File: bih.c

package info (click to toggle)
darkplaces 0~20180412~beta1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 18,200 kB
  • sloc: ansic: 176,886; makefile: 485; pascal: 455; perl: 372; objc: 245; sh: 102
file content (216 lines) | stat: -rw-r--r-- 6,489 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

// This code written in 2010 by Forest Hale (darkplacesengine gmail com), and placed into public domain.

#include <stdlib.h>
#include <string.h>
#include "bih.h"

static int BIH_BuildNode(bih_t *bih, int numchildren, int *leaflist, float *totalmins, float *totalmaxs)
{
	int i;
	int j;
	int longestaxis;
	int axis = 0;
	int nodenum;
	int front = 0;
	int back = 0;
	bih_node_t *node;
	bih_leaf_t *child;
	float splitdist;
	float d;
	float mins[3];
	float maxs[3];
	float size[3];
	float frontmins[3];
	float frontmaxs[3];
	float backmins[3];
	float backmaxs[3];
	// calculate bounds of children
	child = bih->leafs + leaflist[0];
	mins[0] = child->mins[0];
	mins[1] = child->mins[1];
	mins[2] = child->mins[2];
	maxs[0] = child->maxs[0];
	maxs[1] = child->maxs[1];
	maxs[2] = child->maxs[2];
	for (i = 1;i < numchildren;i++)
	{
		child = bih->leafs + leaflist[i];
		if (mins[0] > child->mins[0]) mins[0] = child->mins[0];
		if (mins[1] > child->mins[1]) mins[1] = child->mins[1];
		if (mins[2] > child->mins[2]) mins[2] = child->mins[2];
		if (maxs[0] < child->maxs[0]) maxs[0] = child->maxs[0];
		if (maxs[1] < child->maxs[1]) maxs[1] = child->maxs[1];
		if (maxs[2] < child->maxs[2]) maxs[2] = child->maxs[2];
	}
	size[0] = maxs[0] - mins[0];
	size[1] = maxs[1] - mins[1];
	size[2] = maxs[2] - mins[2];
	// provide bounds to caller
	totalmins[0] = mins[0];
	totalmins[1] = mins[1];
	totalmins[2] = mins[2];
	totalmaxs[0] = maxs[0];
	totalmaxs[1] = maxs[1];
	totalmaxs[2] = maxs[2];
	// if we run out of nodes it's the caller's fault, but don't crash
	if (bih->numnodes == bih->maxnodes)
	{
		if (!bih->error)
			bih->error = BIHERROR_OUT_OF_NODES;
		return 0;
	}
	nodenum = bih->numnodes++;
	node = bih->nodes + nodenum;
	// store bounds for node
	node->mins[0] = mins[0];
	node->mins[1] = mins[1];
	node->mins[2] = mins[2];
	node->maxs[0] = maxs[0];
	node->maxs[1] = maxs[1];
	node->maxs[2] = maxs[2];
	node->front = 0;
	node->back = 0;
	node->frontmin = 0;
	node->backmax = 0;
	memset(node->children, -1, sizeof(node->children));
	// check if there are few enough children to store an unordered node
	if (numchildren <= BIH_MAXUNORDEREDCHILDREN)
	{
		node->type = BIH_UNORDERED;
		for (j = 0;j < numchildren;j++)
			node->children[j] = leaflist[j];
		return nodenum;
	}
	// pick longest axis
	longestaxis = 0;
	if (size[0] < size[1]) longestaxis = 1;
	if (size[longestaxis] < size[2]) longestaxis = 2;
	// iterate possible split axis choices, starting with the longest axis, if
	// all fail it means all children have the same bounds and we simply split
	// the list in half because each node can only have two children.
	for (j = 0;j < 3;j++)
	{
		// pick an axis
		axis = (longestaxis + j) % 3;
		// sort children into front and back lists
		splitdist = (node->mins[axis] + node->maxs[axis]) * 0.5f;
		front = 0;
		back = 0;
		for (i = 0;i < numchildren;i++)
		{
			child = bih->leafs + leaflist[i];
			d = (child->mins[axis] + child->maxs[axis]) * 0.5f;
			if (d < splitdist)
				bih->leafsortscratch[back++] = leaflist[i];
			else
				leaflist[front++] = leaflist[i];
		}
		// now copy the back ones into the space made in the leaflist for them
		if (back)
			memcpy(leaflist + front, bih->leafsortscratch, back*sizeof(leaflist[0]));
		// if both sides have some children, it's good enough for us.
		if (front && back)
			break;
	}
	if (j == 3)
	{
		// somewhat common case: no good choice, divide children arbitrarily
		axis = 0;
		back = numchildren >> 1;
		front = numchildren - back;
	}

	// we now have front and back children divided in leaflist...
	node->type = (bih_nodetype_t)((int)BIH_SPLITX + axis);
	node->front = BIH_BuildNode(bih, front, leaflist, frontmins, frontmaxs);
	node->frontmin = frontmins[axis];
	node->back = BIH_BuildNode(bih, back, leaflist + front, backmins, backmaxs);
	node->backmax = backmaxs[axis];
	return nodenum;
}

int BIH_Build(bih_t *bih, int numleafs, bih_leaf_t *leafs, int maxnodes, bih_node_t *nodes, int *temp_leafsort, int *temp_leafsortscratch)
{
	int i;

	memset(bih, 0, sizeof(*bih));
	bih->numleafs = numleafs;
	bih->leafs = leafs;
	bih->leafsort = temp_leafsort;
	bih->leafsortscratch = temp_leafsortscratch;
	bih->numnodes = 0;
	bih->maxnodes = maxnodes;
	bih->nodes = nodes;

	// clear things we intend to rebuild
	memset(bih->nodes, 0, sizeof(bih->nodes[0]) * bih->maxnodes);
	for (i = 0;i < bih->numleafs;i++)
		bih->leafsort[i] = i;

	bih->rootnode = BIH_BuildNode(bih, bih->numleafs, bih->leafsort, bih->mins, bih->maxs);
	return bih->error;
}

static void BIH_GetTriangleListForBox_Node(const bih_t *bih, int nodenum, int maxtriangles, int *trianglelist_idx, int *trianglelist_surf, int *numtrianglespointer, const float *mins, const float *maxs)
{
	int axis;
	bih_node_t *node;
	bih_leaf_t *leaf;
	for(;;)
	{
		node = bih->nodes + nodenum;
		// check if this is an unordered node (which holds an array of leaf numbers)
		if (node->type == BIH_UNORDERED)
		{
			for (axis = 0;axis < BIH_MAXUNORDEREDCHILDREN && node->children[axis] >= 0;axis++)
			{
				leaf = bih->leafs + node->children[axis];
				if (mins[0] > leaf->maxs[0] || maxs[0] < leaf->mins[0]
				 || mins[1] > leaf->maxs[1] || maxs[1] < leaf->mins[1]
				 || mins[2] > leaf->maxs[2] || maxs[2] < leaf->mins[2])
					continue;
				switch(leaf->type)
				{
				case BIH_RENDERTRIANGLE:
					if (*numtrianglespointer >= maxtriangles)
					{
						++*numtrianglespointer; // so the caller can detect overflow
						break;
					}
					if(trianglelist_surf)
						trianglelist_surf[*numtrianglespointer] = leaf->surfaceindex;
					trianglelist_idx[*numtrianglespointer] = leaf->itemindex;
					++*numtrianglespointer;
					break;
				default:
					break;
				}
			}
			return;
		}
		// splitting node
		axis = node->type - BIH_SPLITX;
		if (mins[axis] < node->backmax)
		{
			if (maxs[axis] > node->frontmin)
				BIH_GetTriangleListForBox_Node(bih, node->front, maxtriangles, trianglelist_idx, trianglelist_surf, numtrianglespointer, mins, maxs);
			nodenum = node->back;
			continue;
		}
		if (maxs[axis] > node->frontmin)
		{
			nodenum = node->front;
			continue;
		}
		// fell between the child groups, nothing here
		return;
	}
}

int BIH_GetTriangleListForBox(const bih_t *bih, int maxtriangles, int *trianglelist_idx, int *trianglelist_surf, const float *mins, const float *maxs)
{
	int numtriangles = 0;
	BIH_GetTriangleListForBox_Node(bih, bih->rootnode, maxtriangles, trianglelist_idx, trianglelist_surf, &numtriangles, mins, maxs);
	return numtriangles;
}