File: Builtins.c

package info (click to toggle)
cython 3.1.6%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 19,932 kB
  • sloc: python: 92,172; ansic: 19,275; cpp: 1,407; xml: 1,031; javascript: 511; makefile: 373; sh: 223; sed: 11
file content (776 lines) | stat: -rw-r--r-- 25,309 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
/*
 * Special implementations of built-in functions and methods.
 *
 * Optional optimisations for builtins are in Optimize.c.
 *
 * General object operations and protocols are in ObjectHandling.c.
 */

//////////////////// Globals.proto ////////////////////

static PyObject* __Pyx_Globals(void); /*proto*/

//////////////////// Globals ////////////////////
//@requires: ObjectHandling.c::GetAttr

// This is a stub implementation until we have something more complete.
// Currently, we only handle the most common case of a read-only dict
// of Python names.  Supporting cdef names in the module and write
// access requires a rewrite as a dedicated class.

static PyObject* __Pyx_Globals(void) {
    return __Pyx_NewRef(NAMED_CGLOBAL(moddict_cname));
}

//////////////////// PyExecGlobals.proto ////////////////////

static PyObject* __Pyx_PyExecGlobals(PyObject*);

//////////////////// PyExecGlobals ////////////////////
//@requires: PyExec

static PyObject* __Pyx_PyExecGlobals(PyObject* code) {
    return __Pyx_PyExec2(code, NAMED_CGLOBAL(moddict_cname));
}

//////////////////// PyExec.proto ////////////////////

static PyObject* __Pyx_PyExec3(PyObject*, PyObject*, PyObject*);
static CYTHON_INLINE PyObject* __Pyx_PyExec2(PyObject*, PyObject*);

//////////////////// PyExec ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyExec2(PyObject* o, PyObject* globals) {
    return __Pyx_PyExec3(o, globals, NULL);
}

static PyObject* __Pyx_PyExec3(PyObject* o, PyObject* globals, PyObject* locals) {
    PyObject* result;
#if !CYTHON_COMPILING_IN_LIMITED_API
    PyObject* s = 0;
    char *code = 0;
#endif

    if (!globals || globals == Py_None) {
        globals = NAMED_CGLOBAL(moddict_cname);
    }
#if !CYTHON_COMPILING_IN_LIMITED_API
    // In Limited API we just use exec builtin which already has this
    else if (unlikely(!PyDict_Check(globals))) {
        __Pyx_TypeName globals_type_name =
            __Pyx_PyType_GetFullyQualifiedName(Py_TYPE(globals));
        PyErr_Format(PyExc_TypeError,
                     "exec() arg 2 must be a dict, not " __Pyx_FMT_TYPENAME,
                     globals_type_name);
        __Pyx_DECREF_TypeName(globals_type_name);
        goto bad;
    }
#endif
    if (!locals || locals == Py_None) {
        locals = globals;
    }

#if !CYTHON_COMPILING_IN_LIMITED_API
    if (__Pyx_PyDict_GetItemStr(globals, PYIDENT("__builtins__")) == NULL) {
        if (unlikely(PyDict_SetItem(globals, PYIDENT("__builtins__"), PyEval_GetBuiltins()) < 0))
            goto bad;
    }

    if (PyCode_Check(o)) {
        if (unlikely(__Pyx_PyCode_HasFreeVars((PyCodeObject *)o))) {
            PyErr_SetString(PyExc_TypeError,
                "code object passed to exec() may not contain free variables");
            goto bad;
        }
        #if CYTHON_COMPILING_IN_PYPY && PYPY_VERSION_NUM < 0x07030400
        result = PyEval_EvalCode((PyCodeObject *)o, globals, locals);
        #else
        result = PyEval_EvalCode(o, globals, locals);
        #endif
    } else {
        PyCompilerFlags cf;
        cf.cf_flags = 0;
#if PY_VERSION_HEX >= 0x030800A3
        cf.cf_feature_version = PY_MINOR_VERSION;
#endif
        if (PyUnicode_Check(o)) {
            cf.cf_flags = PyCF_SOURCE_IS_UTF8;
            s = PyUnicode_AsUTF8String(o);
            if (unlikely(!s)) goto bad;
            o = s;
        } else if (unlikely(!PyBytes_Check(o))) {
            __Pyx_TypeName o_type_name = __Pyx_PyType_GetFullyQualifiedName(Py_TYPE(o));
            PyErr_Format(PyExc_TypeError,
                "exec: arg 1 must be string, bytes or code object, got " __Pyx_FMT_TYPENAME,
                o_type_name);
            __Pyx_DECREF_TypeName(o_type_name);
            goto bad;
        }
        code = PyBytes_AS_STRING(o);
        if (PyEval_MergeCompilerFlags(&cf)) {
            result = PyRun_StringFlags(code, Py_file_input, globals, locals, &cf);
        } else {
            result = PyRun_String(code, Py_file_input, globals, locals);
        }
        Py_XDECREF(s);
    }

    return result;
bad:
    Py_XDECREF(s);
    return 0;
#else // CYTHON_COMPILING_IN_LIMITED_API
    {
        // For the limited API we just defer to the actual builtin
        // (after setting up globals and locals) - there's too much we can't do otherwise
        PyObject *builtins, *exec, *exec_str;
        builtins = PyEval_GetBuiltins();
        if (!builtins) return NULL;
        exec_str = PyUnicode_FromStringAndSize("exec", 4);
        if (!exec_str) return NULL;
        exec = PyObject_GetItem(builtins, exec_str);
        Py_DECREF(exec_str);
        if (!exec) return NULL;
        result = PyObject_CallFunctionObjArgs(exec, o, globals, locals, NULL);
        Py_DECREF(exec);
        return result;
    }
#endif
}

//////////////////// GetAttr3.proto ////////////////////

static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *, PyObject *, PyObject *); /*proto*/

//////////////////// GetAttr3 ////////////////////
//@requires: ObjectHandling.c::PyObjectGetAttrStr
//@requires: Exceptions.c::PyThreadStateGet
//@requires: Exceptions.c::PyErrFetchRestore
//@requires: Exceptions.c::PyErrExceptionMatches

#if __PYX_LIMITED_VERSION_HEX < 0x030d0000
static PyObject *__Pyx_GetAttr3Default(PyObject *d) {
    __Pyx_PyThreadState_declare
    __Pyx_PyThreadState_assign
    if (unlikely(!__Pyx_PyErr_ExceptionMatches(PyExc_AttributeError)))
        return NULL;
    __Pyx_PyErr_Clear();
    Py_INCREF(d);
    return d;
}
#endif

static CYTHON_INLINE PyObject *__Pyx_GetAttr3(PyObject *o, PyObject *n, PyObject *d) {
    PyObject *r;
#if __PYX_LIMITED_VERSION_HEX >= 0x030d0000
    int res = PyObject_GetOptionalAttr(o, n, &r);
    // On failure (res == -1), r is set to NULL.
    return (res != 0) ? r : __Pyx_NewRef(d);
#else
  #if CYTHON_USE_TYPE_SLOTS
    if (likely(PyUnicode_Check(n))) {
        r = __Pyx_PyObject_GetAttrStrNoError(o, n);
        if (unlikely(!r) && likely(!PyErr_Occurred())) {
            r = __Pyx_NewRef(d);
        }
        return r;
    }
  #endif
    r = PyObject_GetAttr(o, n);
    return (likely(r)) ? r : __Pyx_GetAttr3Default(d);
#endif
}

//////////////////// HasAttr.proto ////////////////////

#if __PYX_LIMITED_VERSION_HEX >= 0x030d0000
#define __Pyx_HasAttr(o, n)  PyObject_HasAttrWithError(o, n)
#else
static CYTHON_INLINE int __Pyx_HasAttr(PyObject *, PyObject *); /*proto*/
#endif

//////////////////// HasAttr ////////////////////
//@requires: ObjectHandling.c::PyObjectGetAttrStrNoError

#if __PYX_LIMITED_VERSION_HEX < 0x030d0000
static CYTHON_INLINE int __Pyx_HasAttr(PyObject *o, PyObject *n) {
    PyObject *r;
    if (unlikely(!PyUnicode_Check(n))) {
        PyErr_SetString(PyExc_TypeError,
                        "hasattr(): attribute name must be string");
        return -1;
    }
    r = __Pyx_PyObject_GetAttrStrNoError(o, n);
    if (!r) {
        return (unlikely(PyErr_Occurred())) ? -1 : 0;
    } else {
        Py_DECREF(r);
        return 1;
    }
}
#endif

//////////////////// Intern.proto ////////////////////

static PyObject* __Pyx_Intern(PyObject* s); /* proto */

//////////////////// Intern ////////////////////
//@requires: ObjectHandling.c::RaiseUnexpectedTypeError

static PyObject* __Pyx_Intern(PyObject* s) {
    if (unlikely(!PyUnicode_CheckExact(s))) {
        __Pyx_RaiseUnexpectedTypeError("str", s);
        return NULL;
    }
    Py_INCREF(s);
    PyUnicode_InternInPlace(&s);
    return s;
}

//////////////////// abs_longlong.proto ////////////////////

static CYTHON_INLINE PY_LONG_LONG __Pyx_abs_longlong(PY_LONG_LONG x) {
#if defined (__cplusplus) && __cplusplus >= 201103L
    return std::abs(x);
#elif defined (__STDC_VERSION__) && __STDC_VERSION__ >= 199901L
    return llabs(x);
#elif defined (_MSC_VER)
    // abs() is defined for long, but 64-bits type on MSVC is long long.
    // Use MS-specific _abs64() instead, which returns the original (negative) value for abs(-MAX-1)
    return _abs64(x);
#elif defined (__GNUC__)
    // gcc or clang on 64 bit windows.
    return __builtin_llabs(x);
#else
    if (sizeof(PY_LONG_LONG) <= sizeof(Py_ssize_t))
        return __Pyx_sst_abs(x);
    return (x<0) ? -x : x;
#endif
}


//////////////////// py_abs.proto ////////////////////

#if CYTHON_USE_PYLONG_INTERNALS
static PyObject *__Pyx_PyLong_AbsNeg(PyObject *num);/*proto*/

#define __Pyx_PyNumber_Absolute(x) \
    ((likely(PyLong_CheckExact(x))) ? \
         (likely(__Pyx_PyLong_IsNonNeg(x)) ? __Pyx_NewRef(x) : __Pyx_PyLong_AbsNeg(x)) : \
         PyNumber_Absolute(x))

#else
#define __Pyx_PyNumber_Absolute(x)  PyNumber_Absolute(x)
#endif

//////////////////// py_abs ////////////////////

#if CYTHON_USE_PYLONG_INTERNALS
static PyObject *__Pyx_PyLong_AbsNeg(PyObject *n) {
#if PY_VERSION_HEX >= 0x030C00A7
    if (likely(__Pyx_PyLong_IsCompact(n))) {
        return PyLong_FromSize_t(__Pyx_PyLong_CompactValueUnsigned(n));
    }
#else
    if (likely(Py_SIZE(n) == -1)) {
        // digits are unsigned
        return PyLong_FromUnsignedLong(__Pyx_PyLong_Digits(n)[0]);
    }
#endif
#if CYTHON_COMPILING_IN_CPYTHON
    {
        PyObject *copy = _PyLong_Copy((PyLongObject*)n);
        if (likely(copy)) {
            #if PY_VERSION_HEX >= 0x030C00A7
            // clear the sign bits to set the sign from SIGN_NEGATIVE (2) to positive (0)
            ((PyLongObject*)copy)->long_value.lv_tag ^= ((PyLongObject*)copy)->long_value.lv_tag & _PyLong_SIGN_MASK;
            #else
            // negate the size to swap the sign
            __Pyx_SET_SIZE(copy, -Py_SIZE(copy));
            #endif
        }
        return copy;
    }
#else
    return PyNumber_Negative(n);
#endif
}
#endif


//////////////////// pow2.proto ////////////////////

#define __Pyx_PyNumber_Power2(a, b) PyNumber_Power(a, b, Py_None)


//////////////////// divmod_int.proto //////////////////

const {{RETURN_TYPE}} __Pyx_divmod_ERROR_VALUE_{{CFUNC_SUFFIX}} = {-1, -1};

static CYTHON_INLINE {{RETURN_TYPE}} __Pyx_divmod_{{CFUNC_SUFFIX}}({{TYPE}} a, {{TYPE}} b); /*proto*/


//////////////////// divmod_int //////////////////

static CYTHON_INLINE {{RETURN_TYPE}} __Pyx_divmod_{{CFUNC_SUFFIX}}({{TYPE}} a, {{TYPE}} b) {
    // Python and C/C++ use different algorithms in calculating quotients and remainders.
    // This results in different answers between Python and C/C++
    // when the dividend is negative and the divisor is positive and vice versa.
    {{TYPE}} q, r;
    if (unlikely(b == 0)) {
        {{if NOGIL}}PyGILState_STATE gilstate = PyGILState_Ensure();{{endif}}
        PyErr_SetString(PyExc_ZeroDivisionError, "division by zero");
        {{if NOGIL}}PyGILState_Release(gilstate);{{endif}}
        return __Pyx_divmod_ERROR_VALUE_{{CFUNC_SUFFIX}};
    } else if (a == 0) {
        q = 0;
        r = 0;
    } else if ((a < 0) != (b < 0)) {
        // see CMath.c :: DivInt and ModInt utility code
        q = a / b;
        r = a - q * b;
        {{TYPE}} adapt_python = ((r != 0) & ((r < 0) ^ (b < 0)));
        q -= adapt_python;
        r += adapt_python * b;
    }
    else {
        q = a / b;
        r = a % b;
    }

    {{RETURN_TYPE}} c_result = {q, r};
    return c_result;
}


//////////////////// divmod_float.proto //////////////////

const {{RETURN_TYPE}} __Pyx_divmod_ERROR_VALUE_{{CFUNC_SUFFIX}} = {-1.0, -1.0};

static CYTHON_INLINE {{RETURN_TYPE}} __Pyx_divmod_{{CFUNC_SUFFIX}}({{TYPE}} a, {{TYPE}} b); /*proto*/


//////////////////// divmod_float //////////////////

static CYTHON_INLINE {{RETURN_TYPE}} __Pyx_divmod_{{CFUNC_SUFFIX}}({{TYPE}} a, {{TYPE}} b) {
    // Python and C/C++ use different algorithms in calculating quotients and remainders.
    // This results in different answers between Python and C/C++
    // when the dividend is negative and the divisor is positive and vice versa.

    // Adapted from CPython 3.14: floatobject.c / _float_div_mod()

    {{TYPE}} q, r, div;

    if (unlikely(b == 0.0)) {
        {{if NOGIL}}PyGILState_STATE gilstate = PyGILState_Ensure();{{endif}}
        PyErr_SetString(PyExc_ZeroDivisionError, "division by zero");
        {{if NOGIL}}PyGILState_Release(gilstate);{{endif}}
        return __Pyx_divmod_ERROR_VALUE_{{CFUNC_SUFFIX}};
    }

    r = fmod{{MATH_SUFFIX}}(a, b);
    // fmod is typically exact, so a-mod is *mathematically* an
    // exact multiple of b.  But this is fp arithmetic, and fp
    // a - mod is an approximation; the result is that div may
    // not be an exact integral value after the division, although
    // it will always be very close to one.
    div = (a - r) / b;
    if (r) {
        // ensure the remainder has the same sign as the denominator
        if ((b < 0) != (r < 0)) {
            r += b;
            div -= 1.0;
        }
    }
    else {
        // the remainder is zero, and in the presence of signed zeroes
        // fmod returns different results across platforms; ensure
        // it has the same sign as the denominator.
        r = copysign{{MATH_SUFFIX}}(0.0, b);
    }
    // snap quotient to nearest integral value
    if (div) {
        q = floor{{MATH_SUFFIX}}(div);
        if (div - q > 0.5) {
            q += 1.0;
        }
    }
    else {
        // div is zero - get the same sign as the true quotient
        q = copysign{{MATH_SUFFIX}}(0.0, a / b); /* zero w/ sign of a/b */
    }

    {{RETURN_TYPE}} c_result = {q, r};
    return c_result;
}


//////////////////// int_pyucs4.proto ////////////////////

static CYTHON_INLINE int __Pyx_int_from_UCS4(Py_UCS4 uchar);

//////////////////// int_pyucs4 ////////////////////

static int __Pyx_int_from_UCS4(Py_UCS4 uchar) {
    // Fast path for ascii digits
    if (likely(uchar >= (Py_UCS4)'0' && uchar <= (Py_UCS4)'9')) {
        return uchar - (Py_UCS4)'0';
    }
#if CYTHON_COMPILING_IN_LIMITED_API
    PyObject *u = PyUnicode_FromOrdinal(uchar);
    if (unlikely(!u)) return -1;
    PyObject *l = PyObject_CallFunctionObjArgs((PyObject*)(&PyLong_Type), u, NULL);
    Py_DECREF(u);
    if (unlikely(!l)) return -1;
#if __PYX_LIMITED_VERSION_HEX >= 0x030d0000
    int result = PyLong_AsInt(l);
#else
    // just don't handle overflow - it's very difficult to see how we'll get it from
    // a single digit.
    int result = (int)PyLong_AsLong(l);
#endif
    Py_DECREF(l);
    return result;
#else
    int digit = Py_UNICODE_TODECIMAL(uchar);
    if (unlikely(digit < 0)) {
        PyErr_Format(PyExc_ValueError,
            "invalid literal for int() with base 10: '%c'",
            (int) uchar);
        return -1;
    }
    return digit;
#endif
}


//////////////////// float_pyucs4.proto ////////////////////

static CYTHON_INLINE double __Pyx_double_from_UCS4(Py_UCS4 uchar);

//////////////////// float_pyucs4 ////////////////////

static double __Pyx_double_from_UCS4(Py_UCS4 uchar) {
    // fast path for "just an ascii digit"
    if (likely(uchar >= (Py_UCS4)'0' && uchar <= (Py_UCS4)'9')) {
        return uchar - (Py_UCS4)'0';
    }
#if CYTHON_COMPILING_IN_LIMITED_API
    PyObject *u = PyUnicode_FromOrdinal(uchar);
    if (unlikely(!u)) return -1.0;
    PyObject *f = PyFloat_FromString(u);
    Py_DECREF(u);
    if (unlikely(!f)) return -1.0;
    double result = PyFloat_AsDouble(f);
    Py_DECREF(f);
    return result;
#else
    // ...TONUMERIC would initially seem to be a better fit.
    // However, that accepts things like the "half" symbol, while
    // float(string) rejects those.
    double digit = Py_UNICODE_TODECIMAL(uchar);
    if (unlikely(digit < 0.0)) {
        PyErr_Format(PyExc_ValueError,
            "could not convert string to float: '%c'",
            (int) uchar);
        return -1.0;
    }
    return digit;
#endif
}


//////////////////// object_ord.proto ////////////////////
//@requires: TypeConversion.c::UnicodeAsUCS4

#define __Pyx_PyObject_Ord(c) \
    (likely(PyUnicode_Check(c)) ? (long)__Pyx_PyUnicode_AsPy_UCS4(c) : __Pyx__PyObject_Ord(c))
static long __Pyx__PyObject_Ord(PyObject* c); /*proto*/

//////////////////// object_ord ////////////////////

static long __Pyx__PyObject_Ord(PyObject* c) {
    Py_ssize_t size;
    if (PyBytes_Check(c)) {
        size = __Pyx_PyBytes_GET_SIZE(c);
        if (likely(size == 1)) {
#if CYTHON_ASSUME_SAFE_MACROS
            return (unsigned char) PyBytes_AS_STRING(c)[0];
#else
            char *data = PyBytes_AsString(c);
            if (unlikely(!data)) return -1;
            return (unsigned char) data[0];
#endif
        }
#if !CYTHON_ASSUME_SAFE_SIZE
        else if (unlikely(size < 0)) return -1;
#endif
    } else if (PyByteArray_Check(c)) {
        size = __Pyx_PyByteArray_GET_SIZE(c);
        if (likely(size == 1)) {
#if CYTHON_ASSUME_SAFE_MACROS
            return (unsigned char) PyByteArray_AS_STRING(c)[0];
#else
            char *data = PyByteArray_AsString(c);
            if (unlikely(!data)) return -1;
            return (unsigned char) data[0];
#endif
        }
#if !CYTHON_ASSUME_SAFE_SIZE
        else if (unlikely(size < 0)) return -1;
#endif
    } else {
        // FIXME: support character buffers - but CPython doesn't support them either
        __Pyx_TypeName c_type_name = __Pyx_PyType_GetFullyQualifiedName(Py_TYPE(c));
        PyErr_Format(PyExc_TypeError,
            "ord() expected string of length 1, but " __Pyx_FMT_TYPENAME " found",
            c_type_name);
        __Pyx_DECREF_TypeName(c_type_name);
        return (long)(Py_UCS4)-1;
    }
    PyErr_Format(PyExc_TypeError,
        "ord() expected a character, but string of length %zd found", size);
    return (long)(Py_UCS4)-1;
}


//////////////////// py_dict_keys.proto ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_Keys(PyObject* d); /*proto*/

//////////////////// py_dict_keys ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_Keys(PyObject* d) {
    return CALL_UNBOUND_METHOD(PyDict_Type, "keys", d);
}

//////////////////// py_dict_values.proto ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_Values(PyObject* d); /*proto*/

//////////////////// py_dict_values ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_Values(PyObject* d) {
    return CALL_UNBOUND_METHOD(PyDict_Type, "values", d);
}

//////////////////// py_dict_items.proto ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_Items(PyObject* d); /*proto*/

//////////////////// py_dict_items ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_Items(PyObject* d) {
    return CALL_UNBOUND_METHOD(PyDict_Type, "items", d);
}

//////////////////// py_dict_iterkeys.proto ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_IterKeys(PyObject* d); /*proto*/

//////////////////// py_dict_iterkeys ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_IterKeys(PyObject* d) {
    return CALL_UNBOUND_METHOD(PyDict_Type, "keys", d);
}

//////////////////// py_dict_itervalues.proto ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_IterValues(PyObject* d); /*proto*/

//////////////////// py_dict_itervalues ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_IterValues(PyObject* d) {
    return CALL_UNBOUND_METHOD(PyDict_Type, "values", d);
}

//////////////////// py_dict_iteritems.proto ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_IterItems(PyObject* d); /*proto*/

//////////////////// py_dict_iteritems ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_IterItems(PyObject* d) {
    return CALL_UNBOUND_METHOD(PyDict_Type, "items", d);
}

//////////////////// py_dict_viewkeys.proto ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_ViewKeys(PyObject* d); /*proto*/

//////////////////// py_dict_viewkeys ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_ViewKeys(PyObject* d) {
    return CALL_UNBOUND_METHOD(PyDict_Type, "keys", d);
}

//////////////////// py_dict_viewvalues.proto ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_ViewValues(PyObject* d); /*proto*/

//////////////////// py_dict_viewvalues ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_ViewValues(PyObject* d) {
    return CALL_UNBOUND_METHOD(PyDict_Type, "values", d);
}

//////////////////// py_dict_viewitems.proto ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_ViewItems(PyObject* d); /*proto*/

//////////////////// py_dict_viewitems ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyDict_ViewItems(PyObject* d) {
    return CALL_UNBOUND_METHOD(PyDict_Type, "items", d);
}


//////////////////// pyfrozenset_new.proto ////////////////////

static CYTHON_INLINE PyObject* __Pyx_PyFrozenSet_New(PyObject* it);

//////////////////// pyfrozenset_new ////////////////////
//@requires: ObjectHandling.c::PyObjectCallNoArg

static CYTHON_INLINE PyObject* __Pyx_PyFrozenSet_New(PyObject* it) {
    if (it) {
        PyObject* result;
#if CYTHON_COMPILING_IN_PYPY
        // PyPy currently lacks PyFrozenSet_CheckExact() and PyFrozenSet_New()
        PyObject* args;
        args = PyTuple_Pack(1, it);
        if (unlikely(!args))
            return NULL;
        result = PyObject_Call((PyObject*)&PyFrozenSet_Type, args, NULL);
        Py_DECREF(args);
        return result;
#else
        if (PyFrozenSet_CheckExact(it)) {
            Py_INCREF(it);
            return it;
        }
        result = PyFrozenSet_New(it);
        if (unlikely(!result))
            return NULL;
        if ((__PYX_LIMITED_VERSION_HEX >= 0x030A0000)
#if CYTHON_COMPILING_IN_LIMITED_API
            || __Pyx_get_runtime_version() >= 0x030A0000
#endif
            )
            return result;
        {
            Py_ssize_t size = __Pyx_PySet_GET_SIZE(result);
            if (likely(size > 0))
                return result;
#if !CYTHON_ASSUME_SAFE_SIZE
            if (unlikely(size < 0)) {
                Py_DECREF(result);
                return NULL;
            }
#endif
        }
        // empty frozenset is a singleton (on Python <3.10)
        // seems wasteful, but CPython does the same
        Py_DECREF(result);
#endif
    }
    return __Pyx_PyObject_CallNoArg((PyObject*) &PyFrozenSet_Type);
}


//////////////////// PySet_Update.proto ////////////////////

static CYTHON_INLINE int __Pyx_PySet_Update(PyObject* set, PyObject* it); /*proto*/

//////////////////// PySet_Update ////////////////////

static CYTHON_INLINE int __Pyx_PySet_Update(PyObject* set, PyObject* it) {
    PyObject *retval;
    #if CYTHON_USE_TYPE_SLOTS && !CYTHON_COMPILING_IN_PYPY
    if (PyAnySet_Check(it)) {
        Py_ssize_t size = __Pyx_PySet_GET_SIZE(it);
        #if !CYTHON_ASSUME_SAFE_SIZE
        if (unlikely(size < 0)) return -1;
        #endif
        if (size == 0)
            return 0;
        // fast and safe case: CPython will update our result set and return it
        retval = PySet_Type.tp_as_number->nb_inplace_or(set, it);
        if (likely(retval == set)) {
            Py_DECREF(retval);
            return 0;
        }
        if (unlikely(!retval))
            return -1;
        // unusual result, fall through to set.update() call below
        Py_DECREF(retval);
    }
    #endif
    retval = CALL_UNBOUND_METHOD(PySet_Type, "update", set, it);
    if (unlikely(!retval)) return -1;
    Py_DECREF(retval);
    return 0;
}

///////////////// memoryview_get_from_buffer.proto ////////////////////

#if !CYTHON_COMPILING_IN_LIMITED_API
#define __Pyx_PyMemoryView_Get_{{name}}(o) PyMemoryView_GET_BUFFER(o)->{{name}}
#else
{{py:
out_types = dict(
    ndim='int', readonly='int',
    len='Py_ssize_t', itemsize='Py_ssize_t')
}} // can't get format like this unfortunately. It's unicode via getattr
{{py: out_type = out_types[name]}}
static {{out_type}} __Pyx_PyMemoryView_Get_{{name}}(PyObject *obj); /* proto */
#endif

////////////// memoryview_get_from_buffer /////////////////////////

#if !CYTHON_COMPILING_IN_LIMITED_API
#else
{{py:
out_types = dict(
    ndim='int', readonly='int',
    len='Py_ssize_t', itemsize='Py_ssize_t')
}}
{{py: out_type = out_types[name]}}
static {{out_type}} __Pyx_PyMemoryView_Get_{{name}}(PyObject *obj) {
    {{out_type}} result;
    PyObject *attr = PyObject_GetAttr(obj, PYIDENT("{{name}}"));
    if (!attr) {
        goto bad;
    }
{{if out_type == 'int'}}
    // I'm not worrying about overflow here because
    // ultimately it comes from a C struct that's an int
    result = PyLong_AsLong(attr);
{{elif out_type == 'Py_ssize_t'}}
    result = PyLong_AsSsize_t(attr);
{{endif}}
    Py_DECREF(attr);
    return result;

    bad:
    Py_XDECREF(attr);
    return -1;
}
#endif

////////////// PySliceAccessors.proto /////////////////////////

#if CYTHON_COMPILING_IN_LIMITED_API
#define __Pyx_PySlice_Start(o) PyObject_GetAttr(o, PYIDENT("start"))
#define __Pyx_PySlice_Stop(o) PyObject_GetAttr(o, PYIDENT("stop"))
#define __Pyx_PySlice_Step(o) PyObject_GetAttr(o, PYIDENT("step"))
#elif CYTHON_COMPILING_IN_GRAAL
// Graal defines it's own accessor functions
#define __Pyx_PySlice_Start(o) __Pyx_NewRef(PySlice_Start((PySliceObject*)o))
#define __Pyx_PySlice_Stop(o) __Pyx_NewRef(PySlice_Stop((PySliceObject*)o))
#define __Pyx_PySlice_Step(o) __Pyx_NewRef(PySlice_Step((PySliceObject*)o))
#else
#define __Pyx_PySlice_Start(o) __Pyx_NewRef(((PySliceObject*)o)->start)
#define __Pyx_PySlice_Stop(o) __Pyx_NewRef(((PySliceObject*)o)->stop)
#define __Pyx_PySlice_Step(o) __Pyx_NewRef(((PySliceObject*)o)->step)
#endif