1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359
|
# tag: cpp
import math
cimport libcpp.complex as cppcomplex
from libcpp.complex cimport complex as complex_class
def double_complex(complex_class[double] a):
"""
>>> double_complex(1 + 2j)
(1+2j)
>>> double_complex(1.5 + 2.5j)
(1.5+2.5j)
"""
return a
def double_int(complex_class[int] a):
"""
>>> double_int(1 + 2j)
(1+2j)
>>> double_int(1.5 + 2.5j)
(1+2j)
"""
return a
def double_addition_with_scalar(complex_class[double] a, double b):
"""
>>> double_addition_with_scalar(1 + 1j, 1) + 1
(3+1j)
>>> 1 + double_addition_with_scalar(1 + 2j, -1)
(1+2j)
>>> 1j + double_addition_with_scalar(1 + 2j, 7)
(8+3j)
>>> double_addition_with_scalar(1 + 2j, 7) - 1j
(8+1j)
>>> double_addition_with_scalar(1.5 + 2.5j, -1) + 0
(0.5+2.5j)
>>> -0 + double_addition_with_scalar(1.5 + 2.5j, -1)
(0.5+2.5j)
"""
cdef complex_class[double] c = a + b
cdef complex_class[double] d = b + a
return b + a
def double_inplace_addition_with_scalar(complex_class[double] a, double b):
"""
>>> double_inplace_addition_with_scalar(1 + 1j, 1)
(2+1j)
"""
a += b
return a
def double_inplace_substraction_with_scalar(complex_class[double] a, double b):
"""
>>> double_inplace_substraction_with_scalar(1 + 1j, 2)
(-1+1j)
"""
a -= b
return a
def double_inplace_multiplication_with_scalar(complex_class[double] a, double b):
"""
>>> double_inplace_multiplication_with_scalar(1 + 1j, 2)
(2+2j)
"""
a *= b
return a
def double_inplace_division_with_scalar(complex_class[double] a, double b):
"""
>>> double_inplace_division_with_scalar(3 + 3j, 2)
(1.5+1.5j)
"""
a /= b
return a
def double_unary_negation(complex_class[double] a):
"""
>>> double_unary_negation(2 + 2j)
(-2-2j)
"""
return -a
def double_unary_positive(complex_class[double] a):
"""
>>> double_unary_positive(2 + 2j)
(2+2j)
"""
return +a
def double_real_imaginary_accessors(complex_class[double] a, double real, double imag):
"""
>>> a = double_real_imaginary_accessors(2.1 + 2j, 7, 4)
>>> a.real
9.1
>>> a.imag
6.0
"""
# checks the accessors
cdef double b = a.real()
a.real(b + real)
cdef double c = a.imag()
a.imag(c + imag)
return a
def double_double_comparison_equal(complex_class[double] a, complex_class[double] b):
"""
>>> double_double_comparison_equal(2.1 + 2j, 7)
False
>>> double_double_comparison_equal(2.1 + 2j, (1j + 1) * 2 + 0.1)
True
"""
return a == b
def double_scalar_double_comparison_equal(complex_class[double] a, double b):
"""
>>> double_double_comparison_equal(2.1 + 2j, 7)
False
>>> double_double_comparison_equal(7 + 0j, 7)
True
"""
return a == b
def scalar_double_double_comparison_equal(complex_class[double] a, double b):
"""
>>> double_double_comparison_equal(2.1 + 2j, 7)
False
>>> double_double_comparison_equal(7 + 0j, 7)
True
"""
return b == a
def double_real_imaginary_accessors_free_function(complex_class[double] a, bint real_part):
"""
>>> double_real_imaginary_accessors_free_function(2.1 + 2.7j, True)
2.1
>>> double_real_imaginary_accessors_free_function(2.1 + 2.7j, False)
2.7
"""
cdef double e = cppcomplex.real(a)
cdef double f = cppcomplex.imag(a)
if real_part:
return e
return f
def scalar_double_real_imaginary_accessors_free_function(double a, bint real_part):
"""
>>> scalar_double_real_imaginary_accessors_free_function(2.1, True)
2.1
>>> scalar_double_real_imaginary_accessors_free_function(2.1, False)
0.0
"""
cdef double e = cppcomplex.real(a)
cdef double f = cppcomplex.imag(a)
if real_part:
return e
return f
def scalar_long_double_real_imaginary_accessors_free_function(long double a, bint real_part):
"""
>>> scalar_long_double_real_imaginary_accessors_free_function(2.1, True)
2.1
>>> scalar_long_double_real_imaginary_accessors_free_function(2.1, False)
0.0
"""
cdef double e = cppcomplex.real(a)
cdef double f = cppcomplex.imag(a)
if real_part:
return e
return f
def double_abs(complex_class[double] a):
"""
>>> double_abs(5)
5.0
>>> double_abs(5j)
5.0
>>> double_abs(2 + 5j) == math.sqrt(29)
True
"""
return cppcomplex.abs(a)
def double_norm(complex_class[double] a):
"""
>>> double_norm(5)
25.0
>>> double_norm(5j)
25.0
>>> abs(double_norm(2 + 5j) - double_abs(2 + 5j)*double_abs(2 + 5j)) < 1e-13
True
"""
return cppcomplex.norm(a)
def scalar_double_norm(double a):
"""
>>> scalar_double_norm(5)
25.0
"""
return cppcomplex.norm(a)
def scalar_float_norm(float a):
"""
>>> scalar_float_norm(5)
25.0
"""
return cppcomplex.norm(a)
def double_conjugate(complex_class[double] a):
"""
>>> double_conjugate(5)
(5-0j)
>>> double_conjugate(5j)
-5j
>>> double_conjugate(1 + 2j)
(1-2j)
"""
return cppcomplex.conj(a)
def scalar_double_conjugate(double a):
"""
>>> a = scalar_double_conjugate(5)
>>> a.real
5.0
>>> # abs to prevent -0 or 0 issue
>>> abs(a.imag)
0.0
"""
# always return complex
return cppcomplex.conj(a)
def double_proj(complex_class[double] a):
"""
>>> double_proj(5 + 4j)
(5+4j)
>>> double_proj(-float("infinity") + 4j)
(inf+0j)
>>> double_proj(5 - float("infinity")*1j)
(inf-0j)
"""
return cppcomplex.proj(a)
def double_arg(complex_class[double] a):
"""
>>> a = math.pi / 4
>>> round(a, 10)
0.7853981634
>>> round(double_arg(math.cos(a) + math.sin(a)*1j), 10)
0.7853981634
"""
return cppcomplex.arg(a)
def scalar_double_arg(double a):
"""
>>> scalar_double_arg(13)
0.0
>>> round(scalar_double_arg(-1), 10)
3.1415926536
"""
return cppcomplex.arg(a)
def double_polar(double r, double theta):
"""
>>> c1 = double_polar(3, math.pi / 2)
>>> c1.imag
3.0
>>> abs(c1.real) < 1e-10
True
>>> c2 = double_polar(4, math.pi)
>>> c2.real
-4.0
>>> abs(c2.imag) < 1e-10
True
"""
return cppcomplex.polar(r, theta)
def double_polar_scalar(double r):
"""
>>> c1 = double_polar_scalar(3)
>>> c1.real
3.0
>>> c1.imag
0.0
>>> c2 = double_polar_scalar(0)
>>> c2.real
0.0
>>> c2.imag
0.0
"""
return cppcomplex.polar(r)
def double_pow(complex_class[double] a, complex_class[double] b):
"""
>>> double_pow(3, 3)
(27+0j)
>>> a = double_pow(1j, 1j)
>>> round(a.real, 5)
0.20788
>>> round(a.imag, 2)
0.0
"""
return cppcomplex.pow(a, b)
def double_scalar_double_pow(complex_class[double] a, double b):
"""
>>> double_pow(3, 3)
(27+0j)
>>> a = double_pow(1+2j, 2)
>>> round(a.real, 2)
-3.0
>>> round(a.imag, 2)
4.0
"""
return cppcomplex.pow(a, b)
def scalar_double_double_pow(double a, complex_class[double] b):
"""
>>> scalar_double_double_pow(3, 3)
(27+0j)
>>> a = scalar_double_double_pow(2, 2j)
>>> round(a.real, 2)
0.18
>>> round(a.imag, 2)
0.98
"""
return cppcomplex.pow(a, b)
def double_sin(complex_class[double] a):
"""
>>> round(abs(double_sin(math.pi)), 2)
0.0
>>> round(double_sin(-math.pi/4).real, 3)
-0.707
>>> round(abs(double_sin(-math.pi/4).imag), 3)
0.0
>>> round(abs(double_sin(4j).real), 3)
0.0
>>> round(abs(double_sin(4j).imag - math.sinh(4)), 3)
0.0
"""
return cppcomplex.sin(a)
def double_cos(complex_class[double] a):
"""
>>> round(double_cos(math.pi).real, 2)
-1.0
>>> round(abs(double_cos(math.pi).imag), 2)
0.0
>>> round(double_cos(-math.pi/4 + math.pi).real, 3)
-0.707
>>> round(abs(double_cos(-math.pi/4).imag), 3)
0.0
>>> round(abs(double_cos(4j).imag), 3)
0.0
>>> round(abs(double_cos(5j).real - math.cosh(5)), 3)
0.0
"""
return cppcomplex.cos(a)
|