File: complex_numbers_cpp.pyx

package info (click to toggle)
cython 3.0.11%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 19,092 kB
  • sloc: python: 83,539; ansic: 18,831; cpp: 1,402; xml: 1,031; javascript: 511; makefile: 403; sh: 204; sed: 11
file content (359 lines) | stat: -rw-r--r-- 8,231 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
# tag: cpp

import math
cimport libcpp.complex as cppcomplex
from libcpp.complex cimport complex as complex_class

def double_complex(complex_class[double] a):
    """
    >>> double_complex(1 + 2j)
    (1+2j)
    >>> double_complex(1.5 + 2.5j)
    (1.5+2.5j)
    """
    return a

def double_int(complex_class[int] a):
    """
    >>> double_int(1 + 2j)
    (1+2j)
    >>> double_int(1.5 + 2.5j)
    (1+2j)
    """
    return a

def double_addition_with_scalar(complex_class[double] a, double b):
    """
    >>> double_addition_with_scalar(1 + 1j, 1) + 1
    (3+1j)
    >>> 1 + double_addition_with_scalar(1 + 2j, -1)
    (1+2j)
    >>> 1j + double_addition_with_scalar(1 + 2j, 7)
    (8+3j)
    >>> double_addition_with_scalar(1 + 2j, 7) - 1j
    (8+1j)
    >>> double_addition_with_scalar(1.5 + 2.5j, -1) + 0
    (0.5+2.5j)
    >>> -0 + double_addition_with_scalar(1.5 + 2.5j, -1)
    (0.5+2.5j)
    """
    cdef complex_class[double] c = a + b
    cdef complex_class[double] d = b + a
    return b + a

def double_inplace_addition_with_scalar(complex_class[double] a, double b):
    """
    >>> double_inplace_addition_with_scalar(1 + 1j, 1)
    (2+1j)
    """
    a += b
    return a

def double_inplace_substraction_with_scalar(complex_class[double] a, double b):
    """
    >>> double_inplace_substraction_with_scalar(1 + 1j, 2)
    (-1+1j)
    """
    a -= b
    return a

def double_inplace_multiplication_with_scalar(complex_class[double] a, double b):
    """
    >>> double_inplace_multiplication_with_scalar(1 + 1j, 2)
    (2+2j)
    """
    a *= b
    return a

def double_inplace_division_with_scalar(complex_class[double] a, double b):
    """
    >>> double_inplace_division_with_scalar(3 + 3j, 2)
    (1.5+1.5j)
    """
    a /= b
    return a

def double_unary_negation(complex_class[double] a):
    """
    >>> double_unary_negation(2 + 2j)
    (-2-2j)
    """
    return -a

def double_unary_positive(complex_class[double] a):
    """
    >>> double_unary_positive(2 + 2j)
    (2+2j)
    """
    return +a

def double_real_imaginary_accessors(complex_class[double] a, double real, double imag):
    """
    >>> a = double_real_imaginary_accessors(2.1 + 2j, 7, 4)
    >>> a.real
    9.1
    >>> a.imag
    6.0
    """
    # checks the accessors
    cdef double b = a.real()
    a.real(b + real)

    cdef double c = a.imag()
    a.imag(c + imag)

    return a

def double_double_comparison_equal(complex_class[double] a, complex_class[double] b):
    """
    >>> double_double_comparison_equal(2.1 + 2j, 7)
    False
    >>> double_double_comparison_equal(2.1 + 2j, (1j + 1) * 2 + 0.1)
    True
    """
    return a == b

def double_scalar_double_comparison_equal(complex_class[double] a, double b):
    """
    >>> double_double_comparison_equal(2.1 + 2j, 7)
    False
    >>> double_double_comparison_equal(7 + 0j, 7)
    True
    """
    return a == b

def scalar_double_double_comparison_equal(complex_class[double] a, double b):
    """
    >>> double_double_comparison_equal(2.1 + 2j, 7)
    False
    >>> double_double_comparison_equal(7 + 0j, 7)
    True
    """
    return b == a

def double_real_imaginary_accessors_free_function(complex_class[double] a, bint real_part):
    """
    >>> double_real_imaginary_accessors_free_function(2.1 + 2.7j, True)
    2.1
    >>> double_real_imaginary_accessors_free_function(2.1 + 2.7j, False)
    2.7
    """

    cdef double e = cppcomplex.real(a)
    cdef double f = cppcomplex.imag(a)
    if real_part:
        return e
    return f

def scalar_double_real_imaginary_accessors_free_function(double a, bint real_part):
    """
    >>> scalar_double_real_imaginary_accessors_free_function(2.1, True)
    2.1
    >>> scalar_double_real_imaginary_accessors_free_function(2.1, False)
    0.0
    """
    cdef double e = cppcomplex.real(a)
    cdef double f = cppcomplex.imag(a)
    if real_part:
        return e
    return f

def scalar_long_double_real_imaginary_accessors_free_function(long double a, bint real_part):
    """
    >>> scalar_long_double_real_imaginary_accessors_free_function(2.1, True)
    2.1
    >>> scalar_long_double_real_imaginary_accessors_free_function(2.1, False)
    0.0
    """
    cdef double e = cppcomplex.real(a)
    cdef double f = cppcomplex.imag(a)
    if real_part:
        return e
    return f

def double_abs(complex_class[double] a):
    """
    >>> double_abs(5)
    5.0
    >>> double_abs(5j)
    5.0
    >>> double_abs(2 + 5j) == math.sqrt(29)
    True
    """
    return cppcomplex.abs(a)

def double_norm(complex_class[double] a):
    """
    >>> double_norm(5)
    25.0
    >>> double_norm(5j)
    25.0
    >>> abs(double_norm(2 + 5j) - double_abs(2 + 5j)*double_abs(2 + 5j)) < 1e-13
    True
    """
    return cppcomplex.norm(a)

def scalar_double_norm(double a):
    """
    >>> scalar_double_norm(5)
    25.0
    """
    return cppcomplex.norm(a)

def scalar_float_norm(float a):
    """
    >>> scalar_float_norm(5)
    25.0
    """
    return cppcomplex.norm(a)

def double_conjugate(complex_class[double] a):
    """
    >>> double_conjugate(5)
    (5-0j)
    >>> double_conjugate(5j)
    -5j
    >>> double_conjugate(1 + 2j)
    (1-2j)
    """
    return cppcomplex.conj(a)

def scalar_double_conjugate(double a):
    """
    >>> a = scalar_double_conjugate(5)
    >>> a.real
    5.0
    >>> # abs to prevent -0 or 0 issue
    >>> abs(a.imag)
    0.0
    """
    # always return complex
    return cppcomplex.conj(a)

def double_proj(complex_class[double] a):
    """
    >>> double_proj(5 + 4j)
    (5+4j)
    >>> double_proj(-float("infinity") + 4j)
    (inf+0j)
    >>> double_proj(5 - float("infinity")*1j)
    (inf-0j)
    """
    return cppcomplex.proj(a)

def double_arg(complex_class[double] a):
    """
    >>> a = math.pi / 4
    >>> round(a, 10)
    0.7853981634
    >>> round(double_arg(math.cos(a) + math.sin(a)*1j), 10)
    0.7853981634
    """
    return cppcomplex.arg(a)

def scalar_double_arg(double a):
    """
    >>> scalar_double_arg(13)
    0.0
    >>> round(scalar_double_arg(-1), 10)
    3.1415926536
    """
    return cppcomplex.arg(a)

def double_polar(double r, double theta):
    """
    >>> c1 = double_polar(3, math.pi / 2)
    >>> c1.imag
    3.0
    >>> abs(c1.real) < 1e-10
    True
    >>> c2 = double_polar(4, math.pi)
    >>> c2.real
    -4.0
    >>> abs(c2.imag) < 1e-10
    True
    """
    return cppcomplex.polar(r, theta)

def double_polar_scalar(double r):
    """
    >>> c1 = double_polar_scalar(3)
    >>> c1.real
    3.0
    >>> c1.imag
    0.0
    >>> c2 = double_polar_scalar(0)
    >>> c2.real
    0.0
    >>> c2.imag
    0.0
    """
    return cppcomplex.polar(r)

def double_pow(complex_class[double] a, complex_class[double] b):
    """
    >>> double_pow(3, 3)
    (27+0j)
    >>> a = double_pow(1j, 1j)
    >>> round(a.real, 5)
    0.20788
    >>> round(a.imag, 2)
    0.0
    """
    return cppcomplex.pow(a, b)

def double_scalar_double_pow(complex_class[double] a, double b):
    """
    >>> double_pow(3, 3)
    (27+0j)
    >>> a = double_pow(1+2j, 2)
    >>> round(a.real, 2)
    -3.0
    >>> round(a.imag, 2)
    4.0
    """
    return cppcomplex.pow(a, b)

def scalar_double_double_pow(double a, complex_class[double] b):
    """
    >>> scalar_double_double_pow(3, 3)
    (27+0j)
    >>> a = scalar_double_double_pow(2, 2j)
    >>> round(a.real, 2)
    0.18
    >>> round(a.imag, 2)
    0.98
    """
    return cppcomplex.pow(a, b)

def double_sin(complex_class[double] a):
    """
    >>> round(abs(double_sin(math.pi)), 2)
    0.0
    >>> round(double_sin(-math.pi/4).real, 3)
    -0.707
    >>> round(abs(double_sin(-math.pi/4).imag), 3)
    0.0
    >>> round(abs(double_sin(4j).real), 3)
    0.0
    >>> round(abs(double_sin(4j).imag - math.sinh(4)), 3)
    0.0
    """
    return cppcomplex.sin(a)

def double_cos(complex_class[double] a):
    """
    >>> round(double_cos(math.pi).real, 2)
    -1.0
    >>> round(abs(double_cos(math.pi).imag), 2)
    0.0
    >>> round(double_cos(-math.pi/4 + math.pi).real, 3)
    -0.707
    >>> round(abs(double_cos(-math.pi/4).imag), 3)
    0.0
    >>> round(abs(double_cos(4j).imag), 3)
    0.0
    >>> round(abs(double_cos(5j).real - math.cosh(5)), 3)
    0.0
    """
    return cppcomplex.cos(a)