1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964
|
# mode: run
# tag: numpy
cimport numpy as np
cimport cython
import numpy as np
import re
def little_endian():
cdef int endian_detector = 1
return (<char*>&endian_detector)[0] != 0
def testcase(f):
# testcase decorator now does nothing (following changes to doctest)
# but is a useful indicator of what functions are designed as tests
return f
if little_endian():
my_endian = '<'
other_endian = '>'
else:
my_endian = '>'
other_endian = '<'
def assert_dtype_sizes():
"""
>>> assert_dtype_sizes()
"""
assert sizeof(np.int8_t) == 1
assert sizeof(np.int16_t) == 2
assert sizeof(np.int32_t) == 4
assert sizeof(np.int64_t) == 8
assert sizeof(np.uint8_t) == 1
assert sizeof(np.uint16_t) == 2
assert sizeof(np.uint32_t) == 4
assert sizeof(np.uint64_t) == 8
assert sizeof(np.float32_t) == 4
assert sizeof(np.float64_t) == 8
assert sizeof(np.complex64_t) == 8
assert sizeof(np.complex128_t) == 16
@testcase
def test_enums():
"""
>>> test_enums()
"""
cdef np.NPY_CASTING nc = np.NPY_NO_CASTING
assert nc != np.NPY_SAFE_CASTING
def ndarray_str(arr):
u"""
Work around display differences in NumPy 1.14.
"""
return re.sub(ur'\[ +', '[', unicode(arr))
def basic():
"""
>>> basic()
[[0 1 2 3 4]
[5 6 7 8 9]]
2 0 9 5
"""
cdef object[int, ndim=2] buf = np.arange(10, dtype='i').reshape((2, 5))
print buf
print buf[0, 2], buf[0, 0], buf[1, 4], buf[1, 0]
def three_dim():
"""
>>> three_dim() # doctest: +NORMALIZE_WHITESPACE
[[[0. 1. 2. 3.]
[4. 5. 6. 7.]]
<BLANKLINE>
[[8. 9. 10. 11.]
[12. 13. 14. 15.]]
<BLANKLINE>
[[16. 17. 18. 19.]
[20. 21. 22. 23.]]]
6.0 0.0 13.0 8.0
"""
cdef object[double, ndim=3] buf = np.arange(24, dtype='d').reshape((3,2,4))
print ndarray_str(buf)
print buf[0, 1, 2], buf[0, 0, 0], buf[1, 1, 1], buf[1, 0, 0]
def obj_array():
"""
>>> obj_array()
[a 1 {}]
a 1 {}
"""
cdef object[object, ndim=1] buf = np.array(["a", 1, {}])
print str(buf).replace('"', '').replace("'", '')
print buf[0], buf[1], buf[2]
def print_long_2d(np.ndarray[long, ndim=2] arr):
"""
Test various forms of slicing, picking etc.
>>> a = np.arange(10, dtype='l').reshape(2, 5)
>>> print_long_2d(a)
0 1 2 3 4
5 6 7 8 9
>>> print_long_2d(a[::-1, ::-1])
9 8 7 6 5
4 3 2 1 0
>>> print_long_2d(a[1:2, 1:3])
6 7
>>> print_long_2d(a[::2, ::2])
0 2 4
>>> print_long_2d(a[::4, :])
0 1 2 3 4
>>> print_long_2d(a[:, 1:5:2])
1 3
6 8
>>> print_long_2d(a[:, 5:1:-2])
4 2
9 7
>>> print_long_2d(a[:, [3, 1]])
3 1
8 6
>>> print_long_2d(a.T)
0 5
1 6
2 7
3 8
4 9
"""
cdef int i, j
for i in range(arr.shape[0]):
print u" ".join([unicode(arr[i, j]) for j in range(arr.shape[1])])
def put_range_long_1d(np.ndarray[long] arr):
"""
Write to slices
>>> b = np.arange(10, dtype='l').reshape(2, 5)
>>> put_range_long_1d(b[:, 3])
>>> print (b)
[[0 1 2 0 4]
[5 6 7 1 9]]
>>> put_range_long_1d(b[::-1, 3])
>>> print (b)
[[0 1 2 1 4]
[5 6 7 0 9]]
>>> a = np.zeros(9, dtype='l')
>>> put_range_long_1d(a[1::3])
>>> print (a)
[0 0 0 0 1 0 0 2 0]
Write to picked subarrays. This should NOT change the original
array as picking creates a new mutable copy.
>>> a = np.zeros(10, dtype='l').reshape(2, 5)
>>> put_range_long_1d(a[[0, 0, 1, 1, 0], [0, 1, 2, 4, 3]])
>>> print (a)
[[0 0 0 0 0]
[0 0 0 0 0]]
"""
# Writes 0,1,2,... to array and returns array
cdef int value = 0, i
for i in range(arr.shape[0]):
arr[i] = value
value += 1
def test_c_contig(np.ndarray[int, ndim=2, mode='c'] arr):
"""
Test contiguous access modes:
>>> c_arr = np.array(np.arange(12, dtype='i').reshape(3,4), order='C')
>>> f_arr = np.array(np.arange(12, dtype='i').reshape(3,4), order='F')
>>> test_c_contig(c_arr)
0 1 2 3
4 5 6 7
8 9 10 11
>>> test_c_contig(f_arr) #doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: ndarray is not C...contiguous
>>> test_c_contig(c_arr[::2,::2]) #doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: ndarray is not C...contiguous
"""
cdef int i, j
for i in range(arr.shape[0]):
print u" ".join([unicode(arr[i, j]) for j in range(arr.shape[1])])
def test_f_contig(np.ndarray[int, ndim=2, mode='fortran'] arr):
"""
Test contiguous access modes:
>>> c_arr = np.array(np.arange(12, dtype='i').reshape(3,4), order='C')
>>> f_arr = np.array(np.arange(12, dtype='i').reshape(3,4), order='F')
>>> test_f_contig(f_arr)
0 1 2 3
4 5 6 7
8 9 10 11
>>> test_f_contig(c_arr) #doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: ndarray is not Fortran contiguous
"""
cdef int i, j
for i in range(arr.shape[0]):
print u" ".join([unicode(arr[i, j]) for j in range(arr.shape[1])])
# Exhaustive dtype tests -- increments element [1] by 1 (or 1+1j) for all dtypes
def inc1_bool(np.ndarray[unsigned char] arr): arr[1] += 1
def inc1_byte(np.ndarray[char] arr): arr[1] += 1
def inc1_ubyte(np.ndarray[unsigned char] arr): arr[1] += 1
def inc1_short(np.ndarray[short] arr): arr[1] += 1
def inc1_ushort(np.ndarray[unsigned short] arr): arr[1] += 1
def inc1_int(np.ndarray[int] arr): arr[1] += 1
def inc1_uint(np.ndarray[unsigned int] arr): arr[1] += 1
def inc1_long(np.ndarray[long] arr): arr[1] += 1
def inc1_ulong(np.ndarray[unsigned long] arr): arr[1] += 1
def inc1_longlong(np.ndarray[long long] arr): arr[1] += 1
def inc1_ulonglong(np.ndarray[unsigned long long] arr): arr[1] += 1
def inc1_float(np.ndarray[float] arr): arr[1] += 1
def inc1_double(np.ndarray[double] arr): arr[1] += 1
def inc1_longdouble(np.ndarray[long double] arr): arr[1] += 1
def inc1_cfloat(np.ndarray[float complex] arr): arr[1] = arr[1] + 1 + 1j
def inc1_cdouble(np.ndarray[double complex] arr): arr[1] = (arr[1] + 1) + 1j
def inc1_clongdouble(np.ndarray[long double complex] arr): arr[1] = arr[1] + (1 + 1j)
def inc1_cfloat_struct(np.ndarray[np.cfloat_t] arr):
arr[1].real = arr[1].real + 1
arr[1].imag = arr[1].imag + 1
def inc1_cdouble_struct(np.ndarray[np.cdouble_t] arr):
arr[1].real = arr[1].real + 1
arr[1].imag = arr[1].imag + 1
def inc1_clongdouble_struct(np.ndarray[np.clongdouble_t] arr):
cdef long double x
x = arr[1].real + 1
arr[1].real = x
arr[1].imag = arr[1].imag + 1
def inc1_object(np.ndarray[object] arr):
o = arr[1]
o += 1
arr[1] = o # unfortunately, += segfaults for objects
def inc1_int64_t(np.ndarray[np.int64_t] arr): arr[1] += 1
def inc1_longlong_t(np.ndarray[np.longlong_t] arr): arr[1] += 1
def inc1_float_t(np.ndarray[np.float_t] arr): arr[1] += 1
def inc1_double_t(np.ndarray[np.double_t] arr): arr[1] += 1
def inc1_longdouble_t(np.ndarray[np.longdouble_t] arr): arr[1] += 1
def inc1_intp_t(np.ndarray[np.intp_t] arr): arr[1] += 1
def inc1_uintp_t(np.ndarray[np.uintp_t] arr): arr[1] += 1
# The tests below only work on platforms that has the given types
def inc1_int64_t(np.ndarray[np.int64_t] arr): arr[1] += 1
def inc1_float64_t(np.ndarray[np.float64_t] arr): arr[1] += 1
def test_dtype(dtype, inc1):
"""
>>> test_dtype('?', inc1_bool)
>>> test_dtype('b', inc1_byte)
>>> test_dtype('B', inc1_ubyte)
>>> test_dtype('h', inc1_short)
>>> test_dtype('H', inc1_ushort)
>>> test_dtype('i', inc1_int)
>>> test_dtype('I', inc1_uint)
>>> test_dtype('l', inc1_long)
>>> test_dtype('L', inc1_ulong)
>>> test_dtype('f', inc1_float)
>>> test_dtype('d', inc1_double)
>>> test_dtype('g', inc1_longdouble)
>>> test_dtype('O', inc1_object)
>>> test_dtype('F', inc1_cfloat) # numpy format codes differ from buffer ones here
>>> test_dtype('D', inc1_cdouble)
>>> test_dtype('G', inc1_clongdouble)
>>> test_dtype('F', inc1_cfloat_struct)
>>> test_dtype('D', inc1_cdouble_struct)
>>> test_dtype('G', inc1_clongdouble_struct)
>>> test_dtype(np.longlong, inc1_longlong_t)
>>> test_dtype(np.float64, inc1_float_t)
>>> test_dtype(np.double, inc1_double_t)
>>> test_dtype(np.intp, inc1_intp_t)
>>> test_dtype(np.uintp, inc1_uintp_t)
>>> test_dtype(np.longdouble, inc1_longdouble_t)
>>> test_dtype(np.int64, inc1_int64_t)
>>> test_dtype(np.float64, inc1_float64_t)
Endian tests:
>>> test_dtype('%si' % my_endian, inc1_int)
>>> test_dtype('%si' % other_endian, inc1_int) #doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: ...
"""
if dtype in ("g", np.longdouble,
"G", np.clongdouble):
if sizeof(double) == sizeof(long double): # MSVC
return
if dtype in ('F', 'D', 'G'):
a = np.array([0, 10+10j], dtype=dtype)
inc1(a)
if a[1] != (11 + 11j): print u"failed!", a[1]
elif dtype == '?':
# bool ndarrays coerce all values to 0 or 1
a = np.array([0, 0], dtype=dtype)
inc1(a)
if a[1] != 1: print u"failed!"
inc1(a)
if a[1] != 1: print u"failed!"
else:
a = np.array([0, 10], dtype=dtype)
inc1(a)
if a[1] != 11: print u"failed!"
cdef struct DoubleInt:
int x, y
def test_recordarray():
"""
>>> test_recordarray()
"""
cdef object[DoubleInt] arr
arr = np.array([(5,5), (4, 6)], dtype=np.dtype('i,i'))
cdef DoubleInt rec
rec = arr[0]
if rec.x != 5: print u"failed"
if rec.y != 5: print u"failed"
rec.y += 5
arr[1] = rec
arr[0].x -= 2
arr[0].y += 3
if arr[0].x != 3: print u"failed"
if arr[0].y != 8: print u"failed"
if arr[1].x != 5: print u"failed"
if arr[1].y != 10: print u"failed"
cdef struct NestedStruct:
DoubleInt a
DoubleInt b
cdef struct BadDoubleInt:
float x
int y
cdef struct BadNestedStruct:
DoubleInt a
BadDoubleInt b
def test_nested_dtypes(obj):
"""
>>> print(test_nested_dtypes(np.zeros((3,), dtype=np.dtype([\
('a', np.dtype('i,i')),\
('b', np.dtype('i,i'))\
])))) # doctest: +NORMALIZE_WHITESPACE
array([((0, 0), (0, 0)), ((1, 2), (1, 4)), ((1, 2), (1, 4))],
dtype=[('a', [('f0', '!i4'), ('f1', '!i4')]), ('b', [('f0', '!i4'), ('f1', '!i4')])])
>>> print(test_nested_dtypes(np.zeros((3,), dtype=np.dtype([\
('a', np.dtype('i,f')),\
('b', np.dtype('i,i'))\
]))))
Traceback (most recent call last):
...
ValueError: Buffer dtype mismatch, expected 'int' but got 'float' in 'DoubleInt.y'
"""
cdef object[NestedStruct] arr = obj
arr[1].a.x = 1
arr[1].a.y = 2
arr[1].b.x = arr[0].a.y + 1
arr[1].b.y = 4
arr[2] = arr[1]
return repr(arr).replace('<', '!').replace('>', '!')
def test_bad_nested_dtypes():
"""
>>> test_bad_nested_dtypes()
"""
cdef object[BadNestedStruct] arr
def test_good_cast():
"""
>>> test_good_cast()
True
"""
# Check that a signed int can round-trip through casted unsigned int access
cdef np.ndarray[unsigned int, cast=True] arr = np.array([-100], dtype='i')
cdef unsigned int data = arr[0]
return -100 == <int>data
def test_bad_cast():
"""
>>> test_bad_cast()
Traceback (most recent call last):
...
ValueError: Item size of buffer (1 byte) does not match size of 'int' (4 bytes)
"""
# This should raise an exception
cdef np.ndarray[int, cast=True] arr = np.array([1], dtype='b')
cdef packed struct PackedStruct:
char a
int b
cdef struct UnpackedStruct:
char a
int b
cdef struct PartiallyPackedStruct:
char a
int b
PackedStruct sub
int c
cdef packed struct PartiallyPackedStruct2:
char a
int b
char c
UnpackedStruct sub
def test_packed_align(np.ndarray[PackedStruct] arr):
"""
>>> print(test_packed_align(np.zeros((1,), dtype=np.dtype('b,i', align=False))))
[(22, 23)]
>>> print(test_packed_align(np.zeros((1,), dtype=np.dtype('b,i', align=True)))) #doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: ...
"""
arr[0].a = 22
arr[0].b = 23
return arr.tolist()
def test_unpacked_align(np.ndarray[UnpackedStruct] arr):
"""
The output changed in Python 3:
>> print(test_unpacked_align(np.zeros((1,), dtype=np.dtype('b,i', align=True))))
array([(22, 23)],
dtype=[('f0', '|i1'), ('', '|V3'), ('f1', '!i4')])
->
array([(22, 23)],
dtype={'names':['f0','f1'], 'formats':['i1','!i4'], 'offsets':[0,4], 'itemsize':8, 'aligned':True})
>>> print(test_unpacked_align(np.zeros((1,), dtype=np.dtype('b,i', align=True))))
[(22, 23)]
>>> print(test_unpacked_align(np.zeros((1,), dtype=np.dtype('b,i', align=False)))) #doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: ...
"""
arr[0].a = 22
arr[0].b = 23
# return repr(arr).replace('<', '!').replace('>', '!')
return arr.tolist()
def test_partially_packed_align(np.ndarray[PartiallyPackedStruct] arr):
arr[0].a = 22
arr[0].b = 23
arr[0].sub.a = 24
arr[0].sub.b = 25
arr[0].c = 26
return repr(arr).replace('<', '!').replace('>', '!')
def test_partially_packed_align_2(np.ndarray[PartiallyPackedStruct2] arr):
arr[0].a = 22
arr[0].b = 23
arr[0].c = 24
arr[0].sub.a = 27
arr[0].sub.b = 28
return repr(arr).replace('<', '!').replace('>', '!')
def test_complextypes():
"""
>>> test_complextypes()
1,1
1,1
8,16
"""
cdef np.complex64_t x64 = 1, y64 = 1j
cdef np.complex128_t x128 = 1, y128 = 1j
x64 = x64 + y64
print "%.0f,%.0f" % (x64.real, x64.imag)
x128 = x128 + y128
print "%.0f,%.0f" % (x128.real, x128.imag)
print "%d,%d" % (sizeof(x64), sizeof(x128))
cdef struct Point:
np.float64_t x, y
def test_point_record():
"""
>>> test_point_record() # doctest: +NORMALIZE_WHITESPACE
array([(0., 0.), (1., -1.), (2., -2.)],
dtype=[('x', '!f8'), ('y', '!f8')])
"""
cdef np.ndarray[Point] test
Point_dtype = np.dtype([('x', np.float64), ('y', np.float64)])
test = np.zeros(3, Point_dtype)
cdef int i
for i in range(3):
test[i].x = i
test[i].y = -i
print re.sub(
r'\.0+\b', '.', repr(test).replace('<', '!').replace('>', '!')
.replace('( ', '(').replace(', ', ', '))
# Test fused np.ndarray dtypes and runtime dispatch
@testcase
def test_fused_ndarray_floating_dtype(np.ndarray[cython.floating, ndim=1] a):
"""
>>> import cython
>>> sorted(test_fused_ndarray_floating_dtype.__signatures__)
['double', 'float']
>>> test_fused_ndarray_floating_dtype[cython.double](np.arange(10, dtype=np.float64))
ndarray[double,ndim=1] ndarray[double,ndim=1] 5.0 6.0
>>> test_fused_ndarray_floating_dtype(np.arange(10, dtype=np.float64))
ndarray[double,ndim=1] ndarray[double,ndim=1] 5.0 6.0
>>> test_fused_ndarray_floating_dtype[cython.float](np.arange(10, dtype=np.float32))
ndarray[float,ndim=1] ndarray[float,ndim=1] 5.0 6.0
>>> test_fused_ndarray_floating_dtype(np.arange(10, dtype=np.float32))
ndarray[float,ndim=1] ndarray[float,ndim=1] 5.0 6.0
"""
cdef np.ndarray[cython.floating, ndim=1] b = a
print cython.typeof(a), cython.typeof(b), a[5], b[6]
double_array = np.linspace(0, 1, 100)
int32_array = np.arange(100, dtype=np.int32)
cdef fused fused_external:
np.int32_t
np.int64_t
np.float32_t
np.float64_t
@testcase
def test_fused_external(np.ndarray[fused_external, ndim=1] a):
"""
>>> import cython
>>> sorted(test_fused_external.__signatures__)
['float32_t', 'float64_t', 'int32_t', 'int64_t']
>>> test_fused_external["float64_t"](double_array)
float64
>>> test_fused_external["int32_t"](int32_array)
int32
>>> test_fused_external(np.arange(100, dtype=np.int64))
int64
"""
print a.dtype
cdef fused fused_buffers:
np.ndarray[np.int32_t, ndim=1]
np.int64_t[::1]
@testcase
def test_fused_buffers(fused_buffers arg):
"""
>>> sorted(test_fused_buffers.__signatures__)
['int64_t[::1]', 'ndarray[int32_t,ndim=1]']
"""
cpdef _fused_cpdef_buffers(np.ndarray[fused_external] a):
print a.dtype
@testcase
def test_fused_cpdef_buffers():
"""
>>> test_fused_cpdef_buffers()
int32
int32
"""
_fused_cpdef_buffers[np.int32_t](int32_array)
cdef np.ndarray[np.int32_t] typed_array = int32_array
_fused_cpdef_buffers(typed_array)
@testcase
def test_fused_ndarray_integral_dtype(np.ndarray[cython.integral, ndim=1] a):
"""
>>> import cython
>>> sorted(test_fused_ndarray_integral_dtype.__signatures__)
['int', 'long', 'short']
>>> test_fused_ndarray_integral_dtype[cython.int](np.arange(10, dtype=np.dtype('i')))
5 6
>>> test_fused_ndarray_integral_dtype(np.arange(10, dtype=np.dtype('i')))
5 6
>>> test_fused_ndarray_integral_dtype[cython.long](np.arange(10, dtype='l'))
5 6
>>> test_fused_ndarray_integral_dtype(np.arange(10, dtype='l'))
5 6
"""
cdef np.ndarray[cython.integral, ndim=1] b = a
# Don't print the types, the platform specific sizes can make the dispatcher
# select different integer types with equal sizeof()
print a[5], b[6]
cdef fused fused_dtype:
float complex
double complex
object
@testcase
def test_fused_ndarray_other_dtypes(np.ndarray[fused_dtype, ndim=1] a):
"""
>>> import cython
>>> sorted(test_fused_ndarray_other_dtypes.__signatures__)
['double complex', 'float complex', 'object']
>>> test_fused_ndarray_other_dtypes(np.arange(10, dtype=np.complex64))
ndarray[float complex,ndim=1] ndarray[float complex,ndim=1] (5+0j) (6+0j)
>>> test_fused_ndarray_other_dtypes(np.arange(10, dtype=np.complex128))
ndarray[double complex,ndim=1] ndarray[double complex,ndim=1] (5+0j) (6+0j)
>>> test_fused_ndarray_other_dtypes(np.arange(10, dtype=np.object_))
ndarray[Python object,ndim=1] ndarray[Python object,ndim=1] 5 6
"""
cdef np.ndarray[fused_dtype, ndim=1] b = a
print cython.typeof(a), cython.typeof(b), a[5], b[6]
# Test fusing the array types together and runtime dispatch
cdef struct Foo:
int a
float b
cdef fused fused_FooArray:
np.ndarray[Foo, ndim=1]
cdef fused fused_ndarray:
np.ndarray[float, ndim=1]
np.ndarray[double, ndim=1]
np.ndarray[Foo, ndim=1]
def get_Foo_array():
cdef Foo data[10]
for i in range(10):
data[i] = [0, 0]
data[5].b = 9.0
return np.asarray(<Foo[:]>data).copy()
def test_fused_ndarray(fused_ndarray a):
"""
>>> import cython
>>> sorted(test_fused_ndarray.__signatures__)
['ndarray[Foo,ndim=1]', 'ndarray[double,ndim=1]', 'ndarray[float,ndim=1]']
>>> test_fused_ndarray(get_Foo_array())
ndarray[Foo,ndim=1] ndarray[Foo,ndim=1]
9.0
>>> test_fused_ndarray(np.arange(10, dtype=np.float64))
ndarray[double,ndim=1] ndarray[double,ndim=1]
5.0
>>> test_fused_ndarray(np.arange(10, dtype=np.float32))
ndarray[float,ndim=1] ndarray[float,ndim=1]
5.0
"""
cdef fused_ndarray b = a
print cython.typeof(a), cython.typeof(b)
if fused_ndarray in fused_FooArray:
print b[5].b
else:
print b[5]
cpdef test_fused_cpdef_ndarray(fused_ndarray a):
"""
>>> import cython
>>> sorted(test_fused_cpdef_ndarray.__signatures__)
['ndarray[Foo,ndim=1]', 'ndarray[double,ndim=1]', 'ndarray[float,ndim=1]']
>>> test_fused_cpdef_ndarray(get_Foo_array())
ndarray[Foo,ndim=1] ndarray[Foo,ndim=1]
9.0
>>> test_fused_cpdef_ndarray(np.arange(10, dtype=np.float64))
ndarray[double,ndim=1] ndarray[double,ndim=1]
5.0
>>> test_fused_cpdef_ndarray(np.arange(10, dtype=np.float32))
ndarray[float,ndim=1] ndarray[float,ndim=1]
5.0
"""
cdef fused_ndarray b = a
print cython.typeof(a), cython.typeof(b)
if fused_ndarray in fused_FooArray:
print b[5].b
else:
print b[5]
def test_fused_cpdef_ndarray_cdef_call():
"""
>>> test_fused_cpdef_ndarray_cdef_call()
ndarray[Foo,ndim=1] ndarray[Foo,ndim=1]
9.0
"""
cdef np.ndarray[Foo, ndim=1] foo_array = get_Foo_array()
test_fused_cpdef_ndarray(foo_array)
cdef fused int_type:
np.int32_t
np.int64_t
float64_array = np.arange(10, dtype=np.float64)
float32_array = np.arange(10, dtype=np.float32)
int32_array = np.arange(10, dtype=np.int32)
int64_array = np.arange(10, dtype=np.int64)
@testcase
def test_dispatch_non_clashing_declarations_repeating_types(np.ndarray[cython.floating] a1,
np.ndarray[int_type] a2,
np.ndarray[cython.floating] a3,
np.ndarray[int_type] a4):
"""
>>> test_dispatch_non_clashing_declarations_repeating_types(float64_array, int32_array, float64_array, int32_array)
1.0 2 3.0 4
>>> test_dispatch_non_clashing_declarations_repeating_types(float64_array, int64_array, float64_array, int64_array)
1.0 2 3.0 4
>>> test_dispatch_non_clashing_declarations_repeating_types(float64_array, int32_array, float64_array, int64_array) # doctest: +ELLIPSIS
Traceback (most recent call last):
ValueError: Buffer dtype mismatch, expected 'int32_t'...
>>> test_dispatch_non_clashing_declarations_repeating_types(float64_array, int64_array, float64_array, int32_array) # doctest: +ELLIPSIS
Traceback (most recent call last):
ValueError: Buffer dtype mismatch, expected 'int64_t'...
"""
print a1[1], a2[2], a3[3], a4[4]
ctypedef np.int32_t typedeffed_type
cdef fused typedeffed_fused_type:
typedeffed_type
int
long
@testcase
def test_dispatch_typedef(np.ndarray[typedeffed_fused_type] a):
"""
>>> test_dispatch_typedef(int32_array)
5
"""
print a[5]
cdef extern from "types.h":
ctypedef char actually_long_t
cdef fused confusing_fused_typedef:
actually_long_t
int
unsigned long
double complex
unsigned char
signed char
def test_dispatch_external_typedef(np.ndarray[confusing_fused_typedef] a):
"""
>>> test_dispatch_external_typedef(np.arange(-5, 5, dtype=np.int_))
-2
"""
print a[3]
# test fused memoryview slices
cdef fused memslice_fused_dtype:
float
double
int
long
float complex
double complex
object
@testcase
def test_fused_memslice_other_dtypes(memslice_fused_dtype[:] a):
"""
>>> import cython
>>> sorted(test_fused_memslice_other_dtypes.__signatures__)
['double', 'double complex', 'float', 'float complex', 'int', 'long', 'object']
>>> test_fused_memslice_other_dtypes(np.arange(10, dtype=np.complex64))
float complex[:] float complex[:] (5+0j) (6+0j)
>>> test_fused_memslice_other_dtypes(np.arange(10, dtype=np.complex128))
double complex[:] double complex[:] (5+0j) (6+0j)
>>> test_fused_memslice_other_dtypes(np.arange(10, dtype=np.float32))
float[:] float[:] 5.0 6.0
>>> test_fused_memslice_other_dtypes(np.arange(10, dtype=np.dtype('i')))
int[:] int[:] 5 6
>>> test_fused_memslice_other_dtypes(np.arange(10, dtype=np.object_))
object[:] object[:] 5 6
"""
cdef memslice_fused_dtype[:] b = a
print cython.typeof(a), cython.typeof(b), a[5], b[6]
cdef fused memslice_fused:
float[:]
double[:]
int[:]
long[:]
float complex[:]
double complex[:]
object[:]
@testcase
def test_fused_memslice(memslice_fused a):
"""
>>> import cython
>>> sorted(test_fused_memslice.__signatures__)
['double complex[:]', 'double[:]', 'float complex[:]', 'float[:]', 'int[:]', 'long[:]', 'object[:]']
>>> test_fused_memslice(np.arange(10, dtype=np.complex64))
float complex[:] float complex[:] (5+0j) (6+0j)
>>> test_fused_memslice(np.arange(10, dtype=np.complex128))
double complex[:] double complex[:] (5+0j) (6+0j)
>>> test_fused_memslice(np.arange(10, dtype=np.float32))
float[:] float[:] 5.0 6.0
>>> test_fused_memslice(np.arange(10, dtype=np.dtype('i')))
int[:] int[:] 5 6
>>> test_fused_memslice(np.arange(10, dtype=np.object_))
object[:] object[:] 5 6
"""
cdef memslice_fused b = a
print cython.typeof(a), cython.typeof(b), a[5], b[6]
@testcase
def test_dispatch_memoryview_object():
"""
>>> test_dispatch_memoryview_object()
int[:] int[:] 5 6
"""
cdef int[:] m = np.arange(10, dtype=np.dtype('i'))
cdef int[:] m2 = m
cdef int[:] m3 = <object> m
test_fused_memslice(m3)
cdef fused ndim_t:
double[:]
double[:, :]
double[:, :, :]
@testcase
def test_dispatch_ndim(ndim_t array):
"""
>>> test_dispatch_ndim(np.empty(5, dtype=np.double))
double[:] 1
>>> test_dispatch_ndim(np.empty((5, 5), dtype=np.double))
double[:, :] 2
>>> test_dispatch_ndim(np.empty((5, 5, 5), dtype=np.double))
double[:, :, :] 3
Test indexing using Cython.Shadow
>>> import cython
>>> test_dispatch_ndim[cython.double[:]](np.empty(5, dtype=np.double))
double[:] 1
>>> test_dispatch_ndim[cython.double[:, :]](np.empty((5, 5), dtype=np.double))
double[:, :] 2
"""
print cython.typeof(array), np.asarray(array).ndim
@testcase
def test_copy_buffer(np.ndarray[double, ndim=1] a):
"""
>>> a = test_copy_buffer(np.ones(10, dtype=np.double))
>>> len(a)
10
>>> print(a.dtype)
float64
>>> float(a[0])
1.0
"""
a = a.copy()
a = a.copy()
a = a.copy()
a = a.copy()
a = a.copy()
return a
@testcase
def test_broadcast_comparison(np.ndarray[double, ndim=1] a):
"""
>>> a = np.ones(10, dtype=np.double)
>>> a0, obj0, a1, obj1 = test_broadcast_comparison(a)
>>> bool(np.all(a0 == (a == 0))) or a0
True
>>> bool(np.all(a1 == (a == 1))) or a1
True
>>> bool(np.all(obj0 == (a == 0))) or obj0
True
>>> bool(np.all(obj1 == (a == 1))) or obj1
True
>>> a = np.zeros(10, dtype=np.double)
>>> a0, obj0, a1, obj1 = test_broadcast_comparison(a)
>>> bool(np.all(a0 == (a == 0))) or a0
True
>>> bool(np.all(a1 == (a == 1))) or a1
True
>>> bool(np.all(obj0 == (a == 0))) or obj0
True
>>> bool(np.all(obj1 == (a == 1))) or obj1
True
"""
cdef object obj = a
return a == 0, obj == 0, a == 1, obj == 1
@testcase
def test_c_api_searchsorted(np.ndarray arr, other):
"""
>>> arr = np.random.randn(10)
>>> other = np.random.randn(5)
>>> result, expected = test_c_api_searchsorted(arr, other)
>>> bool((result == expected).all())
True
"""
result = np.PyArray_SearchSorted(arr, other, np.NPY_SEARCHRIGHT, NULL)
expected = arr.searchsorted(other, side="right")
return result, expected
|