(
                "FromPyStructUtility", "TypeConversion.c", context=context)

        env.use_utility_code(self._convert_from_py_code)
        return True

    def __repr__(self):
        return "<CStructOrUnionType %s %s%s>" % (
            self.name, self.cname,
            ("", " typedef")[self.typedef_flag])

    def declaration_code(self, entity_code,
                         for_display=0, dll_linkage=None, pyrex=0):
        if pyrex or for_display:
            base_code = self.name
        else:
            if self.typedef_flag:
                base_code = self.cname
            else:
                base_code = "%s %s" % (self.kind, self.cname)
            base_code = public_decl(base_code, dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def __eq__(self, other):
        try:
            return (isinstance(other, CStructOrUnionType) and
                    self.name == other.name)
        except AttributeError:
            return False

    def __lt__(self, other):
        try:
            return self.name < other.name
        except AttributeError:
            # this is arbitrary, but it makes sure we always have
            # *some* kind of order
            return False

    def __hash__(self):
        return hash(self.cname) ^ hash(self.kind)

    def is_complete(self):
        return self.scope is not None

    def attributes_known(self):
        return self.is_complete()

    def can_be_complex(self):
        # Does the struct consist of exactly two identical floats?
        fields = self.scope.var_entries
        if len(fields) != 2: return False
        a, b = fields
        return (a.type.is_float and b.type.is_float and
                a.type.declaration_code("") ==
                b.type.declaration_code(""))

    def struct_nesting_depth(self):
        child_depths = [x.type.struct_nesting_depth()
                        for x in self.scope.var_entries]
        return max(child_depths) + 1

    def cast_code(self, expr_code):
        if self.is_struct:
            return expr_code
        return super(CStructOrUnionType, self).cast_code(expr_code)

cpp_string_conversions = ("std::string",)

builtin_cpp_conversions = ("std::pair",
                           "std::vector", "std::list",
                           "std::set", "std::unordered_set",
                           "std::map", "std::unordered_map")

class CppClassType(CType):
    #  name          string
    #  cname         string
    #  scope         CppClassScope
    #  templates     [string] or None

    is_cpp_class = 1
    has_attributes = 1
    exception_check = True
    namespace = None

    # For struct-like declaration.
    kind = "struct"
    packed = False
    typedef_flag = False

    subtypes = ['templates']

    def __init__(self, name, scope, cname, base_classes, templates = None, template_type = None):
        self.name = name
        self.cname = cname
        self.scope = scope
        self.base_classes = base_classes
        self.operators = []
        self.templates = templates
        self.template_type = template_type
        self.specializations = {}
        self.is_cpp_string = cname in cpp_string_conversions

    def use_conversion_utility(self, from_or_to):
        pass

    def maybe_unordered(self):
        if 'unordered' in self.cname:
            return 'unordered_'
        else:
            return ''

    def create_from_py_utility_code(self, env):
        if self.from_py_function is not None:
            return True
        if self.cname in builtin_cpp_conversions or self.cname in cpp_string_conversions:
            X = "XYZABC"
            tags = []
            declarations = ["cdef extern from *:"]
            for ix, T in enumerate(self.templates or []):
                if T.is_pyobject or not T.create_from_py_utility_code(env):
                    return False
                tags.append(T.specialization_name())
                if T.exception_value is not None:
                    # This is a hack due to the except value clause
                    # requiring a const (literal) value of the right
                    # (visible) type.
                    def guess_type(value):
                        if not T.is_typedef and (T.is_numeric or T.is_ptr):
                            return T
                        try:
                            int(value)
                            return c_longlong_type
                        except ValueError:
                            pass
                        try:
                            float(value)
                            return c_double_type
                        except ValueError:
                            pass
                        return T
                    except_type = guess_type(T.exception_value)
                    except_clause = "%s " % T.exception_value
                    if T.exception_check:
                        except_clause = "? %s" % except_clause
                    declarations.append(
                        "    ctypedef %s %s '%s'" % (
                             except_type.declaration_code("", for_display=True), X[ix], T.declaration_code("")))
                else:
                    except_clause = "*"
                    declarations.append(
                        "    ctypedef struct %s '%s':\n        pass" % (
                             X[ix], T.declaration_code("")))
                declarations.append(
                    "    cdef %s %s_from_py '%s' (object) except %s" % (
                         X[ix], X[ix], T.from_py_function, except_clause))
            if self.cname in cpp_string_conversions:
                cls = 'string'
                tags = self.cname.replace(':', '_'),
            else:
                cls = self.cname[5:]
            cname = '__pyx_convert_%s_from_py_%s' % (cls, '____'.join(tags))
            context = {
                'template_type_declarations': '\n'.join(declarations),
                'cname': cname,
                'maybe_unordered': self.maybe_unordered(),
                'type': self.cname,
            }
            from .UtilityCode import CythonUtilityCode
            env.use_utility_code(CythonUtilityCode.load(cls.replace('unordered_', '') + ".from_py", "CppConvert.pyx", context=context))
            self.from_py_function = cname
            return True

    def create_to_py_utility_code(self, env):
        if self.to_py_function is not None:
            return True
        if self.cname in builtin_cpp_conversions or self.cname in cpp_string_conversions:
            X = "XYZABC"
            tags = []
            declarations = ["cdef extern from *:"]
            for ix, T in enumerate(self.templates or []):
                if not T.create_to_py_utility_code(env):
                    return False
                tags.append(T.specialization_name())
                declarations.append(
                    "    ctypedef struct %s '%s':\n        pass" % (
                         X[ix], T.declaration_code("")))
                declarations.append(
                    "    cdef object %s_to_py '%s' (%s)" % (
                         X[ix], T.to_py_function, X[ix]))
            if self.cname in cpp_string_conversions:
                cls = 'string'
                prefix = 'PyObject_'  # gets specialised by explicit type casts in CoerceToPyTypeNode
                tags = self.cname.replace(':', '_'),
            else:
                cls = self.cname[5:]
                prefix = ''
            cname = "__pyx_convert_%s%s_to_py_%s" % (prefix, cls, "____".join(tags))
            context = {
                'template_type_declarations': '\n'.join(declarations),
                'cname': cname,
                'maybe_unordered': self.maybe_unordered(),
                'type': self.cname,
            }
            from .UtilityCode import CythonUtilityCode
            env.use_utility_code(CythonUtilityCode.load(
                cls.replace('unordered_', '') + ".to_py", "CppConvert.pyx", context=context))
            self.to_py_function = cname
            return True

    def is_template_type(self):
        return self.templates is not None and self.template_type is None

    def specialize_here(self, pos, template_values = None):
        if not self.is_template_type():
            error(pos, "'%s' type is not a template" % self)
            return error_type
        if len(self.templates) != len(template_values):
            error(pos, "%s templated type receives %d arguments, got %d" %
                  (self.name, len(self.templates), len(template_values)))
            return error_type
        has_object_template_param = False
        for value in template_values:
            if value.is_pyobject:
                has_object_template_param = True
                error(pos,
                      "Python object type '%s' cannot be used as a template argument" % value)
        if has_object_template_param:
            return error_type
        return self.specialize(dict(zip(self.templates, template_values)))

    def specialize(self, values):
        if not self.templates and not self.namespace:
            return self
        if self.templates is None:
            self.templates = []
        key = tuple(values.items())
        if key in self.specializations:
            return self.specializations[key]
        template_values = [t.specialize(values) for t in self.templates]
        specialized = self.specializations[key] = \
            CppClassType(self.name, None, self.cname, [], template_values, template_type=self)
        # Need to do these *after* self.specializations[key] is set
        # to avoid infinite recursion on circular references.
        specialized.base_classes = [b.specialize(values) for b in self.base_classes]
        specialized.scope = self.scope.specialize(values, specialized)
        if self.namespace is not None:
            specialized.namespace = self.namespace.specialize(values)
        return specialized

    def deduce_template_params(self, actual):
        if self == actual:
            return {}
        # TODO(robertwb): Actual type equality.
        elif self.declaration_code("") == actual.template_type.declaration_code(""):
            return reduce(
                merge_template_deductions,
                [formal_param.deduce_template_params(actual_param) for (formal_param, actual_param) in zip(self.templates, actual.templates)],
                {})
        else:
            return None

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if self.templates:
            template_strings = [param.declaration_code('', for_display, None, pyrex)
                                for param in self.templates]
            if for_display:
                brackets = "[%s]"
            else:
                brackets = "<%s> "
            templates = brackets % ",".join(template_strings)
        else:
            templates = ""
        if pyrex or for_display:
            base_code = "%s%s" % (self.name, templates)
        else:
            base_code = "%s%s" % (self.cname, templates)
            if self.namespace is not None:
                base_code = "%s::%s" % (self.namespace.declaration_code(''), base_code)
            base_code = public_decl(base_code, dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

    def is_subclass(self, other_type):
        if self.same_as_resolved_type(other_type):
            return 1
        for base_class in self.base_classes:
            if base_class.is_subclass(other_type):
                return 1
        return 0

    def same_as_resolved_type(self, other_type):
        if other_type.is_cpp_class:
            if self == other_type:
                return 1
            elif (self.cname == other_type.cname and
                  self.template_type and other_type.template_type):
                if self.templates == other_type.templates:
                    return 1
                for t1, t2 in zip(self.templates, other_type.templates):
                    if not t1.same_as_resolved_type(t2):
                        return 0
                return 1
        return 0

    def assignable_from_resolved_type(self, other_type):
        # TODO: handle operator=(...) here?
        if other_type is error_type:
            return True
        return other_type.is_cpp_class and other_type.is_subclass(self)

    def attributes_known(self):
        return self.scope is not None

    def find_cpp_operation_type(self, operator, operand_type=None):
        operands = [self]
        if operand_type is not None:
            operands.append(operand_type)
        # pos == None => no errors
        operator_entry = self.scope.lookup_operator_for_types(None, operator, operands)
        if not operator_entry:
            return None
        func_type = operator_entry.type
        if func_type.is_ptr:
            func_type = func_type.base_type
        return func_type.return_type

    def check_nullary_constructor(self, pos, msg="stack allocated"):
        constructor = self.scope.lookup(u'<init>')
        if constructor is not None and best_match([], constructor.all_alternatives()) is None:
            error(pos, "C++ class must have a nullary constructor to be %s" % msg)


class TemplatePlaceholderType(CType):

    def __init__(self, name):
        self.name = name

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if entity_code:
            return self.name + " " + entity_code
        else:
            return self.name

    def specialize(self, values):
        if self in values:
            return values[self]
        else:
            return self

    def deduce_template_params(self, actual):
        return {self: actual}

    def same_as_resolved_type(self, other_type):
        if isinstance(other_type, TemplatePlaceholderType):
            return self.name == other_type.name
        else:
            return 0

    def __hash__(self):
        return hash(self.name)

    def __cmp__(self, other):
        if isinstance(other, TemplatePlaceholderType):
            return cmp(self.name, other.name)
        else:
            return cmp(type(self), type(other))

    def __eq__(self, other):
        if isinstance(other, TemplatePlaceholderType):
            return self.name == other.name
        else:
            return False

class CEnumType(CType):
    #  name           string
    #  cname          string or None
    #  typedef_flag   boolean

    is_enum = 1
    signed = 1
    rank = -1 # Ranks below any integer type
    to_py_function = "PyInt_FromLong"
    from_py_function = "PyInt_AsLong"

    def __init__(self, name, cname, typedef_flag):
        self.name = name
        self.cname = cname
        self.values = []
        self.typedef_flag = typedef_flag

    def __str__(self):
        return self.name

    def __repr__(self):
        return "<CEnumType %s %s%s>" % (self.name, self.cname,
            ("", " typedef")[self.typedef_flag])

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        if pyrex or for_display:
            base_code = self.name
        else:
            if self.typedef_flag:
                base_code = self.cname
            else:
                base_code = "enum %s" % self.cname
            base_code = public_decl(base_code, dll_linkage)
        return self.base_declaration_code(base_code, entity_code)

class UnspecifiedType(PyrexType):
    # Used as a placeholder until the type can be determined.

    is_unspecified = 1

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        return "<unspecified>"

    def same_as_resolved_type(self, other_type):
        return False


class ErrorType(PyrexType):
    # Used to prevent propagation of error messages.

    is_error = 1
    exception_value = "0"
    exception_check    = 0
    to_py_function = "dummy"
    from_py_function = "dummy"

    def create_to_py_utility_code(self, env):
        return True

    def create_from_py_utility_code(self, env):
        return True

    def declaration_code(self, entity_code,
            for_display = 0, dll_linkage = None, pyrex = 0):
        return "<error>"

    def same_as_resolved_type(self, other_type):
        return 1

    def error_condition(self, result_code):
        return "dummy"


rank_to_type_name = (
    "char",         # 0
    "short",        # 1
    "int",          # 2
    "long",         # 3
    "PY_LONG_LONG", # 4
    "float",        # 5
    "double",       # 6
    "long double",  # 7
)

_rank_to_type_name = list(rank_to_type_name)
RANK_INT  = _rank_to_type_name.index('int')
RANK_LONG = _rank_to_type_name.index('long')
RANK_FLOAT = _rank_to_type_name.index('float')
UNSIGNED = 0
SIGNED = 2

error_type =    ErrorType()
unspecified_type = UnspecifiedType()

py_object_type = PyObjectType()

c_void_type =        CVoidType()

c_uchar_type =       CIntType(0, UNSIGNED)
c_ushort_type =      CIntType(1, UNSIGNED)
c_uint_type =        CIntType(2, UNSIGNED)
c_ulong_type =       CIntType(3, UNSIGNED)
c_ulonglong_type =   CIntType(4, UNSIGNED)

c_char_type =        CIntType(0)
c_short_type =       CIntType(1)
c_int_type =         CIntType(2)
c_long_type =        CIntType(3)
c_longlong_type =    CIntType(4)

c_schar_type =       CIntType(0, SIGNED)
c_sshort_type =      CIntType(1, SIGNED)
c_sint_type =        CIntType(2, SIGNED)
c_slong_type =       CIntType(3, SIGNED)
c_slonglong_type =   CIntType(4, SIGNED)

c_float_type =       CFloatType(5, math_h_modifier='f')
c_double_type =      CFloatType(6)
c_longdouble_type =  CFloatType(7, math_h_modifier='l')

c_float_complex_type =      CComplexType(c_float_type)
c_double_complex_type =     CComplexType(c_double_type)
c_longdouble_complex_type = CComplexType(c_longdouble_type)

c_anon_enum_type =   CAnonEnumType(-1)
c_returncode_type =  CReturnCodeType(RANK_INT)
c_bint_type =        CBIntType(RANK_INT)
c_py_unicode_type =  CPyUnicodeIntType(RANK_INT-0.5, UNSIGNED)
c_py_ucs4_type =     CPyUCS4IntType(RANK_LONG-0.5, UNSIGNED)
c_py_hash_t_type =   CPyHashTType(RANK_LONG+0.5, SIGNED)
c_py_ssize_t_type =  CPySSizeTType(RANK_LONG+0.5, SIGNED)
c_ssize_t_type =     CSSizeTType(RANK_LONG+0.5, SIGNED)
c_size_t_type =      CSizeTType(RANK_LONG+0.5, UNSIGNED)
c_ptrdiff_t_type =   CPtrdiffTType(RANK_LONG+0.75, SIGNED)

c_null_ptr_type =     CNullPtrType(c_void_type)
c_void_ptr_type =     CPtrType(c_void_type)
c_void_ptr_ptr_type = CPtrType(c_void_ptr_type)
c_char_ptr_type =     CPtrType(c_char_type)
c_uchar_ptr_type =    CPtrType(c_uchar_type)
c_char_ptr_ptr_type = CPtrType(c_char_ptr_type)
c_int_ptr_type =      CPtrType(c_int_type)
c_py_unicode_ptr_type = CPtrType(c_py_unicode_type)
c_py_ssize_t_ptr_type =  CPtrType(c_py_ssize_t_type)
c_ssize_t_ptr_type =  CPtrType(c_ssize_t_type)
c_size_t_ptr_type =  CPtrType(c_size_t_type)

# GIL state
c_gilstate_type = CEnumType("PyGILState_STATE", "PyGILState_STATE", True)
c_threadstate_type = CStructOrUnionType("PyThreadState", "struct", None, 1, "PyThreadState")
c_threadstate_ptr_type = CPtrType(c_threadstate_type)

# the Py_buffer type is defined in Builtin.py
c_py_buffer_type = CStructOrUnionType("Py_buffer", "struct", None, 1, "Py_buffer")
c_py_buffer_ptr_type = CPtrType(c_py_buffer_type)

# Not sure whether the unsigned versions and 'long long' should be in there
# long long requires C99 and might be slow, and would always get preferred
# when specialization happens through calling and not indexing
cy_integral_type = FusedType([c_short_type, c_int_type, c_long_type],
                             name="integral")
# Omitting long double as it might be slow
cy_floating_type = FusedType([c_float_type, c_double_type], name="floating")
cy_numeric_type = FusedType([c_short_type,
                             c_int_type,
                             c_long_type,
                             c_float_type,
                             c_double_type,
                             c_float_complex_type,
                             c_double_complex_type], name="numeric")

# buffer-related structs
c_buf_diminfo_type =  CStructOrUnionType("__Pyx_Buf_DimInfo", "struct",
                                      None, 1, "__Pyx_Buf_DimInfo")
c_pyx_buffer_type = CStructOrUnionType("__Pyx_Buffer", "struct", None, 1, "__Pyx_Buffer")
c_pyx_buffer_ptr_type = CPtrType(c_pyx_buffer_type)
c_pyx_buffer_nd_type = CStructOrUnionType("__Pyx_LocalBuf_ND", "struct",
                                      None, 1, "__Pyx_LocalBuf_ND")

cython_memoryview_type = CStructOrUnionType("__pyx_memoryview_obj", "struct",
                                      None, 0, "__pyx_memoryview_obj")

memoryviewslice_type = CStructOrUnionType("memoryviewslice", "struct",
                                          None, 1, "__Pyx_memviewslice")

modifiers_and_name_to_type = {
    #(signed, longness, name) : type
    (0,  0, "char"): c_uchar_type,
    (1,  0, "char"): c_char_type,
    (2,  0, "char"): c_schar_type,

    (0, -1, "int"): c_ushort_type,
    (0,  0, "int"): c_uint_type,
    (0,  1, "int"): c_ulong_type,
    (0,  2, "int"): c_ulonglong_type,

    (1, -1, "int"): c_short_type,
    (1,  0, "int"): c_int_type,
    (1,  1, "int"): c_long_type,
    (1,  2, "int"): c_longlong_type,

    (2, -1, "int"): c_sshort_type,
    (2,  0, "int"): c_sint_type,
    (2,  1, "int"): c_slong_type,
    (2,  2, "int"): c_slonglong_type,

    (1,  0, "float"):  c_float_type,
    (1,  0, "double"): c_double_type,
    (1,  1, "double"): c_longdouble_type,

    (1,  0, "complex"):  c_double_complex_type,  # C: float, Python: double => Python wins
    (1,  0, "floatcomplex"):  c_float_complex_type,
    (1,  0, "doublecomplex"): c_double_complex_type,
    (1,  1, "doublecomplex"): c_longdouble_complex_type,

    #
    (1,  0, "void"): c_void_type,

    (1,  0, "bint"):       c_bint_type,
    (0,  0, "Py_UNICODE"): c_py_unicode_type,
    (0,  0, "Py_UCS4"):    c_py_ucs4_type,
    (2,  0, "Py_hash_t"):  c_py_hash_t_type,
    (2,  0, "Py_ssize_t"): c_py_ssize_t_type,
    (2,  0, "ssize_t") :   c_ssize_t_type,
    (0,  0, "size_t") :    c_size_t_type,
    (2,  0, "ptrdiff_t") : c_ptrdiff_t_type,

    (1,  0, "object"): py_object_type,
}

def is_promotion(src_type, dst_type):
    # It's hard to find a hard definition of promotion, but empirical
    # evidence suggests that the below is all that's allowed.
    if src_type.is_numeric:
        if dst_type.same_as(c_int_type):
            unsigned = (not src_type.signed)
            return (src_type.is_enum or
                    (src_type.is_int and
                     unsigned + src_type.rank < dst_type.rank))
        elif dst_type.same_as(c_double_type):
            return src_type.is_float and src_type.rank <= dst_type.rank
    return False

def best_match(args, functions, pos=None, env=None):
    """
    Given a list args of arguments and a list of functions, choose one
    to call which seems to be the "best" fit for this list of arguments.
    This function is used, e.g., when deciding which overloaded method
    to dispatch for C++ classes.

    We first eliminate functions based on arity, and if only one
    function has the correct arity, we return it. Otherwise, we weight
    functions based on how much work must be done to convert the
    arguments, with the following priorities:
      * identical types or pointers to identical types
      * promotions
      * non-Python types
    That is, we prefer functions where no arguments need converted,
    and failing that, functions where only promotions are required, and
    so on.

    If no function is deemed a good fit, or if two or more functions have
    the same weight, we return None (as there is no best match). If pos
    is not None, we also generate an error.
    """
    # TODO: args should be a list of types, not a list of Nodes.
    actual_nargs = len(args)

    candidates = []
    errors = []
    for func in functions:
        error_mesg = ""
        func_type = func.type
        if func_type.is_ptr:
            func_type = func_type.base_type
        # Check function type
        if not func_type.is_cfunction:
            if not func_type.is_error and pos is not None:
                error_mesg = "Calling non-function type '%s'" % func_type
            errors.append((func, error_mesg))
            continue
        # Check no. of args
        max_nargs = len(func_type.args)
        min_nargs = max_nargs - func_type.optional_arg_count
        if actual_nargs < min_nargs or \
            (not func_type.has_varargs and actual_nargs > max_nargs):
            if max_nargs == min_nargs and not func_type.has_varargs:
                expectation = max_nargs
            elif actual_nargs < min_nargs:
                expectation = "at least %s" % min_nargs
            else:
                expectation = "at most %s" % max_nargs
            error_mesg = "Call with wrong number of arguments (expected %s, got %s)" \
                         % (expectation, actual_nargs)
            errors.append((func, error_mesg))
            continue
        if func_type.templates:
            arg_types = [arg.type for arg in args]
            deductions = reduce(
                merge_template_deductions,
                [pattern.type.deduce_template_params(actual) for (pattern, actual) in zip(func_type.args, arg_types)],
                {})
            if deductions is None:
                errors.append((func, "Unable to deduce type parameters"))
            elif len(deductions) < len(func_type.templates):
                errors.append((func, "Unable to deduce type parameter %s" % (
                    ", ".join([param.name for param in set(func_type.templates) - set(deductions.keys())]))))
            else:
                type_list = [deductions[param] for param in func_type.templates]
                from .Symtab import Entry
                specialization = Entry(
                    name = func.name + "[%s]" % ",".join([str(t) for t in type_list]),
                    cname = func.cname + "<%s>" % ",".join([t.declaration_code("") for t in type_list]),
                    type = func_type.specialize(deductions),
                    pos = func.pos)
                candidates.append((specialization, specialization.type))
        else:
            candidates.append((func, func_type))

    # Optimize the most common case of no overloading...
    if len(candidates) == 1:
        return candidates[0][0]
    elif len(candidates) == 0:
        if pos is not None:
            func, errmsg = errors[0]
            if len(errors) == 1 or [1 for func, e in errors if e == errmsg]:
                error(pos, errmsg)
            else:
                error(pos, "no suitable method found")
        return None

    possibilities = []
    bad_types = []
    needed_coercions = {}

    for index, (func, func_type) in enumerate(candidates):
        score = [0,0,0,0]
        for i in range(min(len(args), len(func_type.args))):
            src_type = args[i].type
            dst_type = func_type.args[i].type

            assignable = dst_type.assignable_from(src_type)

            # Now take care of normal string literals. So when you call a cdef
            # function that takes a char *, the coercion will mean that the
            # type will simply become bytes. We need to do this coercion
            # manually for overloaded and fused functions
            if not assignable and src_type.is_pyobject:
                if (src_type.is_builtin_type and src_type.name == 'str' and
                        dst_type.resolve() is c_char_ptr_type):
                    c_src_type = c_char_ptr_type
                else:
                    c_src_type = src_type.default_coerced_ctype()

                if c_src_type:
                    assignable = dst_type.assignable_from(c_src_type)
                    if assignable:
                        src_type = c_src_type
                        needed_coercions[func] = i, dst_type

            if assignable:
                if src_type == dst_type or dst_type.same_as(src_type):
                    pass # score 0
                elif func_type.is_strict_signature:
                    break # exact match requested but not found
                elif is_promotion(src_type, dst_type):
                    score[2] += 1
                elif ((src_type.is_int and dst_type.is_int) or
                      (src_type.is_float and dst_type.is_float)):
                    score[2] += abs(dst_type.rank + (not dst_type.signed) -
                                    (src_type.rank + (not src_type.signed))) + 1
                elif not src_type.is_pyobject:
                    score[1] += 1
                else:
                    score[0] += 1
            else:
                error_mesg = "Invalid conversion from '%s' to '%s'"%(src_type,
                                                                     dst_type)
                bad_types.append((func, error_mesg))
                break
        else:
            possibilities.append((score, index, func)) # so we can sort it

    if possibilities:
        possibilities.sort()
        if len(possibilities) > 1:
            score1 = possibilities[0][0]
            score2 = possibilities[1][0]
            if score1 == score2:
                if pos is not None:
                    error(pos, "ambiguous overloaded method")
                return None

        function = possibilities[0][-1]

        if function in needed_coercions and env:
            arg_i, coerce_to_type = needed_coercions[function]
            args[arg_i] = args[arg_i].coerce_to(coerce_to_type, env)

        return function

    if pos is not None:
        if len(bad_types) == 1:
            error(pos, bad_types[0][1])
        else:
            error(pos, "no suitable method found")

    return None

def merge_template_deductions(a, b):
    if a is None or b is None:
        return None
    all = a
    for param, value in b.iteritems():
        if param in all:
            if a[param] != b[param]:
                return None
        else:
            all[param] = value
    return all


def widest_numeric_type(type1, type2):
    # Given two numeric types, return the narrowest type
    # encompassing both of them.
    if type1 == type2:
        widest_type = type1
    elif type1.is_complex or type2.is_complex:
        def real_type(ntype):
            if ntype.is_complex:
                return ntype.real_type
            return ntype
        widest_type = CComplexType(
            widest_numeric_type(
                real_type(type1),
                real_type(type2)))
    elif type1.is_enum and type2.is_enum:
        widest_type = c_int_type
    elif type1.rank < type2.rank:
        widest_type = type2
    elif type1.rank > type2.rank:
        widest_type = type1
    elif type1.signed < type2.signed:
        widest_type = type1
    else:
        widest_type = type2
    return widest_type


def numeric_type_fits(small_type, large_type):
    return widest_numeric_type(small_type, large_type) == large_type


def independent_spanning_type(type1, type2):
    # Return a type assignable independently from both type1 and
    # type2, but do not require any interoperability between the two.
    # For example, in "True * 2", it is safe to assume an integer
    # result type (so spanning_type() will do the right thing),
    # whereas "x = True or 2" must evaluate to a type that can hold
    # both a boolean value and an integer, so this function works
    # better.
    if type1 == type2:
        return type1
    elif (type1 is c_bint_type or type2 is c_bint_type) and (type1.is_numeric and type2.is_numeric):
        # special case: if one of the results is a bint and the other
        # is another C integer, we must prevent returning a numeric
        # type so that we do not lose the ability to coerce to a
        # Python bool if we have to.
        return py_object_type
    span_type = _spanning_type(type1, type2)
    if span_type is None:
        return error_type
    return span_type

def spanning_type(type1, type2):
    # Return a type assignable from both type1 and type2, or
    # py_object_type if no better type is found.  Assumes that the
    # code that calls this will try a coercion afterwards, which will
    # fail if the types cannot actually coerce to a py_object_type.
    if type1 == type2:
        return type1
    elif type1 is py_object_type or type2 is py_object_type:
        return py_object_type
    elif type1 is c_py_unicode_type or type2 is c_py_unicode_type:
        # Py_UNICODE behaves more like a string than an int
        return py_object_type
    span_type = _spanning_type(type1, type2)
    if span_type is None:
        return py_object_type
    return span_type

def _spanning_type(type1, type2):
    if type1.is_numeric and type2.is_numeric:
        return widest_numeric_type(type1, type2)
    elif type1.is_builtin_type and type1.name == 'float' and type2.is_numeric:
        return widest_numeric_type(c_double_type, type2)
    elif type2.is_builtin_type and type2.name == 'float' and type1.is_numeric:
        return widest_numeric_type(type1, c_double_type)
    elif type1.is_extension_type and type2.is_extension_type:
        return widest_extension_type(type1, type2)
    elif type1.is_pyobject or type2.is_pyobject:
        return py_object_type
    elif type1.assignable_from(type2):
        if type1.is_extension_type and type1.typeobj_is_imported():
            # external types are unsafe, so we use PyObject instead
            return py_object_type
        return type1
    elif type2.assignable_from(type1):
        if type2.is_extension_type and type2.typeobj_is_imported():
            # external types are unsafe, so we use PyObject instead
            return py_object_type
        return type2
    elif type1.is_ptr and type2.is_ptr:
        # incompatible pointers, void* will do as a result
        return c_void_ptr_type
    else:
        return None

def widest_extension_type(type1, type2):
    if type1.typeobj_is_imported() or type2.typeobj_is_imported():
        return py_object_type
    while True:
        if type1.subtype_of(type2):
            return type2
        elif type2.subtype_of(type1):
            return type1
        type1, type2 = type1.base_type, type2.base_type
        if type1 is None or type2 is None:
            return py_object_type

def simple_c_type(signed, longness, name):
    # Find type descriptor for simple type given name and modifiers.
    # Returns None if arguments don't make sense.
    return modifiers_and_name_to_type.get((signed, longness, name))

def parse_basic_type(name):
    base = None
    if name.startswith('p_'):
        base = parse_basic_type(name[2:])
    elif name.startswith('p'):
        base = parse_basic_type(name[1:])
    elif name.endswith('*'):
        base = parse_basic_type(name[:-1])
    if base:
        return CPtrType(base)
    #
    basic_type = simple_c_type(1, 0, name)
    if basic_type:
        return basic_type
    #
    signed = 1
    longness = 0
    if name == 'Py_UNICODE':
        signed = 0
    elif name == 'Py_UCS4':
        signed = 0
    elif name == 'Py_hash_t':
        signed = 2
    elif name == 'Py_ssize_t':
        signed = 2
    elif name == 'ssize_t':
        signed = 2
    elif name == 'size_t':
        signed = 0
    else:
        if name.startswith('u'):
            name = name[1:]
            signed = 0
        elif (name.startswith('s') and
              not name.startswith('short')):
            name = name[1:]
            signed = 2
        longness = 0
        while name.startswith('short'):
            name = name.replace('short', '', 1).strip()
            longness -= 1
        while name.startswith('long'):
            name = name.replace('long', '', 1).strip()
            longness += 1
        if longness != 0 and not name:
            name = 'int'
    return simple_c_type(signed, longness, name)

def c_array_type(base_type, size):
    # Construct a C array type.
    if base_type is error_type:
        return error_type
    else:
        return CArrayType(base_type, size)

def c_ptr_type(base_type):
    # Construct a C pointer type.
    if base_type is error_type:
        return error_type
    else:
        return CPtrType(base_type)

def c_ref_type(base_type):
    # Construct a C reference type
    if base_type is error_type:
        return error_type
    else:
        return CReferenceType(base_type)

def c_const_type(base_type):
    # Construct a C const type.
    if base_type is error_type:
        return error_type
    else:
        return CConstType(base_type)

def same_type(type1, type2):
    return type1.same_as(type2)

def assignable_from(type1, type2):
    return type1.assignable_from(type2)

def typecast(to_type, from_type, expr_code):
    #  Return expr_code cast to a C type which can be
    #  assigned to to_type, assuming its existing C type
    #  is from_type.
    if (to_type is from_type or
            (not to_type.is_pyobject and assignable_from(to_type, from_type))):
        return expr_code
    elif (to_type is py_object_type and from_type and
            from_type.is_builtin_type and from_type.name != 'type'):
        # no cast needed, builtins are PyObject* already
        return expr_code
    else:
        #print "typecast: to", to_type, "from", from_type ###
        return to_type.cast_code(expr_code)