File: points.c

package info (click to toggle)
d1x-rebirth 0.58.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: bookworm, bullseye, sid
  • size: 5,876 kB
  • sloc: ansic: 95,642; asm: 1,228; ada: 364; objc: 243; python: 121; cpp: 118; makefile: 23
file content (198 lines) | stat: -rw-r--r-- 4,428 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
/*
THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX
SOFTWARE CORPORATION ("PARALLAX").  PARALLAX, IN DISTRIBUTING THE CODE TO
END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A
ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS
IN USING, DISPLAYING,  AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS
SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE
FREE PURPOSES.  IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE
CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES.  THE END-USER UNDERSTANDS
AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE.
COPYRIGHT 1993-1998 PARALLAX SOFTWARE CORPORATION.  ALL RIGHTS RESERVED.
*/
/*
 * 
 * Routines for point definition, rotation, etc.
 * 
 */


#include "3d.h"
#include "globvars.h"


//code a point.  fills in the p3_codes field of the point, and returns the codes
ubyte g3_code_point(g3s_point *p)
{
	ubyte cc=0;

	if (p->p3_x > p->p3_z)
		cc |= CC_OFF_RIGHT;

	if (p->p3_y > p->p3_z)
		cc |= CC_OFF_TOP;

	if (p->p3_x < -p->p3_z)
		cc |= CC_OFF_LEFT;

	if (p->p3_y < -p->p3_z)
		cc |= CC_OFF_BOT;

	if (p->p3_z < 0)
		cc |= CC_BEHIND;

	return p->p3_codes = cc;

}

//rotates a point. returns codes.  does not check if already rotated
ubyte g3_rotate_point(g3s_point *dest,const vms_vector *src)
{
	vms_vector tempv;

	vm_vec_sub(&tempv,src,&View_position);

	vm_vec_rotate(&dest->p3_vec,&tempv,&View_matrix);

	dest->p3_flags = 0;	//no projected

	return g3_code_point(dest);

}

//checks for overflow & divides if ok, fillig in r
//returns true if div is ok, else false
int checkmuldiv(fix *r,fix a,fix b,fix c)
{
	quadint q,qt;

	q.low=q.high=0;
	fixmulaccum(&q,a,b);

	qt = q;
	if (qt.high < 0)
		fixquadnegate(&qt);

	qt.high *= 2;
	if (qt.low > 0x7fff)
		qt.high++;

	if (qt.high >= c)
		return 0;
	else {
		*r = fixdivquadlong(q.low,q.high,c);
		return 1;
	}
}

//projects a point
void g3_project_point(g3s_point *p)
{
#ifndef __powerc
	fix tx,ty;

	if (p->p3_flags & PF_PROJECTED || p->p3_codes & CC_BEHIND)
		return;

	if (checkmuldiv(&tx,p->p3_x,Canv_w2,p->p3_z) && checkmuldiv(&ty,p->p3_y,Canv_h2,p->p3_z)) {
		p->p3_sx = Canv_w2 + tx;
		p->p3_sy = Canv_h2 - ty;
		p->p3_flags |= PF_PROJECTED;
	}
	else
		p->p3_flags |= PF_OVERFLOW;
#else
	double fz;
	
	if ((p->p3_flags & PF_PROJECTED) || (p->p3_codes & CC_BEHIND))
		return;
	
	if ( p->p3_z <= 0 )	{
		p->p3_flags |= PF_OVERFLOW;
		return;
	}

	fz = f2fl(p->p3_z);
	p->p3_sx = fl2f(fCanv_w2 + (f2fl(p->p3_x)*fCanv_w2 / fz));
	p->p3_sy = fl2f(fCanv_h2 - (f2fl(p->p3_y)*fCanv_h2 / fz));

	p->p3_flags |= PF_PROJECTED;
#endif
}

//from a 2d point, compute the vector through that point
void g3_point_2_vec(vms_vector *v,short sx,short sy)
{
	vms_vector tempv;
	vms_matrix tempm;

	tempv.x =  fixmuldiv(fixdiv((sx<<16) - Canv_w2,Canv_w2),Matrix_scale.z,Matrix_scale.x);
	tempv.y = -fixmuldiv(fixdiv((sy<<16) - Canv_h2,Canv_h2),Matrix_scale.z,Matrix_scale.y);
	tempv.z = f1_0;

	vm_vec_normalize(&tempv);

	vm_copy_transpose_matrix(&tempm,&Unscaled_matrix);

	vm_vec_rotate(v,&tempv,&tempm);

}

//delta rotation functions
vms_vector *g3_rotate_delta_x(vms_vector *dest,fix dx)
{
	dest->x = fixmul(View_matrix.rvec.x,dx);
	dest->y = fixmul(View_matrix.uvec.x,dx);
	dest->z = fixmul(View_matrix.fvec.x,dx);

	return dest;
}

vms_vector *g3_rotate_delta_y(vms_vector *dest,fix dy)
{
	dest->x = fixmul(View_matrix.rvec.y,dy);
	dest->y = fixmul(View_matrix.uvec.y,dy);
	dest->z = fixmul(View_matrix.fvec.y,dy);

	return dest;
}

vms_vector *g3_rotate_delta_z(vms_vector *dest,fix dz)
{
	dest->x = fixmul(View_matrix.rvec.z,dz);
	dest->y = fixmul(View_matrix.uvec.z,dz);
	dest->z = fixmul(View_matrix.fvec.z,dz);

	return dest;
}


vms_vector *g3_rotate_delta_vec(vms_vector *dest,vms_vector *src)
{
	return vm_vec_rotate(dest,src,&View_matrix);
}

ubyte g3_add_delta_vec(g3s_point *dest,g3s_point *src,vms_vector *deltav)
{
	vm_vec_add(&dest->p3_vec,&src->p3_vec,deltav);

	dest->p3_flags = 0;		//not projected

	return g3_code_point(dest);
}

//calculate the depth of a point - returns the z coord of the rotated point
fix g3_calc_point_depth(vms_vector *pnt)
{
	quadint q;

	q.low=q.high=0;
	fixmulaccum(&q,(pnt->x - View_position.x),View_matrix.fvec.x);
	fixmulaccum(&q,(pnt->y - View_position.y),View_matrix.fvec.y);
	fixmulaccum(&q,(pnt->z - View_position.z),View_matrix.fvec.z);

	return fixquadadjust(&q);
}