File: seguvs.c

package info (click to toggle)
d1x-rebirth 0.58.1-1.2
  • links: PTS, VCS
  • area: non-free
  • in suites: bullseye, sid
  • size: 5,876 kB
  • sloc: ansic: 95,642; asm: 1,228; ada: 364; objc: 243; python: 121; cpp: 118; makefile: 23
file content (1513 lines) | stat: -rw-r--r-- 49,992 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
/*
THE COMPUTER CODE CONTAINED HEREIN IS THE SOLE PROPERTY OF PARALLAX
SOFTWARE CORPORATION ("PARALLAX").  PARALLAX, IN DISTRIBUTING THE CODE TO
END-USERS, AND SUBJECT TO ALL OF THE TERMS AND CONDITIONS HEREIN, GRANTS A
ROYALTY-FREE, PERPETUAL LICENSE TO SUCH END-USERS FOR USE BY SUCH END-USERS
IN USING, DISPLAYING,  AND CREATING DERIVATIVE WORKS THEREOF, SO LONG AS
SUCH USE, DISPLAY OR CREATION IS FOR NON-COMMERCIAL, ROYALTY OR REVENUE
FREE PURPOSES.  IN NO EVENT SHALL THE END-USER USE THE COMPUTER CODE
CONTAINED HEREIN FOR REVENUE-BEARING PURPOSES.  THE END-USER UNDERSTANDS
AND AGREES TO THE TERMS HEREIN AND ACCEPTS THE SAME BY USE OF THIS FILE.
COPYRIGHT 1993-1998 PARALLAX SOFTWARE CORPORATION.  ALL RIGHTS RESERVED.
*/

/*
 *
 * u,v coordinate computation for segment faces
 *
 */

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <math.h>
#include <string.h>
#include "inferno.h"
#include "segment.h"
#include "editor/editor.h"
#include "editor/esegment.h"
#include "gameseg.h"
#include "fix.h"
#include "dxxerror.h"
#include "wall.h"
#include "editor/kdefs.h"
#include "bm.h"		//	Needed for TmapInfo
#include	"effects.h"     //      Needed for effects_bm_num
#include "fvi.h"

void cast_all_light_in_mine(int quick_flag);
//--rotate_uvs-- vms_vector Rightvec;

//	---------------------------------------------------------------------------------------------
//	Returns approximate area of a side
fix area_on_side(side *sidep)
{
	fix	du,dv,width,height;

	du = sidep->uvls[1].u - sidep->uvls[0].u;
	dv = sidep->uvls[1].v - sidep->uvls[0].v;

	width = fix_sqrt(fixmul(du,du) + fixmul(dv,dv));

	du = sidep->uvls[3].u - sidep->uvls[0].u;
	dv = sidep->uvls[3].v - sidep->uvls[0].v;

	height = fix_sqrt(fixmul(du,du) + fixmul(dv,dv));

	return fixmul(width, height);
}

//	-------------------------------------------------------------------------------------------
//	DEBUG function -- callable from debugger.
//	Returns approximate area of all sides which get mapped (ie, are not a connection).
//	I wrote this because I was curious how much memory would be required to texture map all
//	sides individually with custom artwork.  For demo1.min on 2/18/94, it would be about 5 meg.
int area_on_all_sides(void)
{
	int	i,s;
	int	total_area = 0;

	for (i=0; i<=Highest_segment_index; i++) {
		segment *segp = &Segments[i];

		for (s=0; s<MAX_SIDES_PER_SEGMENT; s++)
			if (!IS_CHILD(segp->children[s]))
				total_area += f2i(area_on_side(&segp->sides[s]));
	}

	return total_area;
}

fix average_connectivity(void)
{
	int	i,s;
	int	total_sides = 0, total_mapped_sides = 0;

	for (i=0; i<=Highest_segment_index; i++) {
		segment *segp = &Segments[i];

		for (s=0; s<MAX_SIDES_PER_SEGMENT; s++) {
			if (!IS_CHILD(segp->children[s]))
				total_mapped_sides++;
			total_sides++;
		}
	}

	return 6 * fixdiv(total_mapped_sides, total_sides);
}

#define	MAX_LIGHT_SEGS 16

//	---------------------------------------------------------------------------------------------
//	Scan all polys in all segments, return average light value for vnum.
//	segs = output array for segments containing vertex, terminated by -1.
fix get_average_light_at_vertex(int vnum, short *segs)
{
	int	segnum, relvnum, sidenum;
	fix	total_light;
	int	num_occurrences;
//	#ifndef NDEBUG //Removed this ifdef because the version of Assert that I used to get it to compile doesn't work without this symbol. -KRB
        short   *original_segs;

        original_segs = segs;
//	#endif


	num_occurrences = 0;
	total_light = 0;

	for (segnum=0; segnum<=Highest_segment_index; segnum++) {
		segment *segp = &Segments[segnum];
		int *vp = segp->verts;

		for (relvnum=0; relvnum<MAX_VERTICES_PER_SEGMENT; relvnum++)
			if (*vp++ == vnum)
				break;

		if (relvnum < MAX_VERTICES_PER_SEGMENT) {

			*segs++ = segnum;
			Assert(segs - original_segs < MAX_LIGHT_SEGS);
			(void)original_segs;

			for (sidenum=0; sidenum < MAX_SIDES_PER_SEGMENT; sidenum++) {
				if (!IS_CHILD(segp->children[sidenum])) {
					side	*sidep = &segp->sides[sidenum];
					sbyte	*vp = Side_to_verts[sidenum];
					int	v;

					for (v=0; v<4; v++)
						if (*vp++ == relvnum) {
							total_light += sidep->uvls[v].l;
							num_occurrences++;
						}
				}	// end if
			}	// end sidenum
		}
	}	// end segnum

	*segs = -1;

	if (num_occurrences)
		return total_light/num_occurrences;
	else
		return 0;

}

void set_average_light_at_vertex(int vnum)
{
	int	relvnum, sidenum;
	short	Segment_indices[MAX_LIGHT_SEGS];
	int	segind;

	fix average_light;

	average_light = get_average_light_at_vertex(vnum, Segment_indices);

	if (!average_light)
		return;

	segind = 0;
	while (Segment_indices[segind] != -1) {
		int segnum = Segment_indices[segind++];

		segment *segp = &Segments[segnum];

		for (relvnum=0; relvnum<MAX_VERTICES_PER_SEGMENT; relvnum++)
			if (segp->verts[relvnum] == vnum)
				break;

		if (relvnum < MAX_VERTICES_PER_SEGMENT) {
			for (sidenum=0; sidenum < MAX_SIDES_PER_SEGMENT; sidenum++) {
				if (!IS_CHILD(segp->children[sidenum])) {
					side *sidep = &segp->sides[sidenum];
					sbyte	*vp = Side_to_verts[sidenum];
					int	v;

					for (v=0; v<4; v++)
						if (*vp++ == relvnum)
							sidep->uvls[v].l = average_light;
				}	// end if
			}	// end sidenum
		}	// end if
	}	// end while

	Update_flags |= UF_WORLD_CHANGED;
}

void set_average_light_on_side(segment *segp, int sidenum)
{
	int	v;

	if (!IS_CHILD(segp->children[sidenum]))
		for (v=0; v<4; v++) {
			set_average_light_at_vertex(segp->verts[Side_to_verts[sidenum][v]]);
		}

}

int set_average_light_on_curside(void)
{
	set_average_light_on_side(Cursegp, Curside);
	return 0;
}

//	-----------------------------------------------------------------------------------------
void set_average_light_on_all_fast(void)
{
	int	s,v,relvnum;
	fix	al;
	int	alc;
	int	seglist[MAX_LIGHT_SEGS];
	int	*segptr;

	set_vertex_counts();

	//	Set total light value for all vertices in array average_light.
	for (v=0; v<=Highest_vertex_index; v++) {
		al = 0;
		alc = 0;

		if (Vertex_active[v]) {
			segptr = seglist;

			for (s=0; s<=Highest_segment_index; s++) {
				segment *segp = &Segments[s];
				for (relvnum=0; relvnum<MAX_VERTICES_PER_SEGMENT; relvnum++)
					if (segp->verts[relvnum] == v)
						break;

					if (relvnum != MAX_VERTICES_PER_SEGMENT) {
						int		si;

						*segptr++ = s;			// Note this segment in list, so we can process it below.
						Assert(segptr - seglist < MAX_LIGHT_SEGS);

						for (si=0; si<MAX_SIDES_PER_SEGMENT; si++) {
							if (!IS_CHILD(segp->children[si])) {
								side	*sidep = &segp->sides[si];
								sbyte	*vp = Side_to_verts[si];
								int	vv;

								for (vv=0; vv<4; vv++)
									if (*vp++ == relvnum) {
										al += sidep->uvls[vv].l;
										alc++;
									}
							}	// if (segp->children[si == -1) {
						}	// for (si=0...
					}	// if (relvnum != ...
			}	// for (s=0; ...

			*segptr = -1;

			//	Now, divide average_light by number of number of occurrences for each vertex
			if (alc)
				al /= alc;
			else
				al = 0;

			segptr = seglist;
			while (*segptr != -1) {
				int 		segnum = *segptr++;
				segment	*segp = &Segments[segnum];
				int		sidenum;

				for (relvnum=0; relvnum<MAX_VERTICES_PER_SEGMENT; relvnum++)
					if (segp->verts[relvnum] == v)
						break;

				Assert(relvnum < MAX_VERTICES_PER_SEGMENT);	// IMPOSSIBLE! This segment is in seglist, but vertex v does not occur!
				for (sidenum=0; sidenum < MAX_SIDES_PER_SEGMENT; sidenum++) {
					int	wid_result;
					wid_result = WALL_IS_DOORWAY(segp, sidenum);
					if ((wid_result != WID_FLY_FLAG) && (wid_result != WID_NO_WALL)) {
						side *sidep = &segp->sides[sidenum];
						sbyte	*vp = Side_to_verts[sidenum];
						int	v;

						for (v=0; v<4; v++)
							if (*vp++ == relvnum)
								sidep->uvls[v].l = al;
					}	// end if
				}	// end sidenum
			}	// end while

		}	// if (Vertex_active[v]...

	}	// for (v=0...

}

extern int Doing_lighting_hack_flag;
int set_average_light_on_all(void)
{
//	set_average_light_on_all_fast();

	Doing_lighting_hack_flag = 1;
	cast_all_light_in_mine(0);
	Doing_lighting_hack_flag = 0;
	Update_flags |= UF_WORLD_CHANGED;

//	int seg, side;

//	for (seg=0; seg<=Highest_segment_index; seg++)
//		for (side=0; side<MAX_SIDES_PER_SEGMENT; side++)
//			if (Segments[seg].segnum != -1)
//				set_average_light_on_side(&Segments[seg], side);
	return 0;
}

int set_average_light_on_all_quick(void)
{
	cast_all_light_in_mine(1);
	Update_flags |= UF_WORLD_CHANGED;

	return 0;
}

//	---------------------------------------------------------------------------------------------
fix compute_uv_dist(uvl *uv0, uvl *uv1)
{
	vms_vector	v0,v1;

	v0.x = uv0->u;
	v0.y = 0;
	v0.z = uv0->v;

	v1.x = uv1->u;
	v1.y = 0;
	v1.z = uv1->v;

	return vm_vec_dist(&v0,&v1);
}

//	---------------------------------------------------------------------------------------------
//	Given a polygon, compress the uv coordinates so that they are as close to 0 as possible.
//	Do this by adding a constant u and v to each uv pair.
void compress_uv_coordinates(side *sidep)
{
	int	v;
	fix	uc, vc;

	uc = 0;
	vc = 0;

	for (v=0; v<4; v++) {
		uc += sidep->uvls[v].u;
		vc += sidep->uvls[v].v;
	}

	uc /= 4;
	vc /= 4;
	uc = uc & 0xffff0000;
	vc = vc & 0xffff0000;

	for (v=0; v<4; v++) {
		sidep->uvls[v].u -= uc;
		sidep->uvls[v].v -= vc;
	}

}

//	---------------------------------------------------------------------------------------------
void compress_uv_coordinates_on_side(side *sidep)
{
	compress_uv_coordinates(sidep);
}

//	---------------------------------------------------------------------------------------------
void validate_uv_coordinates_on_side(segment *segp, int sidenum)
{
//	int			v;
//	fix			uv_dist,threed_dist;
//	vms_vector	tvec;
//	fix			dist_ratios[MAX_VERTICES_PER_POLY];
	side			*sidep = &segp->sides[sidenum];
//	sbyte			*vp = Side_to_verts[sidenum];

//	This next hunk doesn't seem to affect anything. @mk, 02/13/94
//	for (v=1; v<4; v++) {
//		uv_dist = compute_uv_dist(&sidep->uvls[v],&sidep->uvls[0]);
//		threed_dist = vm_vec_mag(vm_vec_sub(&tvec,&Vertices[segp->verts[vp[v]],&Vertices[vp[0]]));
//		dist_ratios[v-1] = fixdiv(uv_dist,threed_dist);
//	}

	compress_uv_coordinates_on_side(sidep);
}

void compress_uv_coordinates_in_segment(segment *segp)
{
	int	side;

	for (side=0; side<MAX_SIDES_PER_SEGMENT; side++)
		compress_uv_coordinates_on_side(&segp->sides[side]);
}

void compress_uv_coordinates_all(void)
{
	int	seg;

	for (seg=0; seg<=Highest_segment_index; seg++)
		if (Segments[seg].segnum != -1)
			compress_uv_coordinates_in_segment(&Segments[seg]);
}

void check_lighting_side(segment *sp, int sidenum)
{
	int	v;
	side	*sidep = &sp->sides[sidenum];

	for (v=0; v<4; v++)
		if ((sidep->uvls[v].l > F1_0*16) || (sidep->uvls[v].l < 0))
			Int3();
}

void check_lighting_segment(segment *segp)
{
	int	side;

	for (side=0; side<MAX_SIDES_PER_SEGMENT; side++)
		check_lighting_side(segp, side);
}

//	Flag bogus lighting values.
void check_lighting_all(void)
{
	int	seg;

	for (seg=0; seg<=Highest_segment_index; seg++)
		if (Segments[seg].segnum != -1)
			check_lighting_segment(&Segments[seg]);
}

void assign_default_lighting_on_side(segment *segp, int sidenum)
{
	int	v;
	side	*sidep = &segp->sides[sidenum];

	for (v=0; v<4; v++)
		sidep->uvls[v].l = DEFAULT_LIGHTING;
}

void assign_default_lighting(segment *segp)
{
	int	sidenum;

	for (sidenum=0; sidenum<MAX_SIDES_PER_SEGMENT; sidenum++)
		assign_default_lighting_on_side(segp, sidenum);
}

void assign_default_lighting_all(void)
{
	int	seg;

	for (seg=0; seg<=Highest_segment_index; seg++)
		if (Segments[seg].segnum != -1)
			assign_default_lighting(&Segments[seg]);
}

//	---------------------------------------------------------------------------------------------
void validate_uv_coordinates(segment *segp)
{
	int	s;

	for (s=0; s<MAX_SIDES_PER_SEGMENT; s++)
		validate_uv_coordinates_on_side(segp,s);

}

//	---------------------------------------------------------------------------------------------
//	For all faces in side, copy uv coordinates from uvs array to face.
void copy_uvs_from_side_to_faces(segment *segp, int sidenum, uvl uvls[])
{
	int	v;
	side	*sidep = &segp->sides[sidenum];

	for (v=0; v<4; v++)
		sidep->uvls[v] = uvls[v];

}

#ifdef __WATCOMC__
fix zhypot(fix a,fix b);
#pragma aux zhypot parm [eax] [ebx] value [eax] modify [eax ebx ecx edx] = \
	"imul	eax" \
	"xchg eax,ebx" \
	"mov	ecx,edx" \
	"imul eax" \
	"add	eax,ebx" \
	"adc	edx,ecx" \
	"call	quad_sqrt";
#else
fix zhypot(fix a,fix b) {
	double x = (double)a / 65536;
	double y = (double)b / 65536;
	return (long)(sqrt(x * x + y * y) * 65536);
}
#endif

//	---------------------------------------------------------------------------------------------
//	Assign lighting value to side, a function of the normal vector.
void assign_light_to_side(segment *sp, int sidenum)
{
	int	v;
	side	*sidep = &sp->sides[sidenum];

	for (v=0; v<4; v++)
		sidep->uvls[v].l = DEFAULT_LIGHTING;
}

fix	Stretch_scale_x = F1_0;
fix	Stretch_scale_y = F1_0;

//	---------------------------------------------------------------------------------------------
//	Given u,v coordinates at two vertices, assign u,v coordinates to other two vertices on a side.
//	(Actually, assign them to the coordinates in the faces.)
//	va, vb = face-relative vertex indices corresponding to uva, uvb.  Ie, they are always in 0..3 and should be looked up in
//	Side_to_verts[side] to get the segment relative index.
void assign_uvs_to_side(segment *segp, int sidenum, uvl *uva, uvl *uvb, int va, int vb)
{
	int			vlo,vhi,v0,v1,v2,v3;
	vms_vector	fvec,rvec,tvec;
	vms_matrix	rotmat;
	uvl			uvls[4],ruvmag,fuvmag,uvlo,uvhi;
	fix			fmag,mag01;
	sbyte			*vp;

	Assert( (va<4) && (vb<4) );
	Assert((abs(va - vb) == 1) || (abs(va - vb) == 3));		// make sure the verticies specify an edge

	vp = (sbyte *)&Side_to_verts[sidenum];

	// We want vlo precedes vhi, ie vlo < vhi, or vlo = 3, vhi = 0
	if (va == ((vb + 1) % 4)) {		// va = vb + 1
		vlo = vb;
		vhi = va;
		uvlo = *uvb;
		uvhi = *uva;
	} else {
		vlo = va;
		vhi = vb;
		uvlo = *uva;
		uvhi = *uvb;
	}

	Assert(((vlo+1) % 4) == vhi);	// If we are on an edge, then uvhi is one more than uvlo (mod 4)
	uvls[vlo] = uvlo;
	uvls[vhi] = uvhi;

	// Now we have vlo precedes vhi, compute vertices ((vhi+1) % 4) and ((vhi+2) % 4)

	// Assign u,v scale to a unit length right vector.
	fmag = zhypot(uvhi.v - uvlo.v,uvhi.u - uvlo.u);
	if (fmag < 64) {		// this is a fix, so 64 = 1/1024
		ruvmag.u = F1_0*256;
		ruvmag.v = F1_0*256;
		fuvmag.u = F1_0*256;
		fuvmag.v = F1_0*256;
	} else {
		ruvmag.u = uvhi.v - uvlo.v;
		ruvmag.v = uvlo.u - uvhi.u;

		fuvmag.u = uvhi.u - uvlo.u;
		fuvmag.v = uvhi.v - uvlo.v;
	}

	v0 = segp->verts[vp[vlo]];
	v1 = segp->verts[vp[vhi]];
	v2 = segp->verts[vp[(vhi+1)%4]];
	v3 = segp->verts[vp[(vhi+2)%4]];

	//	Compute right vector by computing orientation matrix from:
	//		forward vector = vlo:vhi
	//		  right vector = vlo:(vhi+2) % 4
	vm_vec_sub(&fvec,&Vertices[v1],&Vertices[v0]);
	vm_vec_sub(&rvec,&Vertices[v3],&Vertices[v0]);

	if (((fvec.x == 0) && (fvec.y == 0) && (fvec.z == 0)) || ((rvec.x == 0) && (rvec.y == 0) && (rvec.z == 0))) {
		rotmat = vmd_identity_matrix;
	} else
		vm_vector_2_matrix(&rotmat,&fvec,0,&rvec);

	rvec = rotmat.rvec; vm_vec_negate(&rvec);
	fvec = rotmat.fvec;

	mag01 = vm_vec_dist(&Vertices[v1],&Vertices[v0]);
	if ((va == 0) || (va == 2))
		mag01 = fixmul(mag01, Stretch_scale_x);
	else
		mag01 = fixmul(mag01, Stretch_scale_y);

	if (mag01 < F1_0/1024 )
		editor_status_fmt("U, V bogosity in segment #%hu, probably on side #%i.  CLEAN UP YOUR MESS!", (unsigned short)(segp-Segments), sidenum);
	else {
		vm_vec_sub(&tvec,&Vertices[v2],&Vertices[v1]);
		uvls[(vhi+1)%4].u = uvhi.u + 
			fixdiv(fixmul(ruvmag.u,vm_vec_dotprod(&rvec,&tvec)),mag01) +
			fixdiv(fixmul(fuvmag.u,vm_vec_dotprod(&fvec,&tvec)),mag01);

		uvls[(vhi+1)%4].v = uvhi.v + 
			fixdiv(fixmul(ruvmag.v,vm_vec_dotprod(&rvec,&tvec)),mag01) +
			fixdiv(fixmul(fuvmag.v,vm_vec_dotprod(&fvec,&tvec)),mag01);


		vm_vec_sub(&tvec,&Vertices[v3],&Vertices[v0]);
		uvls[(vhi+2)%4].u = uvlo.u + 
			fixdiv(fixmul(ruvmag.u,vm_vec_dotprod(&rvec,&tvec)),mag01) +
			fixdiv(fixmul(fuvmag.u,vm_vec_dotprod(&fvec,&tvec)),mag01);

		uvls[(vhi+2)%4].v = uvlo.v + 
			fixdiv(fixmul(ruvmag.v,vm_vec_dotprod(&rvec,&tvec)),mag01) +
			fixdiv(fixmul(fuvmag.v,vm_vec_dotprod(&fvec,&tvec)),mag01);

		uvls[(vhi+1)%4].l = uvhi.l;
		uvls[(vhi+2)%4].l = uvlo.l;

		copy_uvs_from_side_to_faces(segp, sidenum, uvls);
	}
}


int Vmag = VMAG;

// -----------------------------------------------------------------------------------------------------------
//	Assign default uvs to side.
//	This means:
//		v0 = 0,0
//		v1 = k,0 where k is 3d size dependent
//	v2, v3 assigned by assign_uvs_to_side
void assign_default_uvs_to_side(segment *segp,int side)
{
	uvl			uv0,uv1;
	sbyte			*vp;

	uv0.u = 0;
	uv0.v = 0;

	vp = Side_to_verts[side];

	uv1.u = 0;
	uv1.v = Num_tilings * fixmul(Vmag, vm_vec_dist(&Vertices[segp->verts[vp[1]]],&Vertices[segp->verts[vp[0]]]));

	assign_uvs_to_side(segp, side, &uv0, &uv1, 0, 1);
}

// -----------------------------------------------------------------------------------------------------------
//	Assign default uvs to side.
//	This means:
//		v0 = 0,0
//		v1 = k,0 where k is 3d size dependent
//	v2, v3 assigned by assign_uvs_to_side
void stretch_uvs_from_curedge(segment *segp, int side)
{
	uvl			uv0,uv1;
	int			v0, v1;

	v0 = Curedge;
	v1 = (v0 + 1) % 4;

	uv0.u = segp->sides[side].uvls[v0].u;
	uv0.v = segp->sides[side].uvls[v0].v;

	uv1.u = segp->sides[side].uvls[v1].u;
	uv1.v = segp->sides[side].uvls[v1].v;

	assign_uvs_to_side(segp, side, &uv0, &uv1, v0, v1);
}

// --------------------------------------------------------------------------------------------------------------
//	Assign default uvs to a segment.
void assign_default_uvs_to_segment(segment *segp)
{
	int	s;

	for (s=0; s<MAX_SIDES_PER_SEGMENT; s++) {
		assign_default_uvs_to_side(segp,s);
		assign_light_to_side(segp, s);
	}
}


// -- mk021394 -- // --------------------------------------------------------------------------------------------------------------
// -- mk021394 -- //	Find the face:poly:vertex index in base_seg:base_common_side which is segment relative vertex v1
// -- mk021394 -- //	This very specific routine is subsidiary to med_assign_uvs_to_side.
// -- mk021394 -- void get_face_and_vert(segment *base_seg, int base_common_side, int v1, int *ff, int *vv, int *pi)
// -- mk021394 -- {
// -- mk021394 -- 	int	p,f,v;
// -- mk021394 -- 
// -- mk021394 -- 	for (f=0; f<base_seg->sides[base_common_side].num_faces; f++) {
// -- mk021394 -- 		face *fp = &base_seg->sides[base_common_side].faces[f];
// -- mk021394 -- 		for (p=0; p<fp->num_polys; p++) {
// -- mk021394 -- 			poly *pp = &fp->polys[p];
// -- mk021394 -- 			for (v=0; v<pp->num_vertices; v++)
// -- mk021394 -- 				if (pp->verts[v] == v1) {
// -- mk021394 -- 					*ff = f;
// -- mk021394 -- 					*vv = v;
// -- mk021394 -- 					*pi = p;
// -- mk021394 -- 					return;
// -- mk021394 -- 				}
// -- mk021394 -- 		}
// -- mk021394 -- 	}
// -- mk021394 -- 
// -- mk021394 -- 	Assert(0);	// Error -- Couldn't find face:vertex which matched vertex v1 on base_seg:base_common_side
// -- mk021394 -- }

// -- mk021394 -- // --------------------------------------------------------------------------------------------------------------
// -- mk021394 -- //	Find the vertex index in base_seg:base_common_side which is segment relative vertex v1
// -- mk021394 -- //	This very specific routine is subsidiary to med_assign_uvs_to_side.
// -- mk021394 -- void get_side_vert(segment *base_seg,int base_common_side,int v1,int *vv)
// -- mk021394 -- {
// -- mk021394 -- 	int	p,f,v;
// -- mk021394 -- 
// -- mk021394 -- 	Assert((base_seg->sides[base_common_side].tri_edge == 0) || (base_seg->sides[base_common_side].tri_edge == 1));
// -- mk021394 -- 	Assert(base_seg->sides[base_common_side].num_faces <= 2);
// -- mk021394 -- 
// -- mk021394 -- 	for (f=0; f<base_seg->sides[base_common_side].num_faces; f++) {
// -- mk021394 -- 		face *fp = &base_seg->sides[base_common_side].faces[f];
// -- mk021394 -- 		for (p=0; p<fp->num_polys; p++) {
// -- mk021394 -- 			poly	*pp = &fp->polys[p];
// -- mk021394 -- 			for (v=0; v<pp->num_vertices; v++)
// -- mk021394 -- 				if (pp->verts[v] == v1) {
// -- mk021394 -- 					if (pp->num_vertices == 4) {
// -- mk021394 -- 						*vv = v;
// -- mk021394 -- 						return;
// -- mk021394 -- 					}
// -- mk021394 -- 
// -- mk021394 -- 					if (base_seg->sides[base_common_side].tri_edge == 0) {	// triangulated 012, 023, so if f==0, *vv = v, if f==1, *vv = v if v=0, else v+1
// -- mk021394 -- 						if ((f == 1) && (v > 0))
// -- mk021394 -- 							v++;
// -- mk021394 -- 						*vv = v;
// -- mk021394 -- 						return;
// -- mk021394 -- 					} else {								// triangulated 013, 123
// -- mk021394 -- 						if (f == 0) {
// -- mk021394 -- 							if (v == 2)
// -- mk021394 -- 								v++;
// -- mk021394 -- 						} else
// -- mk021394 -- 							v++;
// -- mk021394 -- 						*vv = v;
// -- mk021394 -- 						return;
// -- mk021394 -- 					}
// -- mk021394 -- 				}
// -- mk021394 -- 		}
// -- mk021394 -- 	}
// -- mk021394 -- 
// -- mk021394 -- 	Assert(0);	// Error -- Couldn't find face:vertex which matched vertex v1 on base_seg:base_common_side
// -- mk021394 -- }

//--rotate_uvs-- // --------------------------------------------------------------------------------------------------------------
//--rotate_uvs-- //	Rotate uvl coordinates uva, uvb about their center point by heading
//--rotate_uvs-- void rotate_uvs(uvl *uva, uvl *uvb, vms_vector *rvec)
//--rotate_uvs-- {
//--rotate_uvs-- 	uvl	uvc, uva1, uvb1;
//--rotate_uvs-- 
//--rotate_uvs-- 	uvc.u = (uva->u + uvb->u)/2;
//--rotate_uvs-- 	uvc.v = (uva->v + uvb->v)/2;
//--rotate_uvs-- 
//--rotate_uvs-- 	uva1.u = fixmul(uva->u - uvc.u, rvec->x) - fixmul(uva->v - uvc.v, rvec->z);
//--rotate_uvs-- 	uva1.v = fixmul(uva->u - uvc.u, rvec->z) + fixmul(uva->v - uvc.v, rvec->x);
//--rotate_uvs-- 
//--rotate_uvs-- 	uva->u = uva1.u + uvc.u;
//--rotate_uvs-- 	uva->v = uva1.v + uvc.v;
//--rotate_uvs-- 
//--rotate_uvs-- 	uvb1.u = fixmul(uvb->u - uvc.u, rvec->x) - fixmul(uvb->v - uvc.v, rvec->z);
//--rotate_uvs-- 	uvb1.v = fixmul(uvb->u - uvc.u, rvec->z) + fixmul(uvb->v - uvc.v, rvec->x);
//--rotate_uvs-- 
//--rotate_uvs-- 	uvb->u = uvb1.u + uvc.u;
//--rotate_uvs-- 	uvb->v = uvb1.v + uvc.v;
//--rotate_uvs-- }


// --------------------------------------------------------------------------------------------------------------
void med_assign_uvs_to_side(segment *con_seg, int con_common_side, segment *base_seg, int base_common_side, int abs_id1, int abs_id2)
{
	uvl		uv1,uv2;
        int             v,bv1,bv2, vv1, vv2;
        int             cv1=0, cv2=0;

	bv1 = -1;	bv2 = -1;

	// Find which vertices in segment match abs_id1, abs_id2
	for (v=0; v<MAX_VERTICES_PER_SEGMENT; v++) {
		if (base_seg->verts[v] == abs_id1)
			bv1 = v;
		if (base_seg->verts[v] == abs_id2)
			bv2 = v;
		if (con_seg->verts[v] == abs_id1)
			cv1 = v;
		if (con_seg->verts[v] == abs_id2)
			cv2 = v;
	}

	//	Now, bv1, bv2 are segment relative vertices in base segment which are the same as absolute vertices abs_id1, abs_id2
	//	     cv1, cv2 are segment relative vertices in conn segment which are the same as absolute vertices abs_id1, abs_id2

	Assert((bv1 != -1) && (bv2 != -1) && (cv1 != -1) && (cv2 != -1));

	//	Now, scan 4 vertices in base side and 4 vertices in connected side.
	//	Set uv1, uv2 to uv coordinates from base side which correspond to vertices bv1, bv2.
	//	Set vv1, vv2 to relative vertex ids (in 0..3) in connecting side which correspond to cv1, cv2
	vv1 = -1;	vv2 = -1;
	for (v=0; v<4; v++) {
		if (bv1 == Side_to_verts[base_common_side][v])
			uv1 = base_seg->sides[base_common_side].uvls[v];

		if (bv2 == Side_to_verts[base_common_side][v])
			uv2 = base_seg->sides[base_common_side].uvls[v];

		if (cv1 == Side_to_verts[con_common_side][v])
			vv1 = v;

		if (cv2 == Side_to_verts[con_common_side][v])
			vv2 = v;
	}

	Assert((uv1.u != uv2.u) || (uv1.v != uv2.v));
	Assert( (vv1 != -1) && (vv2 != -1) );
	assign_uvs_to_side(con_seg, con_common_side, &uv1, &uv2, vv1, vv2);
}


// -----------------------------------------------------------------------------
//	Given a base and a connecting segment, a side on each of those segments and two global vertex ids,
//	determine which side in each of the segments shares those two vertices.
//	This is used to propagate a texture map id to a connecting segment in an expected and desired way.
//	Since we can attach any side of a segment to any side of another segment, and do so in each case in
//	four different rotations (for a total of 6*6*4 = 144 ways), not having this nifty function will cause
//	great confusion.
void get_side_ids(segment *base_seg, segment *con_seg, int base_side, int con_side, int abs_id1, int abs_id2, int *base_common_side, int *con_common_side)
{
	sbyte	*base_vp,*con_vp;
	int		v0,side;

	*base_common_side = -1;

	//	Find side in base segment which contains the two global vertex ids.
	for (side=0; side<MAX_SIDES_PER_SEGMENT; side++) {
		if (side != base_side) {
			base_vp = Side_to_verts[side];
			for (v0=0; v0<4; v0++)
                                if (((base_seg->verts[(int) base_vp[v0]] == abs_id1) && (base_seg->verts[(int) base_vp[(v0+1) % 4]] == abs_id2)) || ((base_seg->verts[(int) base_vp[v0]] == abs_id2) && (base_seg->verts[(int)base_vp[ (v0+1) % 4]] == abs_id1))) {
					Assert(*base_common_side == -1);		// This means two different sides shared the same edge with base_side == impossible!
					*base_common_side = side;
				}
		}
	}

	// Note: For connecting segment, process vertices in reversed order.
	*con_common_side = -1;

	//	Find side in connecting segment which contains the two global vertex ids.
	for (side=0; side<MAX_SIDES_PER_SEGMENT; side++) {
		if (side != con_side) {
			con_vp = Side_to_verts[side];
			for (v0=0; v0<4; v0++)
                                if (((con_seg->verts[(int) con_vp[(v0 + 1) % 4]] == abs_id1) && (con_seg->verts[(int) con_vp[v0]] == abs_id2)) || ((con_seg->verts[(int) con_vp[(v0 + 1) % 4]] == abs_id2) && (con_seg->verts[(int) con_vp[v0]] == abs_id1))) {
					Assert(*con_common_side == -1);		// This means two different sides shared the same edge with con_side == impossible!
					*con_common_side = side;
				}
		}
	}

	Assert((*base_common_side != -1) && (*con_common_side != -1));
}

// -----------------------------------------------------------------------------
//	Propagate texture map u,v coordinates from base_seg:base_side to con_seg:con_side.
//	The two vertices abs_id1 and abs_id2 are the only two vertices common to the two sides.
//	If uv_only_flag is 1, then don't assign texture map ids, only update the uv coordinates
//	If uv_only_flag is -1, then ONLY assign texture map ids, don't update the uv coordinates
void propagate_tmaps_to_segment_side(segment *base_seg, int base_side, segment *con_seg, int con_side, int abs_id1, int abs_id2, int uv_only_flag)
{
	int		base_common_side,con_common_side;
	int		tmap_num;

	Assert ((uv_only_flag == -1) || (uv_only_flag == 0) || (uv_only_flag == 1));

	// Set base_common_side = side in base_seg which contains edge abs_id1:abs_id2
	// Set con_common_side = side in con_seg which contains edge abs_id1:abs_id2
	if (base_seg != con_seg)
		get_side_ids(base_seg, con_seg, base_side, con_side, abs_id1, abs_id2, &base_common_side, &con_common_side);
	else {
		base_common_side = base_side;
		con_common_side = con_side;
	}

	// Now, all faces in con_seg which are on side con_common_side get their tmap_num set to whatever tmap is assigned
	// to whatever face I find which is on side base_common_side.
	// First, find tmap_num for base_common_side.  If it doesn't exist (ie, there is a connection there), look at the segment
	// that is connected through it.
	if (!IS_CHILD(con_seg->children[con_common_side])) {
		if (!IS_CHILD(base_seg->children[base_common_side])) {
			// There is at least one face here, so get the tmap_num from there.
			tmap_num = base_seg->sides[base_common_side].tmap_num;

			// Now assign all faces in the connecting segment on side con_common_side to tmap_num.
			if ((uv_only_flag == -1) || (uv_only_flag == 0))
				con_seg->sides[con_common_side].tmap_num = tmap_num;

			if (uv_only_flag != -1)
				med_assign_uvs_to_side(con_seg, con_common_side, base_seg, base_common_side, abs_id1, abs_id2);

		} else {			// There are no faces here, there is a connection, trace through the connection.
			int	cside;

			cside = find_connect_side(base_seg, &Segments[base_seg->children[base_common_side]]);
			propagate_tmaps_to_segment_side(&Segments[base_seg->children[base_common_side]], cside, con_seg, con_side, abs_id1, abs_id2, uv_only_flag);
		}
	}

}

sbyte	Edge_between_sides[MAX_SIDES_PER_SEGMENT][MAX_SIDES_PER_SEGMENT][2] = {
//		left		top		right		bottom	back		front
	{ {-1,-1}, { 3, 7}, {-1,-1}, { 2, 6}, { 6, 7}, { 2, 3} },	// left
	{ { 3, 7}, {-1,-1}, { 0, 4}, {-1,-1}, { 4, 7}, { 0, 3} },	// top
	{ {-1,-1}, { 0, 4}, {-1,-1}, { 1, 5}, { 4, 5}, { 0, 1} },	// right
	{ { 2, 6}, {-1,-1}, { 1, 5}, {-1,-1}, { 5, 6}, { 1, 2} },	// bottom
	{ { 6, 7}, { 4, 7}, { 4, 5}, { 5, 6}, {-1,-1}, {-1,-1} },	// back
	{ { 2, 3}, { 0, 3}, { 0, 1}, { 1, 2}, {-1,-1}, {-1,-1} }};	// front

// -----------------------------------------------------------------------------
//	Propagate texture map u,v coordinates to base_seg:back_side from base_seg:some-other-side
//	There is no easy way to figure out which side is adjacent to another side along some edge, so we do a bit of searching.
void med_propagate_tmaps_to_back_side(segment *base_seg, int back_side, int uv_only_flag)
{
        int     v1=0,v2=0;
	int	s,ss,tmap_num,back_side_tmap;

	if (IS_CHILD(base_seg->children[back_side]))
		return;		// connection, so no sides here.

	//	Scan all sides, look for an occupied side which is not back_side or Side_opposite[back_side]
	for (s=0; s<MAX_SIDES_PER_SEGMENT; s++)
		if ((s != back_side) && (s != Side_opposite[back_side])) {
			v1 = Edge_between_sides[s][back_side][0];
			v2 = Edge_between_sides[s][back_side][1];
			goto found1;
		}
	Assert(0);		// Error -- couldn't find edge != back_side and Side_opposite[back_side]
found1: ;
	Assert( (v1 != -1) && (v2 != -1));		// This means there was no shared edge between the two sides.

	propagate_tmaps_to_segment_side(base_seg, s, base_seg, back_side, base_seg->verts[v1], base_seg->verts[v2], uv_only_flag);

	//	Assign an unused tmap id to the back side.
	//	Note that this can get undone by the caller if this was not part of a new attach, but a rotation or a scale (which
	//	both do attaches).
	//	First see if tmap on back side is anywhere else.
	if (!uv_only_flag) {
		back_side_tmap = base_seg->sides[back_side].tmap_num;
		for (s=0; s<MAX_SIDES_PER_SEGMENT; s++) {
			if (s != back_side)
				if (base_seg->sides[s].tmap_num == back_side_tmap) {
					for (tmap_num=0; tmap_num < MAX_SIDES_PER_SEGMENT; tmap_num++) {
						for (ss=0; ss<MAX_SIDES_PER_SEGMENT; ss++)
							if (ss != back_side)
								if (base_seg->sides[ss].tmap_num == New_segment.sides[tmap_num].tmap_num)
									goto found2;		// current texture map (tmap_num) is used on current (ss) side, so try next one
						// Current texture map (tmap_num) has not been used, assign to all faces on back_side.
						base_seg->sides[back_side].tmap_num = New_segment.sides[tmap_num].tmap_num;
						goto done1;
					found2: ;
					}
				}
		}
	done1: ;
	}

}

int fix_bogus_uvs_on_side(void)
{
	med_propagate_tmaps_to_back_side(Cursegp, Curside, 1);
	return 0;
}

void fix_bogus_uvs_on_side1(segment *sp, int sidenum, int uvonly_flag)
{
	side	*sidep = &sp->sides[sidenum];

	if ((sidep->uvls[0].u == 0) && (sidep->uvls[1].u == 0) && (sidep->uvls[2].u == 0)) {
		med_propagate_tmaps_to_back_side(sp, sidenum, uvonly_flag);
	}
}

void fix_bogus_uvs_seg(segment *segp)
{
	int	s;

	for (s=0; s<MAX_SIDES_PER_SEGMENT; s++) {
		if (!IS_CHILD(segp->children[s]))
			fix_bogus_uvs_on_side1(segp, s, 1);
	}
}

int fix_bogus_uvs_all(void)
{
	int	seg;

	for (seg=0; seg<=Highest_segment_index; seg++)
		if (Segments[seg].segnum != -1)
			fix_bogus_uvs_seg(&Segments[seg]);
	return 0;
}

// -----------------------------------------------------------------------------
//	Propagate texture map u,v coordinates to base_seg:back_side from base_seg:some-other-side
//	There is no easy way to figure out which side is adjacent to another side along some edge, so we do a bit of searching.
void med_propagate_tmaps_to_any_side(segment *base_seg, int back_side, int tmap_num, int uv_only_flag)
{
        int     v1=0,v2=0;
	int	s;

	//	Scan all sides, look for an occupied side which is not back_side or Side_opposite[back_side]
	for (s=0; s<MAX_SIDES_PER_SEGMENT; s++)
		if ((s != back_side) && (s != Side_opposite[back_side])) {
			v1 = Edge_between_sides[s][back_side][0];
			v2 = Edge_between_sides[s][back_side][1];
			goto found1;
		}
	Assert(0);		// Error -- couldn't find edge != back_side and Side_opposite[back_side]
found1: ;
	Assert( (v1 != -1) && (v2 != -1));		// This means there was no shared edge between the two sides.

	propagate_tmaps_to_segment_side(base_seg, s, base_seg, back_side, base_seg->verts[v1], base_seg->verts[v2], uv_only_flag);

	base_seg->sides[back_side].tmap_num = tmap_num;

}

// -----------------------------------------------------------------------------
//	Segment base_seg is connected through side base_side to segment con_seg on con_side.
//	For all walls in con_seg, find the wall in base_seg which shares an edge.  Copy tmap_num
//	from that side in base_seg to the wall in con_seg.  If the wall in base_seg is not present
//	(ie, there is another segment connected through it), follow the connection through that
//	segment to get the wall in the connected segment which shares the edge, and get tmap_num from there.
void propagate_tmaps_to_segment_sides(segment *base_seg, int base_side, segment *con_seg, int con_side, int uv_only_flag)
{
	sbyte		*base_vp;
	int		abs_id1,abs_id2;
	int		v;

	base_vp = Side_to_verts[base_side];

	// Do for each edge on connecting face.
	for (v=0; v<4; v++) {
                abs_id1 = base_seg->verts[(int) base_vp[v]];
                abs_id2 = base_seg->verts[(int) base_vp[(v+1) % 4]];
		propagate_tmaps_to_segment_side(base_seg, base_side, con_seg, con_side, abs_id1, abs_id2, uv_only_flag);
	}

}

// -----------------------------------------------------------------------------
//	Propagate texture maps in base_seg to con_seg.
//	For each wall in con_seg, find the wall in base_seg which shared an edge.  Copy tmap_num from that
//	wall in base_seg to the wall in con_seg.  If the wall in base_seg is not present, then look at the
//	segment connected through base_seg through the wall.  The wall with a common edge is the new wall
//	of interest.  Continue searching in this way until a wall of interest is present.
void med_propagate_tmaps_to_segments(segment *base_seg,segment *con_seg, int uv_only_flag)
{
	int		s;

	for (s=0; s<MAX_SIDES_PER_SEGMENT; s++)
		if (base_seg->children[s] == con_seg-Segments)
			propagate_tmaps_to_segment_sides(base_seg, s, con_seg, find_connect_side(base_seg, con_seg), uv_only_flag);

	con_seg->static_light = base_seg->static_light;

	validate_uv_coordinates(con_seg);
}


// -------------------------------------------------------------------------------
//	Copy texture map uvs from srcseg to destseg.
//	If two segments have different face structure (eg, destseg has two faces on side 3, srcseg has only 1)
//	then assign uvs according to side vertex id, not face vertex id.
void copy_uvs_seg_to_seg(segment *destseg,segment *srcseg)
{
	int	s;

	for (s=0; s<MAX_SIDES_PER_SEGMENT; s++) {
		destseg->sides[s].tmap_num = srcseg->sides[s].tmap_num;
		destseg->sides[s].tmap_num2 = srcseg->sides[s].tmap_num2;
	}

	destseg->static_light = srcseg->static_light;
}

//	_________________________________________________________________________________________________________________________
//	Maximum distance between a segment containing light to a segment to receive light.
#define	LIGHT_DISTANCE_THRESHOLD	(F1_0*80)
fix	Magical_light_constant = (F1_0*16);

// int	Seg0, Seg1;

//int	Bugseg = 27;

typedef struct {
	sbyte			flag, hit_type;
	vms_vector	vector;
} hash_info;

#define	FVI_HASH_SIZE 8
#define	FVI_HASH_AND_MASK (FVI_HASH_SIZE - 1)

//	Note: This should be malloced.
//			Also, the vector should not be 12 bytes, you should only care about some smaller portion of it.
hash_info	fvi_cache[FVI_HASH_SIZE];
int	Hash_hits=0, Hash_retries=0, Hash_calcs=0;

//	-----------------------------------------------------------------------------------------
//	Set light from a light source.
//	Light incident on a surface is defined by the light incident at its points.
//	Light at a point = K * (V . N) / d
//	where:
//		K = some magical constant to make everything look good
//		V = normalized vector from light source to point
//		N = surface normal at point
//		d = distance from light source to point
//	(Note that the above equation can be simplified to K * (VV . N) / d^2 where VV = non-normalized V)
//	Light intensity emitted from a light source is defined to be cast from four points.
//	These four points are 1/64 of the way from the corners of the light source to the center
//	of its segment.  By assuming light is cast from these points, rather than from on the
//	light surface itself, light will be properly cast on the light surface.  Otherwise, the
//	vector V would be the null vector.
//	If quick_light set, then don't use find_vector_intersection
void cast_light_from_side(segment *segp, int light_side, fix light_intensity, int quick_light)
{
	vms_vector	segment_center;
	int			segnum,sidenum,vertnum, lightnum;

	compute_segment_center(&segment_center, segp);

	//	Do for four lights, one just inside each corner of side containing light.
	for (lightnum=0; lightnum<4; lightnum++) {
		int			light_vertex_num, i;
		vms_vector	vector_to_center;
		vms_vector	light_location;
		// fix			inverse_segment_magnitude;

		light_vertex_num = segp->verts[Side_to_verts[light_side][lightnum]];
		light_location = Vertices[light_vertex_num];


	//	New way, 5/8/95: Move towards center irrespective of size of segment.
	vm_vec_sub(&vector_to_center, &segment_center, &light_location);
	vm_vec_normalize_quick(&vector_to_center);
	vm_vec_add2(&light_location, &vector_to_center);

// -- Old way, before 5/8/95 --		// -- This way was kind of dumb.  In larger segments, you move LESS towards the center.
// -- Old way, before 5/8/95 --		//    Main problem, though, is vertices don't illuminate themselves well in oblong segments because the dot product is small.
// -- Old way, before 5/8/95 --		vm_vec_sub(&vector_to_center, &segment_center, &light_location);
// -- Old way, before 5/8/95 --		inverse_segment_magnitude = fixdiv(F1_0/5, vm_vec_mag(&vector_to_center));
// -- Old way, before 5/8/95 --		vm_vec_scale_add(&light_location, &light_location, &vector_to_center, inverse_segment_magnitude);

		for (segnum=0; segnum<=Highest_segment_index; segnum++) {
			segment		*rsegp = &Segments[segnum];
			vms_vector	r_segment_center;
			fix			dist_to_rseg;

			for (i=0; i<FVI_HASH_SIZE; i++)
				fvi_cache[i].flag = 0;

			//	efficiency hack (I hope!), for faraway segments, don't check each point.
			compute_segment_center(&r_segment_center, rsegp);
			dist_to_rseg = vm_vec_dist_quick(&r_segment_center, &segment_center);

			if (dist_to_rseg <= LIGHT_DISTANCE_THRESHOLD) {
				for (sidenum=0; sidenum<MAX_SIDES_PER_SEGMENT; sidenum++) {
					if (WALL_IS_DOORWAY(rsegp, sidenum) != WID_NO_WALL) {
						side			*rsidep = &rsegp->sides[sidenum];
						vms_vector	*side_normalp = &rsidep->normals[0];	//	kinda stupid? always use vector 0.

						for (vertnum=0; vertnum<4; vertnum++) {
							fix			distance_to_point, light_at_point, light_dot;
							vms_vector	vert_location, vector_to_light;
							int			abs_vertnum;

							abs_vertnum = rsegp->verts[Side_to_verts[sidenum][vertnum]];
							vert_location = Vertices[abs_vertnum];
							distance_to_point = vm_vec_dist_quick(&vert_location, &light_location);
							vm_vec_sub(&vector_to_light, &light_location, &vert_location);
							vm_vec_normalize(&vector_to_light);

							//	Hack: In oblong segments, it's possible to get a very small dot product
							//	but the light source is very nearby (eg, illuminating light itself!).
							light_dot = vm_vec_dot(&vector_to_light, side_normalp);
							if (distance_to_point < F1_0)
								if (light_dot > 0)
									light_dot = (light_dot + F1_0)/2;

							if (light_dot > 0) {
								light_at_point = fixdiv(fixmul(light_dot, light_dot), distance_to_point);
								light_at_point = fixmul(light_at_point, Magical_light_constant);
								if (light_at_point >= 0) {
									fvi_info	hit_data;
									int		hit_type;
									vms_vector	vert_location_1, r_vector_to_center;
									fix		inverse_segment_magnitude;

									vm_vec_sub(&r_vector_to_center, &r_segment_center, &vert_location);
									inverse_segment_magnitude = fixdiv(F1_0/3, vm_vec_mag(&r_vector_to_center));
									vm_vec_scale_add(&vert_location_1, &vert_location, &r_vector_to_center, inverse_segment_magnitude);
									vert_location = vert_location_1;

//if ((segp-Segments == 199) && (rsegp-Segments==199))
//	Int3();
// Seg0 = segp-Segments;
// Seg1 = rsegp-Segments;
									if (!quick_light) {
										int hash_value = Side_to_verts[sidenum][vertnum];
										hash_info	*hashp = &fvi_cache[hash_value];
										while (1) {
											if (hashp->flag) {
												if ((hashp->vector.x == vector_to_light.x) && (hashp->vector.y == vector_to_light.y) && (hashp->vector.z == vector_to_light.z)) {
													hit_type = hashp->hit_type;
													Hash_hits++;
													break;
												} else {
													Int3();	// How is this possible?  Should be no hits!
													Hash_retries++;
													hash_value = (hash_value+1) & FVI_HASH_AND_MASK;
													hashp = &fvi_cache[hash_value];
												}
											} else {
												fvi_query fq;

												Hash_calcs++;
												hashp->vector = vector_to_light;
												hashp->flag = 1;

												fq.p0						= &light_location;
												fq.startseg				= segp-Segments;
												fq.p1						= &vert_location;
												fq.rad					= 0;
												fq.thisobjnum			= -1;
												fq.ignore_obj_list	= NULL;
												fq.flags					= 0;

												hit_type = find_vector_intersection(&fq,&hit_data);
												hashp->hit_type = hit_type;
												break;
											}
										}
									} else
										hit_type = HIT_NONE;
									switch (hit_type) {
										case HIT_NONE:
											light_at_point = fixmul(light_at_point, light_intensity);
											rsidep->uvls[vertnum].l += light_at_point;
											if (rsidep->uvls[vertnum].l > F1_0)
												rsidep->uvls[vertnum].l = F1_0;
											break;
										case HIT_WALL:
											break;
										case HIT_OBJECT:
											Int3();	// Hit object, should be ignoring objects!
											break;
										case HIT_BAD_P0:
											Int3();	//	Ugh, this thing again, what happened, what does it mean?
											break;
									}
								}	//	end if (light_at_point...
							}	// end if (light_dot >...
						}	//	end for (vertnum=0...
					}	//	end if (rsegp...
				}	//	end for (sidenum=0...
			}	//	end if (dist_to_rseg...

		}	//	end for (segnum=0...

	}	//	end for (lightnum=0...
}


//	------------------------------------------------------------------------------------------
//	Zero all lighting values.
void calim_zero_light_values(void)
{
	int	segnum, sidenum, vertnum;

	for (segnum=0; segnum<=Highest_segment_index; segnum++) {
		segment *segp = &Segments[segnum];
		for (sidenum=0; sidenum<MAX_SIDES_PER_SEGMENT; sidenum++) {
			side	*sidep = &segp->sides[sidenum];
			for (vertnum=0; vertnum<4; vertnum++)
				sidep->uvls[vertnum].l = F1_0/64;	// Put a tiny bit of light here.
		}
		Segments[segnum].static_light = F1_0 / 64;
	}
}


//	------------------------------------------------------------------------------------------
//	Used in setting average light value in a segment, cast light from a side to the center
//	of all segments.
void cast_light_from_side_to_center(segment *segp, int light_side, fix light_intensity, int quick_light)
{
	vms_vector	segment_center;
	int			segnum, lightnum;

	compute_segment_center(&segment_center, segp);

	//	Do for four lights, one just inside each corner of side containing light.
	for (lightnum=0; lightnum<4; lightnum++) {
		int			light_vertex_num;
		vms_vector	vector_to_center;
		vms_vector	light_location;

		light_vertex_num = segp->verts[Side_to_verts[light_side][lightnum]];
		light_location = Vertices[light_vertex_num];
		vm_vec_sub(&vector_to_center, &segment_center, &light_location);
		vm_vec_scale_add(&light_location, &light_location, &vector_to_center, F1_0/64);

		for (segnum=0; segnum<=Highest_segment_index; segnum++) {
			segment		*rsegp = &Segments[segnum];
			vms_vector	r_segment_center;
			fix			dist_to_rseg;
//if ((segp == &Segments[Bugseg]) && (rsegp == &Segments[Bugseg]))
//	Int3();
			compute_segment_center(&r_segment_center, rsegp);
			dist_to_rseg = vm_vec_dist_quick(&r_segment_center, &segment_center);

			if (dist_to_rseg <= LIGHT_DISTANCE_THRESHOLD) {
				fix	light_at_point;
				if (dist_to_rseg > F1_0)
					light_at_point = fixdiv(Magical_light_constant, dist_to_rseg);
				else
					light_at_point = Magical_light_constant;

				if (light_at_point >= 0) {
					int		hit_type;

					if (!quick_light) {
						fvi_query fq;
						fvi_info	hit_data;

						fq.p0						= &light_location;
						fq.startseg				= segp-Segments;
						fq.p1						= &r_segment_center;
						fq.rad					= 0;
						fq.thisobjnum			= -1;
						fq.ignore_obj_list	= NULL;
						fq.flags					= 0;

						hit_type = find_vector_intersection(&fq,&hit_data);
					}
					else
						hit_type = HIT_NONE;

					switch (hit_type) {
						case HIT_NONE:
							light_at_point = fixmul(light_at_point, light_intensity);
							if (light_at_point >= F1_0)
								light_at_point = F1_0-1;
							rsegp->static_light += light_at_point;
							if (segp->static_light < 0)	// if it went negative, saturate
								segp->static_light = 0;
							break;
						case HIT_WALL:
							break;
						case HIT_OBJECT:
							Int3();	// Hit object, should be ignoring objects!
							break;
						case HIT_BAD_P0:
							Int3();	//	Ugh, this thing again, what happened, what does it mean?
							break;
					}
				}	//	end if (light_at_point...
			}	//	end if (dist_to_rseg...

		}	//	end for (segnum=0...

	}	//	end for (lightnum=0...

}

//	------------------------------------------------------------------------------------------
//	Process all lights.
void calim_process_all_lights(int quick_light)
{
	int	segnum, sidenum;

	for (segnum=0; segnum<=Highest_segment_index; segnum++) {
		segment	*segp = &Segments[segnum];
		for (sidenum=0; sidenum<MAX_SIDES_PER_SEGMENT; sidenum++) {
			// if (!IS_CHILD(segp->children[sidenum])) {
			if (WALL_IS_DOORWAY(segp, sidenum) != WID_NO_WALL) {
				side	*sidep = &segp->sides[sidenum];
				fix	light_intensity;

				light_intensity = TmapInfo[sidep->tmap_num].lighting + TmapInfo[sidep->tmap_num2 & 0x3fff].lighting;

//				if (segp->sides[sidenum].wall_num != -1) {
//					int	wall_num, bitmap_num, effect_num;
//					wall_num = segp->sides[sidenum].wall_num;
//					effect_num = Walls[wall_num].type;
//					bitmap_num = effects_bm_num[effect_num];
//
//					light_intensity += TmapInfo[bitmap_num].lighting;
//				}

				if (light_intensity) {
					light_intensity /= 4;			// casting light from four spots, so divide by 4.
					cast_light_from_side(segp, sidenum, light_intensity, quick_light);
					cast_light_from_side_to_center(segp, sidenum, light_intensity, quick_light);
				}
			}
		}
	}
}

//	------------------------------------------------------------------------------------------
//	Apply static light in mine.
//	First, zero all light values.
//	Then, for all light sources, cast their light.
void cast_all_light_in_mine(int quick_flag)
{

	validate_segment_all();

	calim_zero_light_values();

	calim_process_all_lights(quick_flag);

}

// int	Fvit_num = 1000;
// 
// fix find_vector_intersection_test(void)
// {
// 	int		i;
// 	fvi_info	hit_data;
// 	int		p0_seg, p1_seg, this_objnum, ignore_obj, check_obj_flag;
// 	fix		rad;
// 	int		start_time = timer_get_milliseconds();;
// 	vms_vector	p0,p1;
// 
// 	ignore_obj = 1;
// 	check_obj_flag = 0;
// 	this_objnum = -1;
// 	rad = F1_0/4;
// 
// 	for (i=0; i<Fvit_num; i++) {
//		p0_seg = d_rand()*(Highest_segment_index+1)/32768;
// 		compute_segment_center(&p0, &Segments[p0_seg]);
// 
//		p1_seg = d_rand()*(Highest_segment_index+1)/32768;
// 		compute_segment_center(&p1, &Segments[p1_seg]);
// 
// 		find_vector_intersection(&hit_data, &p0, p0_seg, &p1, rad, this_objnum, ignore_obj, check_obj_flag);
// 	}
// 
// 	return timer_get_milliseconds() - start_time;
// }

vms_vector	Normals[MAX_SEGMENTS*12];

int	Normal_nearness = 4;

int normal_near(vms_vector *v1, vms_vector *v2)
{
	if (abs(v1->x - v2->x) < Normal_nearness)
		if (abs(v1->y - v2->y) < Normal_nearness)
			if (abs(v1->z - v2->z) < Normal_nearness)
				return 1;
	return 0;
}

int	Total_normals=0;
int	Diff_normals=0;

void print_normals(void)
{
	int			i,j,s,n,nn;
	// vms_vector	*normal;
	int			num_normals=0;

	Total_normals = 0;
	Diff_normals = 0;

	for (i=0; i<=Highest_segment_index; i++)
		for (s=0; s<6; s++) {
			if (Segments[i].sides[s].type == SIDE_IS_QUAD)
				nn=1;
			else
				nn=2;
			for (n=0; n<nn; n++) {
				for (j=0; j<num_normals; j++)
					if (normal_near(&Segments[i].sides[s].normals[n],&Normals[j]))
						break;
				if (j == num_normals) {
					Normals[num_normals++] = Segments[i].sides[s].normals[n];
					Diff_normals++;
				}
				Total_normals++;
			}
		}

}