File: mathlib.h

package info (click to toggle)
darkplaces 0~20180412~beta1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 18,200 kB
  • sloc: ansic: 176,886; makefile: 485; pascal: 455; perl: 372; objc: 245; sh: 102
file content (324 lines) | stat: -rw-r--r-- 18,043 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
/*
Copyright (C) 1996-1997 Id Software, Inc.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

*/
// mathlib.h

#ifndef MATHLIB_H
#define MATHLIB_H

#include "qtypes.h"

#ifndef M_PI
#define M_PI		3.14159265358979323846	// matches value in gcc v2 math.h
#endif

struct mplane_s;
extern vec3_t vec3_origin;

#define float_nanmask (0x7F800000)
#define double_nanmask (0x7FF8000000000000)
#define FLOAT_IS_NAN(x) (((*(int *)&x)&float_nanmask)==float_nanmask)
#define DOUBLE_IS_NAN(x) (((*(long long *)&x)&double_nanmask)==double_nanmask)

#ifdef VEC_64
#define VEC_IS_NAN(x) DOUBLE_IS_NAN(x)
#else
#define VEC_IS_NAN(x) FLOAT_IS_NAN(x)
#endif

#ifdef PRVM_64
#define PRVM_IS_NAN(x) DOUBLE_IS_NAN(x)
#else
#define PRVM_IS_NAN(x) FLOAT_IS_NAN(x)
#endif

#define bound(min,num,max) ((num) >= (min) ? ((num) < (max) ? (num) : (max)) : (min))

#ifndef min
#define min(A,B) ((A) < (B) ? (A) : (B))
#define max(A,B) ((A) > (B) ? (A) : (B))
#endif

/// LordHavoc: this function never returns exactly MIN or exactly MAX, because
/// of a QuakeC bug in id1 where the line
/// self.nextthink = self.nexthink + random() * 0.5;
/// can result in 0 (self.nextthink is 0 at this point in the code to begin
/// with), causing "stone monsters" that never spawned properly, also MAX is
/// avoided because some people use random() as an index into arrays or for
/// loop conditions, where hitting exactly MAX may be a fatal error
#define lhrandom(MIN,MAX) (((double)(rand() + 0.5) / ((double)RAND_MAX + 1)) * ((MAX)-(MIN)) + (MIN))

#define invpow(base,number) (log(number) / log(base))

/// returns log base 2 of "n"
/// \WARNING: "n" MUST be a power of 2!
#define log2i(n) ((((n) & 0xAAAAAAAA) != 0 ? 1 : 0) | (((n) & 0xCCCCCCCC) != 0 ? 2 : 0) | (((n) & 0xF0F0F0F0) != 0 ? 4 : 0) | (((n) & 0xFF00FF00) != 0 ? 8 : 0) | (((n) & 0xFFFF0000) != 0 ? 16 : 0))

/// \TODO: what is this function supposed to do?
#define bit2i(n) log2i((n) << 1)

/// boolean XOR (why doesn't C have the ^^ operator for this purpose?)
#define boolxor(a,b) (!(a) != !(b))

/// returns the smallest integer greater than or equal to "value", or 0 if "value" is too big
unsigned int CeilPowerOf2(unsigned int value);

#define DEG2RAD(a) ((a) * ((float) M_PI / 180.0f))
#define RAD2DEG(a) ((a) * (180.0f / (float) M_PI))
#define ANGLEMOD(a) ((a) - 360.0 * floor((a) / 360.0))

#define DotProduct2(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1])
#define Vector2Clear(a) ((a)[0]=(a)[1]=0)
#define Vector2Compare(a,b) (((a)[0]==(b)[0])&&((a)[1]==(b)[1]))
#define Vector2Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1])
#define Vector2Negate(a,b) ((b)[0]=-((a)[0]),(b)[1]=-((a)[1]))
#define Vector2Set(a,b,c) ((a)[0]=(b),(a)[1]=(c))
#define Vector2Scale(in, scale, out) ((out)[0] = (in)[0] * (scale),(out)[1] = (in)[1] * (scale))
#define Vector2Normalize2(v,dest) {float ilength = (float) sqrt(DotProduct2((v),(v)));if (ilength) ilength = 1.0f / ilength;dest[0] = (v)[0] * ilength;dest[1] = (v)[1] * ilength;}

#define DotProduct4(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2]+(a)[3]*(b)[3])
#define Vector4Clear(a) ((a)[0]=(a)[1]=(a)[2]=(a)[3]=0)
#define Vector4Compare(a,b) (((a)[0]==(b)[0])&&((a)[1]==(b)[1])&&((a)[2]==(b)[2])&&((a)[3]==(b)[3]))
#define Vector4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
#define Vector4Negate(a,b) ((b)[0]=-((a)[0]),(b)[1]=-((a)[1]),(b)[2]=-((a)[2]),(b)[3]=-((a)[3]))
#define Vector4Set(a,b,c,d,e) ((a)[0]=(b),(a)[1]=(c),(a)[2]=(d),(a)[3]=(e))
#define Vector4Normalize2(v,dest) {float ilength = (float) sqrt(DotProduct4((v),(v)));if (ilength) ilength = 1.0f / ilength;dest[0] = (v)[0] * ilength;dest[1] = (v)[1] * ilength;dest[2] = (v)[2] * ilength;dest[3] = (v)[3] * ilength;}
#define Vector4Subtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2],(c)[3]=(a)[3]-(b)[3])
#define Vector4Add(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2],(c)[3]=(a)[3]+(b)[3])
#define Vector4Scale(in, scale, out) ((out)[0] = (in)[0] * (scale),(out)[1] = (in)[1] * (scale),(out)[2] = (in)[2] * (scale),(out)[3] = (in)[3] * (scale))
#define Vector4Multiply(a,b,c) ((c)[0]=(a)[0]*(b)[0],(c)[1]=(a)[1]*(b)[1],(c)[2]=(a)[2]*(b)[2],(c)[3]=(a)[3]*(b)[3])
#define Vector4MA(a, scale, b, c) ((c)[0] = (a)[0] + (scale) * (b)[0],(c)[1] = (a)[1] + (scale) * (b)[1],(c)[2] = (a)[2] + (scale) * (b)[2],(c)[3] = (a)[3] + (scale) * (b)[3])
#define Vector4Lerp(v1,lerp,v2,c) ((c)[0] = (v1)[0] + (lerp) * ((v2)[0] - (v1)[0]), (c)[1] = (v1)[1] + (lerp) * ((v2)[1] - (v1)[1]), (c)[2] = (v1)[2] + (lerp) * ((v2)[2] - (v1)[2]), (c)[3] = (v1)[3] + (lerp) * ((v2)[3] - (v1)[3]))

#define VectorNegate(a,b) ((b)[0]=-((a)[0]),(b)[1]=-((a)[1]),(b)[2]=-((a)[2]))
#define VectorSet(a,b,c,d) ((a)[0]=(b),(a)[1]=(c),(a)[2]=(d))
#define VectorClear(a) ((a)[0]=(a)[1]=(a)[2]=0)
#define DotProduct(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2])
#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2])
#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2])
#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
#define VectorMultiply(a,b,c) ((c)[0]=(a)[0]*(b)[0],(c)[1]=(a)[1]*(b)[1],(c)[2]=(a)[2]*(b)[2])
#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0])
#define VectorNormalize(v) {float ilength = (float) sqrt(DotProduct((v),(v)));if (ilength) ilength = 1.0f / ilength;(v)[0] *= ilength;(v)[1] *= ilength;(v)[2] *= ilength;}
#define VectorNormalize2(v,dest) {float ilength = (float) sqrt(DotProduct((v),(v)));if (ilength) ilength = 1.0f / ilength;dest[0] = (v)[0] * ilength;dest[1] = (v)[1] * ilength;dest[2] = (v)[2] * ilength;}
#define VectorNormalizeDouble(v) {double ilength = sqrt(DotProduct((v),(v)));if (ilength) ilength = 1.0 / ilength;(v)[0] *= ilength;(v)[1] *= ilength;(v)[2] *= ilength;}
#define VectorDistance2(a, b) (((a)[0] - (b)[0]) * ((a)[0] - (b)[0]) + ((a)[1] - (b)[1]) * ((a)[1] - (b)[1]) + ((a)[2] - (b)[2]) * ((a)[2] - (b)[2]))
#define VectorDistance(a, b) (sqrt(VectorDistance2(a,b)))
#define VectorLength(a) (sqrt((double)DotProduct(a, a)))
#define VectorLength2(a) (DotProduct(a, a))
#define VectorScale(in, scale, out) ((out)[0] = (in)[0] * (scale),(out)[1] = (in)[1] * (scale),(out)[2] = (in)[2] * (scale))
#define VectorScaleCast(in, scale, outtype, out) ((out)[0] = (outtype) ((in)[0] * (scale)),(out)[1] = (outtype) ((in)[1] * (scale)),(out)[2] = (outtype) ((in)[2] * (scale)))
#define VectorCompare(a,b) (((a)[0]==(b)[0])&&((a)[1]==(b)[1])&&((a)[2]==(b)[2]))
#define VectorMA(a, scale, b, c) ((c)[0] = (a)[0] + (scale) * (b)[0],(c)[1] = (a)[1] + (scale) * (b)[1],(c)[2] = (a)[2] + (scale) * (b)[2])
#define VectorM(scale1, b1, c) ((c)[0] = (scale1) * (b1)[0],(c)[1] = (scale1) * (b1)[1],(c)[2] = (scale1) * (b1)[2])
#define VectorMAM(scale1, b1, scale2, b2, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2])
#define VectorMAMAM(scale1, b1, scale2, b2, scale3, b3, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0] + (scale3) * (b3)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1] + (scale3) * (b3)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2] + (scale3) * (b3)[2])
#define VectorMAMAMAM(scale1, b1, scale2, b2, scale3, b3, scale4, b4, c) ((c)[0] = (scale1) * (b1)[0] + (scale2) * (b2)[0] + (scale3) * (b3)[0] + (scale4) * (b4)[0],(c)[1] = (scale1) * (b1)[1] + (scale2) * (b2)[1] + (scale3) * (b3)[1] + (scale4) * (b4)[1],(c)[2] = (scale1) * (b1)[2] + (scale2) * (b2)[2] + (scale3) * (b3)[2] + (scale4) * (b4)[2])
#define VectorRandom(v) do{(v)[0] = lhrandom(-1, 1);(v)[1] = lhrandom(-1, 1);(v)[2] = lhrandom(-1, 1);}while(DotProduct(v, v) > 1)
#define VectorLerp(v1,lerp,v2,c) ((c)[0] = (v1)[0] + (lerp) * ((v2)[0] - (v1)[0]), (c)[1] = (v1)[1] + (lerp) * ((v2)[1] - (v1)[1]), (c)[2] = (v1)[2] + (lerp) * ((v2)[2] - (v1)[2]))
#define VectorReflect(a,r,b,c) do{double d;d = DotProduct((a), (b)) * -(1.0 + (r));VectorMA((a), (d), (b), (c));}while(0)
#define BoxesOverlap(a,b,c,d) ((a)[0] <= (d)[0] && (b)[0] >= (c)[0] && (a)[1] <= (d)[1] && (b)[1] >= (c)[1] && (a)[2] <= (d)[2] && (b)[2] >= (c)[2])
#define BoxInsideBox(a,b,c,d) ((a)[0] >= (c)[0] && (b)[0] <= (d)[0] && (a)[1] >= (c)[1] && (b)[1] <= (d)[1] && (a)[2] >= (c)[2] && (b)[2] <= (d)[2])
#define TriangleBBoxOverlapsBox(a,b,c,d,e) (min((a)[0], min((b)[0], (c)[0])) < (e)[0] && max((a)[0], max((b)[0], (c)[0])) > (d)[0] && min((a)[1], min((b)[1], (c)[1])) < (e)[1] && max((a)[1], max((b)[1], (c)[1])) > (d)[1] && min((a)[2], min((b)[2], (c)[2])) < (e)[2] && max((a)[2], max((b)[2], (c)[2])) > (d)[2])

#define TriangleNormal(a,b,c,n) ( \
	(n)[0] = ((a)[1] - (b)[1]) * ((c)[2] - (b)[2]) - ((a)[2] - (b)[2]) * ((c)[1] - (b)[1]), \
	(n)[1] = ((a)[2] - (b)[2]) * ((c)[0] - (b)[0]) - ((a)[0] - (b)[0]) * ((c)[2] - (b)[2]), \
	(n)[2] = ((a)[0] - (b)[0]) * ((c)[1] - (b)[1]) - ((a)[1] - (b)[1]) * ((c)[0] - (b)[0]) \
	)

/*! Fast PointInfrontOfTriangle.
 * subtracts v1 from v0 and v2, combined into a crossproduct, combined with a
 * dotproduct of the light location relative to the first point of the
 * triangle (any point works, since any triangle is obviously flat), and
 * finally a comparison to determine if the light is infront of the triangle
 * (the goal of this statement) we do not need to normalize the surface
 * normal because both sides of the comparison use it, therefore they are
 * both multiplied the same amount...  furthermore a subtract can be done on
 * the point to eliminate one dotproduct
 * this is ((p - a) * cross(a-b,c-b))
 */
#define PointInfrontOfTriangle(p,a,b,c) \
( ((p)[0] - (a)[0]) * (((a)[1] - (b)[1]) * ((c)[2] - (b)[2]) - ((a)[2] - (b)[2]) * ((c)[1] - (b)[1])) \
+ ((p)[1] - (a)[1]) * (((a)[2] - (b)[2]) * ((c)[0] - (b)[0]) - ((a)[0] - (b)[0]) * ((c)[2] - (b)[2])) \
+ ((p)[2] - (a)[2]) * (((a)[0] - (b)[0]) * ((c)[1] - (b)[1]) - ((a)[1] - (b)[1]) * ((c)[0] - (b)[0])) > 0)

#if 0
// readable version, kept only for explanatory reasons
int PointInfrontOfTriangle(const float *p, const float *a, const float *b, const float *c)
{
	float dir0[3], dir1[3], normal[3];

	// calculate two mostly perpendicular edge directions
	VectorSubtract(a, b, dir0);
	VectorSubtract(c, b, dir1);

	// we have two edge directions, we can calculate a third vector from
	// them, which is the direction of the surface normal (its magnitude
	// is not 1 however)
	CrossProduct(dir0, dir1, normal);

	// compare distance of light along normal, with distance of any point
	// of the triangle along the same normal (the triangle is planar,
	// I.E. flat, so all points give the same answer)
	return DotProduct(p, normal) > DotProduct(a, normal);
}
#endif

#define lhcheeserand(seed) ((seed) = ((seed) * 987211u) ^ ((seed) >> 13u) ^ 914867)
#define lhcheeserandom(seed,MIN,MAX) ((double)(lhcheeserand(seed) + 0.5) / ((double)4096.0*1024.0*1024.0) * ((MAX)-(MIN)) + (MIN))
#define VectorCheeseRandom(seed,v) do{(v)[0] = lhcheeserandom(seed,-1, 1);(v)[1] = lhcheeserandom(seed,-1, 1);(v)[2] = lhcheeserandom(seed,-1, 1);}while(DotProduct(v, v) > 1)
#define VectorLehmerRandom(seed,v) do{(v)[0] = Math_crandomf(seed);(v)[1] = Math_crandomf(seed);(v)[2] = Math_crandomf(seed);}while(DotProduct(v, v) > 1)

/*
// LordHavoc: quaternion math, untested, don't know if these are correct,
// need to add conversion to/from matrices
// LordHavoc: later note: the matrix faq is useful: http://skal.planet-d.net/demo/matrixfaq.htm
// LordHavoc: these are probably very wrong and I'm not sure I care, not used by anything

// returns length of quaternion
#define qlen(a) ((float) sqrt((a)[0]*(a)[0]+(a)[1]*(a)[1]+(a)[2]*(a)[2]+(a)[3]*(a)[3]))
// returns squared length of quaternion
#define qlen2(a) ((a)[0]*(a)[0]+(a)[1]*(a)[1]+(a)[2]*(a)[2]+(a)[3]*(a)[3])
// makes a quaternion from x, y, z, and a rotation angle (in degrees)
#define QuatMake(x,y,z,r,c)\
{\
if (r == 0)\
{\
(c)[0]=(float) ((x) * (1.0f / 0.0f));\
(c)[1]=(float) ((y) * (1.0f / 0.0f));\
(c)[2]=(float) ((z) * (1.0f / 0.0f));\
(c)[3]=(float) 1.0f;\
}\
else\
{\
float r2 = (r) * 0.5 * (M_PI / 180);\
float r2is = 1.0f / sin(r2);\
(c)[0]=(float) ((x)/r2is);\
(c)[1]=(float) ((y)/r2is);\
(c)[2]=(float) ((z)/r2is);\
(c)[3]=(float) (cos(r2));\
}\
}
// makes a quaternion from a vector and a rotation angle (in degrees)
#define QuatFromVec(a,r,c) QuatMake((a)[0],(a)[1],(a)[2],(r))
// copies a quaternion
#define QuatCopy(a,c) {(c)[0]=(a)[0];(c)[1]=(a)[1];(c)[2]=(a)[2];(c)[3]=(a)[3];}
#define QuatSubtract(a,b,c) {(c)[0]=(a)[0]-(b)[0];(c)[1]=(a)[1]-(b)[1];(c)[2]=(a)[2]-(b)[2];(c)[3]=(a)[3]-(b)[3];}
#define QuatAdd(a,b,c) {(c)[0]=(a)[0]+(b)[0];(c)[1]=(a)[1]+(b)[1];(c)[2]=(a)[2]+(b)[2];(c)[3]=(a)[3]+(b)[3];}
#define QuatScale(a,b,c) {(c)[0]=(a)[0]*b;(c)[1]=(a)[1]*b;(c)[2]=(a)[2]*b;(c)[3]=(a)[3]*b;}
// FIXME: this is wrong, do some more research on quaternions
//#define QuatMultiply(a,b,c) {(c)[0]=(a)[0]*(b)[0];(c)[1]=(a)[1]*(b)[1];(c)[2]=(a)[2]*(b)[2];(c)[3]=(a)[3]*(b)[3];}
// FIXME: this is wrong, do some more research on quaternions
//#define QuatMultiplyAdd(a,b,d,c) {(c)[0]=(a)[0]*(b)[0]+d[0];(c)[1]=(a)[1]*(b)[1]+d[1];(c)[2]=(a)[2]*(b)[2]+d[2];(c)[3]=(a)[3]*(b)[3]+d[3];}
#define qdist(a,b) ((float) sqrt(((b)[0]-(a)[0])*((b)[0]-(a)[0])+((b)[1]-(a)[1])*((b)[1]-(a)[1])+((b)[2]-(a)[2])*((b)[2]-(a)[2])+((b)[3]-(a)[3])*((b)[3]-(a)[3])))
#define qdist2(a,b) (((b)[0]-(a)[0])*((b)[0]-(a)[0])+((b)[1]-(a)[1])*((b)[1]-(a)[1])+((b)[2]-(a)[2])*((b)[2]-(a)[2])+((b)[3]-(a)[3])*((b)[3]-(a)[3]))
*/

#define VectorCopy4(a,b) {(b)[0]=(a)[0];(b)[1]=(a)[1];(b)[2]=(a)[2];(b)[3]=(a)[3];}

vec_t Length (vec3_t v);

/// returns vector length
float VectorNormalizeLength (vec3_t v);

/// returns vector length
float VectorNormalizeLength2 (vec3_t v, vec3_t dest);

#define NUMVERTEXNORMALS	162
extern float m_bytenormals[NUMVERTEXNORMALS][3];

unsigned char NormalToByte(const vec3_t n);
void ByteToNormal(unsigned char num, vec3_t n);

void R_ConcatRotations (const float in1[3*3], const float in2[3*3], float out[3*3]);
void R_ConcatTransforms (const float in1[3*4], const float in2[3*4], float out[3*4]);

void AngleVectors (const vec3_t angles, vec3_t forward, vec3_t right, vec3_t up);
/// LordHavoc: proper matrix version of AngleVectors
void AngleVectorsFLU (const vec3_t angles, vec3_t forward, vec3_t left, vec3_t up);
/// divVerent: improper matrix version of AngleVectors
void AngleVectorsDuke3DFLU (const vec3_t angles, vec3_t forward, vec3_t left, vec3_t up, double maxShearAngle);
/// LordHavoc: builds a [3][4] matrix
void AngleMatrix (const vec3_t angles, const vec3_t translate, vec_t matrix[][4]);
/// LordHavoc: calculates pitch/yaw/roll angles from forward and up vectors
void AnglesFromVectors (vec3_t angles, const vec3_t forward, const vec3_t up, qboolean flippitch);

/// LordHavoc: like AngleVectors, but taking a forward vector instead of angles, useful!
void VectorVectors(const vec3_t forward, vec3_t right, vec3_t up);
void VectorVectorsDouble(const double *forward, double *right, double *up);

void PlaneClassify(struct mplane_s *p);
int BoxOnPlaneSide(const vec3_t emins, const vec3_t emaxs, const struct mplane_s *p);
int BoxOnPlaneSide_Separate(const vec3_t emins, const vec3_t emaxs, const vec3_t normal, const vec_t dist);
void BoxPlaneCorners(const vec3_t emins, const vec3_t emaxs, const struct mplane_s *p, vec3_t outnear, vec3_t outfar);
void BoxPlaneCorners_Separate(const vec3_t emins, const vec3_t emaxs, const vec3_t normal, vec3_t outnear, vec3_t outfar);
void BoxPlaneCornerDistances(const vec3_t emins, const vec3_t emaxs, const struct mplane_s *p, vec_t *outnear, vec_t *outfar);
void BoxPlaneCornerDistances_Separate(const vec3_t emins, const vec3_t emaxs, const vec3_t normal, vec_t *outnear, vec_t *outfar);

#define PlaneDist(point,plane)  ((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal))
#define PlaneDiff(point,plane) (((plane)->type < 3 ? (point)[(plane)->type] : DotProduct((point), (plane)->normal)) - (plane)->dist)

/// LordHavoc: minimal plane structure
typedef struct tinyplane_s
{
	float normal[3], dist;
}
tinyplane_t;

typedef struct tinydoubleplane_s
{
	double normal[3], dist;
}
tinydoubleplane_t;

void RotatePointAroundVector(vec3_t dst, const vec3_t dir, const vec3_t point, float degrees);

float RadiusFromBounds (const vec3_t mins, const vec3_t maxs);
float RadiusFromBoundsAndOrigin (const vec3_t mins, const vec3_t maxs, const vec3_t origin);

struct matrix4x4_s;
/// print a matrix to the console
void Matrix4x4_Print(const struct matrix4x4_s *in);
int Math_atov(const char *s, prvm_vec3_t out);

void BoxFromPoints(vec3_t mins, vec3_t maxs, int numpoints, vec_t *point3f);

int LoopingFrameNumberFromDouble(double t, int loopframes);

// implementation of 128bit Lehmer Random Number Generator with 2^126 period
// https://en.wikipedia.org/Lehmer_random_number_generator
typedef struct randomseed_s
{
	unsigned int s[4];
}
randomseed_t;

void Math_RandomSeed_Reset(randomseed_t *r);
void Math_RandomSeed_FromInts(randomseed_t *r, unsigned int s0, unsigned int s1, unsigned int s2, unsigned int s3);
unsigned long long Math_rand64(randomseed_t *r);
float Math_randomf(randomseed_t *r);
float Math_crandomf(randomseed_t *r);
float Math_randomrangef(randomseed_t *r, float minf, float maxf);
int Math_randomrangei(randomseed_t *r, int mini, int maxi);

void Mathlib_Init(void);

#endif