1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
|

# dacite
[](https://travis-ci.org/konradhalas/dacite)
[](https://coveralls.io/github/konradhalas/dacite?branch=master)
[](https://pypi.python.org/pypi/dacite/)
[](https://pypi.python.org/pypi/dacite/)
[](https://pypi.python.org/pypi/dacite/)
[](https://github.com/ambv/black)
This module simplifies creation of data classes ([PEP 557][pep-557])
from dictionaries.
## Installation
To install dacite, simply use `pip`:
```
$ pip install dacite
```
## Requirements
Minimum Python version supported by `dacite` is 3.7.
## Quick start
```python
from dataclasses import dataclass
from dacite import from_dict
@dataclass
class User:
name: str
age: int
is_active: bool
data = {
'name': 'John',
'age': 30,
'is_active': True,
}
user = from_dict(data_class=User, data=data)
assert user == User(name='John', age=30, is_active=True)
```
## Features
Dacite supports following features:
- nested structures
- (basic) type checking
- optional fields (i.e. `typing.Optional`)
- unions
- generics
- forward references
- collections
- custom type hooks
- case conversion
## Motivation
Passing plain dictionaries as a data container between your functions or
methods isn't a good practice. Of course you can always create your
custom class instead, but this solution is an overkill if you only want
to merge a few fields within a single object.
Fortunately Python has a good solution to this problem - data classes.
Thanks to `@dataclass` decorator you can easily create a new custom
type with a list of given fields in a declarative manner. Data classes
support type hints by design.
However, even if you are using data classes, you have to create their
instances somehow. In many such cases, your input is a dictionary - it
can be a payload from a HTTP request or a raw data from a database. If
you want to convert those dictionaries into data classes, `dacite` is
your best friend.
This library was originally created to simplify creation of type hinted
data transfer objects (DTO) which can cross the boundaries in the
application architecture.
It's important to mention that `dacite` is not a data validation library.
There are dozens of awesome data validation projects and it doesn't make
sense to duplicate this functionality within `dacite`. If you want to
validate your data first, you should combine `dacite` with one of data
validation library.
Please check [Use Case](#use-case) section for a real-life example.
## Usage
Dacite is based on a single function - `dacite.from_dict`. This function
takes 3 parameters:
- `data_class` - data class type
- `data` - dictionary of input data
- `config` (optional) - configuration of the creation process, instance
of `dacite.Config` class
Configuration is a (data) class with following fields:
- `type_hooks`
- `cast`
- `forward_references`
- `check_types`
- `strict`
- `strict_unions_match`
- `convert_key`
The examples below show all features of `from_dict` function and usage
of all `Config` parameters.
### Nested structures
You can pass a data with nested dictionaries and it will create a proper
result.
```python
@dataclass
class A:
x: str
y: int
@dataclass
class B:
a: A
data = {
'a': {
'x': 'test',
'y': 1,
}
}
result = from_dict(data_class=B, data=data)
assert result == B(a=A(x='test', y=1))
```
### Optional fields
Whenever your data class has a `Optional` field and you will not provide
input data for this field, it will take the `None` value.
```python
from typing import Optional
@dataclass
class A:
x: str
y: Optional[int]
data = {
'x': 'test',
}
result = from_dict(data_class=A, data=data)
assert result == A(x='test', y=None)
```
### Unions
If your field can accept multiple types, you should use `Union`. Dacite
will try to match data with provided types one by one. If none will
match, it will raise `UnionMatchError` exception.
```python
from typing import Union
@dataclass
class A:
x: str
@dataclass
class B:
y: int
@dataclass
class C:
u: Union[A, B]
data = {
'u': {
'y': 1,
},
}
result = from_dict(data_class=C, data=data)
assert result == C(u=B(y=1))
```
### Collections
Dacite supports fields defined as collections. It works for both - basic
types and data classes.
```python
@dataclass
class A:
x: str
y: int
@dataclass
class B:
a_list: List[A]
data = {
'a_list': [
{
'x': 'test1',
'y': 1,
},
{
'x': 'test2',
'y': 2,
}
],
}
result = from_dict(data_class=B, data=data)
assert result == B(a_list=[A(x='test1', y=1), A(x='test2', y=2)])
```
### Generics
Dacite supports generics: (multi-)generic dataclasses, but also dataclasses that inherit from a generic dataclass, or dataclasses that have a generic dataclass field.
```python
T = TypeVar('T')
U = TypeVar('U')
@dataclass
class X:
a: str
@dataclass
class A(Generic[T, U]):
x: T
y: list[U]
data = {
'x': {
'a': 'foo',
},
'y': [1, 2, 3]
}
result = from_dict(data_class=A[X, int], data=data)
assert result == A(x=X(a='foo'), y=[1,2,3])
@dataclass
class B(A[X, int]):
z: str
data = {
'x': {
'a': 'foo',
},
'y': [1, 2, 3],
'z': 'bar'
}
result = from_dict(data_class=B, data=data)
assert result == B(x=X(a='foo'), y=[1,2,3], z='bar')
@dataclass
class C:
z: A[X, int]
data = {
'z': {
'x': {
'a': 'foo',
},
'y': [1, 2, 3],
}
}
result = from_dict(data_class=C, data=data)
assert result == C(z=A(x=X(a='foo'), y=[1,2,3]))
```
### Type hooks
You can use `Config.type_hooks` argument if you want to transform the input
data of a data class field with given type into the new value. You have to
pass a following mapping: `{Type: callable}`, where `callable` is a
`Callable[[Any], Any]`.
```python
@dataclass
class A:
x: str
data = {
'x': 'TEST',
}
result = from_dict(data_class=A, data=data, config=Config(type_hooks={str: str.lower}))
assert result == A(x='test')
```
If a data class field type is a `Optional[T]` you can pass both -
`Optional[T]` or just `T` - as a key in `type_hooks`. The same with generic
collections, e.g. when a field has type `List[T]` you can use `List[T]` to
transform whole collection or `T` to transform each item.
### Casting
It's a very common case that you want to create an instance of a field type
from the input data with just calling your type with the input value. Of
course you can use `type_hooks={T: T}` to achieve this goal but `cast=[T]` is
an easier and more expressive way. It also works with base classes - if `T`
is a base class of type `S`, all fields of type `S` will be also "casted".
```python
from enum import Enum
class E(Enum):
X = 'x'
Y = 'y'
Z = 'z'
@dataclass
class A:
e: E
data = {
'e': 'x',
}
result = from_dict(data_class=A, data=data, config=Config(cast=[E]))
# or
result = from_dict(data_class=A, data=data, config=Config(cast=[Enum]))
assert result == A(e=E.X)
```
### Forward References
Definition of forward references can be passed as a `{'name': Type}` mapping to
`Config.forward_references`. This dict is passed to `typing.get_type_hints()` as the
`globalns` param when evaluating each field's type.
```python
@dataclass
class X:
y: "Y"
@dataclass
class Y:
s: str
data = from_dict(X, {"y": {"s": "text"}}, Config(forward_references={"Y": Y}))
assert data == X(Y("text"))
```
### Type checking
If you want to trade-off type checking for speed, you can disabled type checking by setting `check_types` to `False`.
```python
@dataclass
class A:
x: str
# won't throw an error even though the type is wrong
from_dict(A, {'x': 4}, config=Config(check_types=False))
```
### Strict mode
By default `from_dict` ignores additional keys (not matching data class field)
in the input data. If you want change this behaviour set `Config.strict` to
`True`. In case of unexpected key `from_dict` will raise `UnexpectedDataError`
exception.
### Strict unions match
`Union` allows to define multiple possible types for a given field. By default
`dacite` is trying to find the first matching type for a provided data and it
returns instance of this type. It means that it's possible that there are other
matching types further on the `Union` types list. With `strict_unions_match`
only a single match is allowed, otherwise `dacite` raises `StrictUnionMatchError`.
## Convert key
You can pass a callable to the `convert_key` configuration parameter to convert camelCase to snake_case.
```python
def to_camel_case(key: str) -> str:
first_part, *remaining_parts = key.split('_')
return first_part + ''.join(part.title() for part in remaining_parts)
@dataclass
class Person:
first_name: str
last_name: str
data = {
'firstName': 'John',
'lastName': 'Doe'
}
result = from_dict(Person, data, Config(convert_key=to_camel_case))
assert result == Person(first_name='John', last_name='Doe')
```
## Exceptions
Whenever something goes wrong, `from_dict` will raise adequate
exception. There are a few of them:
- `WrongTypeError` - raised when a type of a input value does not match
with a type of a data class field
- `MissingValueError` - raised when you don't provide a value for a
required field
- `UnionMatchError` - raised when provided data does not match any type
of `Union`
- `ForwardReferenceError` - raised when undefined forward reference encountered in
dataclass
- `UnexpectedDataError` - raised when `strict` mode is enabled and the input
data has not matching keys
- `StrictUnionMatchError` - raised when `strict_unions_match` mode is enabled
and the input data has ambiguous `Union` match
## Development
First of all - if you want to submit your pull request, thank you very much!
I really appreciate your support.
Please remember that every new feature, bug fix or improvement should be tested.
100% code coverage is a must-have.
We are using a few static code analysis tools to increase the code quality
(`black`, `mypy`, `pylint`). Please make sure that you are not generating any
errors/warnings before you submit your PR. You can find current configuration
in `.github/*` directory.
Last but not least, if you want to introduce new feature, please discuss it
first within an issue.
### How to start
Clone `dacite` repository:
```bash
git clone git@github.com:konradhalas/dacite.git
```
Create and activate virtualenv in the way you like:
```bash
python3 -m venv dacite-env
source dacite-env/bin/activate
```
Install all `dacite` dependencies:
```bash
pip install -e .[dev]
```
And, optionally but recommended, install pre-commit hook for black:
```bash
pre-commit install
```
To run tests you just have to fire:
```bash
pytest
```
### Performance testing
`dacite` is a small library, but its use is potentially very extensive. Thus, it is crucial
to ensure good performance of the library.
We achieve that with the help of `pytest-benchmark` library, and a suite of dedicated performance tests
which can be found in the `tests/performance` directory. The CI process runs these tests automatically,
but they can also be helpful locally, while developing the library.
Whenever you run `pytest` command, a new benchmark report is saved to `/.benchmarks` directory.
You can easily compare these reports by running: `pytest-benchmark compare`, which will load all the runs
and display them in a table, where you can compare the performance of each run.
You can even specify which particular runs you want to compare, e.g. `pytest-benchmark compare 0001 0003 0005`.
## Use case
There are many cases when we receive "raw" data (Python dicts) as a input to
our system. HTTP request payload is a very common use case. In most web
frameworks we receive request data as a simple dictionary. Instead of
passing this dict down to your "business" code, it's a good idea to create
something more "robust".
Following example is a simple `flask` app - it has single `/products` endpoint.
You can use this endpoint to "create" product in your system. Our core
`create_product` function expects data class as a parameter. Thanks to `dacite`
we can easily build such data class from `POST` request payload.
```python
from dataclasses import dataclass
from typing import List
from flask import Flask, request, Response
import dacite
app = Flask(__name__)
@dataclass
class ProductVariantData:
code: str
description: str = ''
stock: int = 0
@dataclass
class ProductData:
name: str
price: float
variants: List[ProductVariantData]
def create_product(product_data: ProductData) -> None:
pass # your business logic here
@app.route("/products", methods=['POST'])
def products():
product_data = dacite.from_dict(
data_class=ProductData,
data=request.get_json(),
)
create_product(product_data=product_data)
return Response(status=201)
```
What if we want to validate our data (e.g. check if `code` has 6 characters)?
Such features are out of scope of `dacite` but we can easily combine it with
one of data validation library. Let's try with
[marshmallow](https://marshmallow.readthedocs.io).
First of all we have to define our data validation schemas:
```python
from marshmallow import Schema, fields, ValidationError
def validate_code(code):
if len(code) != 6:
raise ValidationError('Code must have 6 characters.')
class ProductVariantDataSchema(Schema):
code = fields.Str(required=True, validate=validate_code)
description = fields.Str(required=False)
stock = fields.Int(required=False)
class ProductDataSchema(Schema):
name = fields.Str(required=True)
price = fields.Decimal(required=True)
variants = fields.Nested(ProductVariantDataSchema(many=True))
```
And use them within our endpoint:
```python
@app.route("/products", methods=['POST'])
def products():
schema = ProductDataSchema()
result, errors = schema.load(request.get_json())
if errors:
return Response(
response=json.dumps(errors),
status=400,
mimetype='application/json',
)
product_data = dacite.from_dict(
data_class=ProductData,
data=result,
)
create_product(product_data=product_data)
return Response(status=201)
```
Still `dacite` helps us to create data class from "raw" dict with validated data.
### Cache
`dacite` uses some LRU caching to improve its performance where possible. To use the caching utility:
```python
from dacite import set_cache_size, get_cache_size, clear_cache
get_cache_size() # outputs the current LRU max_size, default is 2048
set_cache_size(4096) # set LRU max_size to 4096
set_cache_size(None) # set LRU max_size to None
clear_cache() # Clear the cache
```
The caching is completely transparent from the interface perspective.
## Changelog
Follow `dacite` updates in [CHANGELOG][changelog].
## Authors
Created by [Konrad Hałas][halas-homepage].
[pep-557]: https://www.python.org/dev/peps/pep-0557/
[halas-homepage]: https://konradhalas.pl
[changelog]: https://github.com/konradhalas/dacite/blob/master/CHANGELOG.md
|