File: r_shadow.c

package info (click to toggle)
darkplaces 0~20180412~beta1-2
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 18,200 kB
  • sloc: ansic: 176,886; makefile: 485; pascal: 455; perl: 372; objc: 245; sh: 102
file content (7669 lines) | stat: -rw-r--r-- 330,245 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669

/*
Terminology: Stencil Shadow Volume (sometimes called Stencil Shadows)
An extrusion of the lit faces, beginning at the original geometry and ending
further from the light source than the original geometry (presumably at least
as far as the light's radius, if the light has a radius at all), capped at
both front and back to avoid any problems (extrusion from dark faces also
works but has a different set of problems)

This is normally rendered using Carmack's Reverse technique, in which
backfaces behind zbuffer (zfail) increment the stencil, and frontfaces behind
zbuffer (zfail) decrement the stencil, the result is a stencil value of zero
where shadows did not intersect the visible geometry, suitable as a stencil
mask for rendering lighting everywhere but shadow.

In our case to hopefully avoid the Creative Labs patent, we draw the backfaces
as decrement and the frontfaces as increment, and we redefine the DepthFunc to
GL_LESS (the patent uses GL_GEQUAL) which causes zfail when behind surfaces
and zpass when infront (the patent draws where zpass with a GL_GEQUAL test),
additionally we clear stencil to 128 to avoid the need for the unclamped
incr/decr extension (not related to patent).

Patent warning:
This algorithm may be covered by Creative's patent (US Patent #6384822),
however that patent is quite specific about increment on backfaces and
decrement on frontfaces where zpass with GL_GEQUAL depth test, which is
opposite this implementation and partially opposite Carmack's Reverse paper
(which uses GL_LESS, but increments on backfaces and decrements on frontfaces).



Terminology: Stencil Light Volume (sometimes called Light Volumes)
Similar to a Stencil Shadow Volume, but inverted; rather than containing the
areas in shadow it contains the areas in light, this can only be built
quickly for certain limited cases (such as portal visibility from a point),
but is quite useful for some effects (sunlight coming from sky polygons is
one possible example, translucent occluders is another example).



Terminology: Optimized Stencil Shadow Volume
A Stencil Shadow Volume that has been processed sufficiently to ensure it has
no duplicate coverage of areas (no need to shadow an area twice), often this
greatly improves performance but is an operation too costly to use on moving
lights (however completely optimal Stencil Light Volumes can be constructed
in some ideal cases).



Terminology: Per Pixel Lighting (sometimes abbreviated PPL)
Per pixel evaluation of lighting equations, at a bare minimum this involves
DOT3 shading of diffuse lighting (per pixel dotproduct of negated incidence
vector and surface normal, using a texture of the surface bumps, called a
NormalMap) if supported by hardware; in our case there is support for cards
which are incapable of DOT3, the quality is quite poor however.  Additionally
it is desirable to have specular evaluation per pixel, per vertex
normalization of specular halfangle vectors causes noticable distortion but
is unavoidable on hardware without GL_ARB_fragment_program or
GL_ARB_fragment_shader.



Terminology: Normalization CubeMap
A cubemap containing normalized dot3-encoded (vectors of length 1 or less
encoded as RGB colors) for any possible direction, this technique allows per
pixel calculation of incidence vector for per pixel lighting purposes, which
would not otherwise be possible per pixel without GL_ARB_fragment_program or
GL_ARB_fragment_shader.



Terminology: 2D+1D Attenuation Texturing
A very crude approximation of light attenuation with distance which results
in cylindrical light shapes which fade vertically as a streak (some games
such as Doom3 allow this to be rotated to be less noticable in specific
cases), the technique is simply modulating lighting by two 2D textures (which
can be the same) on different axes of projection (XY and Z, typically), this
is the second best technique available without 3D Attenuation Texturing,
GL_ARB_fragment_program or GL_ARB_fragment_shader technology.



Terminology: 2D+1D Inverse Attenuation Texturing
A clever method described in papers on the Abducted engine, this has a squared
distance texture (bright on the outside, black in the middle), which is used
twice using GL_ADD blending, the result of this is used in an inverse modulate
(GL_ONE_MINUS_DST_ALPHA, GL_ZERO) to implement the equation
lighting*=(1-((X*X+Y*Y)+(Z*Z))) which is spherical (unlike 2D+1D attenuation
texturing).



Terminology: 3D Attenuation Texturing
A slightly crude approximation of light attenuation with distance, its flaws
are limited radius and resolution (performance tradeoffs).



Terminology: 3D Attenuation-Normalization Texturing
A 3D Attenuation Texture merged with a Normalization CubeMap, by making the
vectors shorter the lighting becomes darker, a very effective optimization of
diffuse lighting if 3D Attenuation Textures are already used.



Terminology: Light Cubemap Filtering
A technique for modeling non-uniform light distribution according to
direction, for example a lantern may use a cubemap to describe the light
emission pattern of the cage around the lantern (as well as soot buildup
discoloring the light in certain areas), often also used for softened grate
shadows and light shining through a stained glass window (done crudely by
texturing the lighting with a cubemap), another good example would be a disco
light.  This technique is used heavily in many games (Doom3 does not support
this however).



Terminology: Light Projection Filtering
A technique for modeling shadowing of light passing through translucent
surfaces, allowing stained glass windows and other effects to be done more
elegantly than possible with Light Cubemap Filtering by applying an occluder
texture to the lighting combined with a stencil light volume to limit the lit
area, this technique is used by Doom3 for spotlights and flashlights, among
other things, this can also be used more generally to render light passing
through multiple translucent occluders in a scene (using a light volume to
describe the area beyond the occluder, and thus mask off rendering of all
other areas).



Terminology: Doom3 Lighting
A combination of Stencil Shadow Volume, Per Pixel Lighting, Normalization
CubeMap, 2D+1D Attenuation Texturing, and Light Projection Filtering, as
demonstrated by the game Doom3.
*/

#include "quakedef.h"
#include "r_shadow.h"
#include "cl_collision.h"
#include "portals.h"
#include "image.h"
#include "dpsoftrast.h"

#ifdef SUPPORTD3D
#include <d3d9.h>
extern LPDIRECT3DDEVICE9 vid_d3d9dev;
#endif

static void R_Shadow_EditLights_Init(void);

typedef enum r_shadow_rendermode_e
{
	R_SHADOW_RENDERMODE_NONE,
	R_SHADOW_RENDERMODE_ZPASS_STENCIL,
	R_SHADOW_RENDERMODE_ZPASS_SEPARATESTENCIL,
	R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE,
	R_SHADOW_RENDERMODE_ZFAIL_STENCIL,
	R_SHADOW_RENDERMODE_ZFAIL_SEPARATESTENCIL,
	R_SHADOW_RENDERMODE_ZFAIL_STENCILTWOSIDE,
	R_SHADOW_RENDERMODE_LIGHT_VERTEX,
	R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN,
	R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN,
	R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN,
	R_SHADOW_RENDERMODE_LIGHT_GLSL,
	R_SHADOW_RENDERMODE_VISIBLEVOLUMES,
	R_SHADOW_RENDERMODE_VISIBLELIGHTING,
	R_SHADOW_RENDERMODE_SHADOWMAP2D
}
r_shadow_rendermode_t;

typedef enum r_shadow_shadowmode_e
{
	R_SHADOW_SHADOWMODE_STENCIL,
	R_SHADOW_SHADOWMODE_SHADOWMAP2D
}
r_shadow_shadowmode_t;

r_shadow_rendermode_t r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
r_shadow_rendermode_t r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_NONE;
r_shadow_rendermode_t r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_NONE;
r_shadow_rendermode_t r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_NONE;
int r_shadow_scenemaxlights;
int r_shadow_scenenumlights;
rtlight_t **r_shadow_scenelightlist; // includes both static lights and dlights, as filtered by appropriate flags
qboolean r_shadow_usingshadowmap2d;
qboolean r_shadow_usingshadowmaportho;
int r_shadow_shadowmapside;
float r_shadow_lightshadowmap_texturescale[4]; // xy = scale, zw = offset
float r_shadow_lightshadowmap_parameters[4]; // x = frustum width in pixels (excludes border), y = z scale, z = size of viewport, w = z center
float r_shadow_modelshadowmap_texturescale[4]; // xy = scale, zw = offset
float r_shadow_modelshadowmap_parameters[4]; // xyz = scale, w = shadow brightness
#if 0
int r_shadow_drawbuffer;
int r_shadow_readbuffer;
#endif
int r_shadow_cullface_front, r_shadow_cullface_back;
GLuint r_shadow_fbo2d;
r_shadow_shadowmode_t r_shadow_shadowmode;
int r_shadow_shadowmapfilterquality;
int r_shadow_shadowmapdepthbits;
int r_shadow_shadowmapmaxsize;
int r_shadow_shadowmaptexturesize;
qboolean r_shadow_shadowmapvsdct;
qboolean r_shadow_shadowmapsampler;
qboolean r_shadow_shadowmapshadowsampler;
int r_shadow_shadowmappcf;
int r_shadow_shadowmapborder;
matrix4x4_t r_shadow_shadowmapmatrix;
int r_shadow_lightscissor[4];
qboolean r_shadow_usingdeferredprepass;
qboolean r_shadow_shadowmapdepthtexture;
mod_alloclightmap_state_t r_shadow_shadowmapatlas_state;
int r_shadow_shadowmapatlas_modelshadows_x;
int r_shadow_shadowmapatlas_modelshadows_y;
int r_shadow_shadowmapatlas_modelshadows_size;
int maxshadowtriangles;
int *shadowelements;

int maxshadowvertices;
float *shadowvertex3f;

int maxshadowmark;
int numshadowmark;
int *shadowmark;
int *shadowmarklist;
int shadowmarkcount;

int maxshadowsides;
int numshadowsides;
unsigned char *shadowsides;
int *shadowsideslist;

int maxvertexupdate;
int *vertexupdate;
int *vertexremap;
int vertexupdatenum;

int r_shadow_buffer_numleafpvsbytes;
unsigned char *r_shadow_buffer_visitingleafpvs;
unsigned char *r_shadow_buffer_leafpvs;
int *r_shadow_buffer_leaflist;

int r_shadow_buffer_numsurfacepvsbytes;
unsigned char *r_shadow_buffer_surfacepvs;
int *r_shadow_buffer_surfacelist;
unsigned char *r_shadow_buffer_surfacesides;

int r_shadow_buffer_numshadowtrispvsbytes;
unsigned char *r_shadow_buffer_shadowtrispvs;
int r_shadow_buffer_numlighttrispvsbytes;
unsigned char *r_shadow_buffer_lighttrispvs;

rtexturepool_t *r_shadow_texturepool;
rtexture_t *r_shadow_attenuationgradienttexture;
rtexture_t *r_shadow_attenuation2dtexture;
rtexture_t *r_shadow_attenuation3dtexture;
skinframe_t *r_shadow_lightcorona;
rtexture_t *r_shadow_shadowmap2ddepthbuffer;
rtexture_t *r_shadow_shadowmap2ddepthtexture;
rtexture_t *r_shadow_shadowmapvsdcttexture;

GLuint r_shadow_prepassgeometryfbo;
GLuint r_shadow_prepasslightingdiffusespecularfbo;
GLuint r_shadow_prepasslightingdiffusefbo;
int r_shadow_prepass_width;
int r_shadow_prepass_height;
rtexture_t *r_shadow_prepassgeometrydepthbuffer;
rtexture_t *r_shadow_prepassgeometrynormalmaptexture;
rtexture_t *r_shadow_prepasslightingdiffusetexture;
rtexture_t *r_shadow_prepasslightingspeculartexture;

// keep track of the provided framebuffer info
static int r_shadow_fb_fbo;
static rtexture_t *r_shadow_fb_depthtexture;
static rtexture_t *r_shadow_fb_colortexture;

// lights are reloaded when this changes
char r_shadow_mapname[MAX_QPATH];

// buffer for doing corona fading
unsigned int r_shadow_occlusion_buf = 0;

// used only for light filters (cubemaps)
rtexturepool_t *r_shadow_filters_texturepool;

cvar_t r_shadow_bumpscale_basetexture = {0, "r_shadow_bumpscale_basetexture", "0", "generate fake bumpmaps from diffuse textures at this bumpyness, try 4 to match tenebrae, higher values increase depth, requires r_restart to take effect"};
cvar_t r_shadow_bumpscale_bumpmap = {0, "r_shadow_bumpscale_bumpmap", "4", "what magnitude to interpret _bump.tga textures as, higher values increase depth, requires r_restart to take effect"};
cvar_t r_shadow_debuglight = {0, "r_shadow_debuglight", "-1", "renders only one light, for level design purposes or debugging"};
cvar_t r_shadow_deferred = {CVAR_SAVE, "r_shadow_deferred", "0", "uses image-based lighting instead of geometry-based lighting, the method used renders a depth image and a normalmap image, renders lights into separate diffuse and specular images, and then combines this into the normal rendering, requires r_shadow_shadowmapping"};
cvar_t r_shadow_usebihculling = {0, "r_shadow_usebihculling", "1", "use BIH (Bounding Interval Hierarchy) for culling lit surfaces instead of BSP (Binary Space Partitioning)"};
cvar_t r_shadow_usenormalmap = {CVAR_SAVE, "r_shadow_usenormalmap", "1", "enables use of directional shading on lights"};
cvar_t r_shadow_gloss = {CVAR_SAVE, "r_shadow_gloss", "1", "0 disables gloss (specularity) rendering, 1 uses gloss if textures are found, 2 forces a flat metallic specular effect on everything without textures (similar to tenebrae)"};
cvar_t r_shadow_gloss2intensity = {0, "r_shadow_gloss2intensity", "0.125", "how bright the forced flat gloss should look if r_shadow_gloss is 2"};
cvar_t r_shadow_glossintensity = {0, "r_shadow_glossintensity", "1", "how bright textured glossmaps should look if r_shadow_gloss is 1 or 2"};
cvar_t r_shadow_glossexponent = {0, "r_shadow_glossexponent", "32", "how 'sharp' the gloss should appear (specular power)"};
cvar_t r_shadow_gloss2exponent = {0, "r_shadow_gloss2exponent", "32", "same as r_shadow_glossexponent but for forced gloss (gloss 2) surfaces"};
cvar_t r_shadow_glossexact = {0, "r_shadow_glossexact", "0", "use exact reflection math for gloss (slightly slower, but should look a tad better)"};
cvar_t r_shadow_lightattenuationdividebias = {0, "r_shadow_lightattenuationdividebias", "1", "changes attenuation texture generation"};
cvar_t r_shadow_lightattenuationlinearscale = {0, "r_shadow_lightattenuationlinearscale", "2", "changes attenuation texture generation"};
cvar_t r_shadow_lightintensityscale = {0, "r_shadow_lightintensityscale", "1", "renders all world lights brighter or darker"};
cvar_t r_shadow_lightradiusscale = {0, "r_shadow_lightradiusscale", "1", "renders all world lights larger or smaller"};
cvar_t r_shadow_projectdistance = {0, "r_shadow_projectdistance", "0", "how far to cast shadows"};
cvar_t r_shadow_frontsidecasting = {0, "r_shadow_frontsidecasting", "1", "whether to cast shadows from illuminated triangles (front side of model) or unlit triangles (back side of model)"};
cvar_t r_shadow_realtime_dlight = {CVAR_SAVE, "r_shadow_realtime_dlight", "1", "enables rendering of dynamic lights such as explosions and rocket light"};
cvar_t r_shadow_realtime_dlight_shadows = {CVAR_SAVE, "r_shadow_realtime_dlight_shadows", "1", "enables rendering of shadows from dynamic lights"};
cvar_t r_shadow_realtime_dlight_svbspculling = {0, "r_shadow_realtime_dlight_svbspculling", "0", "enables svbsp optimization on dynamic lights (very slow!)"};
cvar_t r_shadow_realtime_dlight_portalculling = {0, "r_shadow_realtime_dlight_portalculling", "0", "enables portal optimization on dynamic lights (slow!)"};
cvar_t r_shadow_realtime_world = {CVAR_SAVE, "r_shadow_realtime_world", "0", "enables rendering of full world lighting (whether loaded from the map, or a .rtlights file, or a .ent file, or a .lights file produced by hlight)"};
cvar_t r_shadow_realtime_world_importlightentitiesfrommap = {0, "r_shadow_realtime_world_importlightentitiesfrommap", "1", "load lights from .ent file or map entities at startup if no .rtlights or .lights file is present (if set to 2, always use the .ent or map entities)"};
cvar_t r_shadow_realtime_world_lightmaps = {CVAR_SAVE, "r_shadow_realtime_world_lightmaps", "0", "brightness to render lightmaps when using full world lighting, try 0.5 for a tenebrae-like appearance"};
cvar_t r_shadow_realtime_world_shadows = {CVAR_SAVE, "r_shadow_realtime_world_shadows", "1", "enables rendering of shadows from world lights"};
cvar_t r_shadow_realtime_world_compile = {0, "r_shadow_realtime_world_compile", "1", "enables compilation of world lights for higher performance rendering"};
cvar_t r_shadow_realtime_world_compileshadow = {0, "r_shadow_realtime_world_compileshadow", "1", "enables compilation of shadows from world lights for higher performance rendering"};
cvar_t r_shadow_realtime_world_compilesvbsp = {0, "r_shadow_realtime_world_compilesvbsp", "1", "enables svbsp optimization during compilation (slower than compileportalculling but more exact)"};
cvar_t r_shadow_realtime_world_compileportalculling = {0, "r_shadow_realtime_world_compileportalculling", "1", "enables portal-based culling optimization during compilation (overrides compilesvbsp)"};
cvar_t r_shadow_scissor = {0, "r_shadow_scissor", "1", "use scissor optimization of light rendering (restricts rendering to the portion of the screen affected by the light)"};
cvar_t r_shadow_shadowmapping = {CVAR_SAVE, "r_shadow_shadowmapping", "1", "enables use of shadowmapping (depth texture sampling) instead of stencil shadow volumes"};
cvar_t r_shadow_shadowmapping_filterquality = {CVAR_SAVE, "r_shadow_shadowmapping_filterquality", "-1", "shadowmap filter modes: -1 = auto-select, 0 = no filtering, 1 = bilinear, 2 = bilinear 2x2 blur (fast), 3 = 3x3 blur (moderate), 4 = 4x4 blur (slow)"};
cvar_t r_shadow_shadowmapping_useshadowsampler = {CVAR_SAVE, "r_shadow_shadowmapping_useshadowsampler", "1", "whether to use sampler2DShadow if available"};
cvar_t r_shadow_shadowmapping_depthbits = {CVAR_SAVE, "r_shadow_shadowmapping_depthbits", "24", "requested minimum shadowmap texture depth bits"};
cvar_t r_shadow_shadowmapping_vsdct = {CVAR_SAVE, "r_shadow_shadowmapping_vsdct", "1", "enables use of virtual shadow depth cube texture"};
cvar_t r_shadow_shadowmapping_minsize = {CVAR_SAVE, "r_shadow_shadowmapping_minsize", "32", "limit of shadowmap side size - must be at least r_shadow_shadowmapping_bordersize+2"};
cvar_t r_shadow_shadowmapping_maxsize = {CVAR_SAVE, "r_shadow_shadowmapping_maxsize", "512", "limit of shadowmap side size - can not be more than 1/8th of atlassize because lights store 6 sides (2x3 grid) and sometimes 12 sides (4x3 grid for shadows from EF_NOSELFSHADOW entities) and there are multiple lights..."};
cvar_t r_shadow_shadowmapping_texturesize = { CVAR_SAVE, "r_shadow_shadowmapping_texturesize", "8192", "size of shadowmap atlas texture - all shadowmaps are packed into this texture at frame start"};
cvar_t r_shadow_shadowmapping_precision = {CVAR_SAVE, "r_shadow_shadowmapping_precision", "1", "makes shadowmaps have a maximum resolution of this number of pixels per light source radius unit such that, for example, at precision 0.5 a light with radius 200 will have a maximum resolution of 100 pixels"};
//cvar_t r_shadow_shadowmapping_lod_bias = {CVAR_SAVE, "r_shadow_shadowmapping_lod_bias", "16", "shadowmap size bias"};
//cvar_t r_shadow_shadowmapping_lod_scale = {CVAR_SAVE, "r_shadow_shadowmapping_lod_scale", "128", "shadowmap size scaling parameter"};
cvar_t r_shadow_shadowmapping_bordersize = {CVAR_SAVE, "r_shadow_shadowmapping_bordersize", "5", "shadowmap size bias for filtering"};
cvar_t r_shadow_shadowmapping_nearclip = {CVAR_SAVE, "r_shadow_shadowmapping_nearclip", "1", "shadowmap nearclip in world units"};
cvar_t r_shadow_shadowmapping_bias = {CVAR_SAVE, "r_shadow_shadowmapping_bias", "0.03", "shadowmap bias parameter (this is multiplied by nearclip * 1024 / lodsize)"};
cvar_t r_shadow_shadowmapping_polygonfactor = {CVAR_SAVE, "r_shadow_shadowmapping_polygonfactor", "2", "slope-dependent shadowmapping bias"};
cvar_t r_shadow_shadowmapping_polygonoffset = {CVAR_SAVE, "r_shadow_shadowmapping_polygonoffset", "0", "constant shadowmapping bias"};
cvar_t r_shadow_sortsurfaces = {0, "r_shadow_sortsurfaces", "1", "improve performance by sorting illuminated surfaces by texture"};
cvar_t r_shadow_polygonfactor = {0, "r_shadow_polygonfactor", "0", "how much to enlarge shadow volume polygons when rendering (should be 0!)"};
cvar_t r_shadow_polygonoffset = {0, "r_shadow_polygonoffset", "1", "how much to push shadow volumes into the distance when rendering, to reduce chances of zfighting artifacts (should not be less than 0)"};
cvar_t r_shadow_texture3d = {0, "r_shadow_texture3d", "1", "use 3D voxel textures for spherical attenuation rather than cylindrical (does not affect OpenGL 2.0 render path)"};
cvar_t r_shadow_culllights_pvs = {CVAR_SAVE, "r_shadow_culllights_pvs", "1", "check if light overlaps any visible bsp leafs when determining if the light is visible"};
cvar_t r_shadow_culllights_trace = {CVAR_SAVE, "r_shadow_culllights_trace", "1", "use raytraces from the eye to random places within light bounds to determine if the light is visible"};
cvar_t r_shadow_culllights_trace_eyejitter = {CVAR_SAVE, "r_shadow_culllights_trace_eyejitter", "16", "offset eye location randomly by this much"};
cvar_t r_shadow_culllights_trace_enlarge = {CVAR_SAVE, "r_shadow_culllights_trace_enlarge", "0.1", "make light bounds bigger by *1.0+enlarge"};
cvar_t r_shadow_culllights_trace_samples = {CVAR_SAVE, "r_shadow_culllights_trace_samples", "16", "use this many traces to random positions (in addition to center trace)"};
cvar_t r_shadow_culllights_trace_tempsamples = {CVAR_SAVE, "r_shadow_culllights_trace_tempsamples", "16", "use this many traces if the light was created by csqc (no inter-frame caching), -1 disables the check (to avoid flicker entirely)"};
cvar_t r_shadow_culllights_trace_delay = {CVAR_SAVE, "r_shadow_culllights_trace_delay", "1", "light will be considered visible for this many seconds after any trace connects"};
cvar_t r_shadow_bouncegrid = {CVAR_SAVE, "r_shadow_bouncegrid", "0", "perform particle tracing for indirect lighting (Global Illumination / radiosity) using a 3D texture covering the scene, only active on levels with realtime lights active (r_shadow_realtime_world is usually required for these)"};
cvar_t r_shadow_bouncegrid_blur = {CVAR_SAVE, "r_shadow_bouncegrid_blur", "0", "apply a 1-radius blur on bouncegrid to denoise it and deal with boundary issues with surfaces"};
cvar_t r_shadow_bouncegrid_bounceanglediffuse = {CVAR_SAVE, "r_shadow_bouncegrid_bounceanglediffuse", "0", "use random bounce direction rather than true reflection, makes some corner areas dark"};
cvar_t r_shadow_bouncegrid_dynamic_bounceminimumintensity = { CVAR_SAVE, "r_shadow_bouncegrid_dynamic_bounceminimumintensity", "0.05", "stop bouncing once intensity drops below this fraction of the original particle color" };
cvar_t r_shadow_bouncegrid_dynamic_culllightpaths = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_culllightpaths", "1", "skip accumulating light in the bouncegrid texture where the light paths are out of view (dynamic mode only)"};
cvar_t r_shadow_bouncegrid_dynamic_directionalshading = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_directionalshading", "0", "use diffuse shading rather than ambient, 3D texture becomes 8x as many pixels to hold the additional data"};
cvar_t r_shadow_bouncegrid_dynamic_dlightparticlemultiplier = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_dlightparticlemultiplier", "1", "if set to a high value like 16 this can make dlights look great, but 0 is recommended for performance reasons"};
cvar_t r_shadow_bouncegrid_dynamic_hitmodels = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_hitmodels", "0", "enables hitting character model geometry (SLOW)"};
cvar_t r_shadow_bouncegrid_dynamic_lightradiusscale = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_lightradiusscale", "2", "particles stop at this fraction of light radius (can be more than 1)"};
cvar_t r_shadow_bouncegrid_dynamic_maxbounce = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_maxbounce", "2", "maximum number of bounces for a particle (minimum is 0)"};
cvar_t r_shadow_bouncegrid_dynamic_maxphotons = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_maxphotons", "25000", "upper bound on photons to shoot per update, divided proportionately between lights - normally the number of photons is calculated by energyperphoton"};
cvar_t r_shadow_bouncegrid_dynamic_quality = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_quality", "1", "amount of photons that should be fired (this is multiplied by spacing^2 to make it adaptive with spacing changes)"};
cvar_t r_shadow_bouncegrid_dynamic_spacing = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_spacing", "64", "unit size of bouncegrid pixel"};
cvar_t r_shadow_bouncegrid_dynamic_updateinterval = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_updateinterval", "0", "update bouncegrid texture once per this many seconds, useful values are 0, 0.05, or 1000000"};
cvar_t r_shadow_bouncegrid_dynamic_x = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_x", "64", "maximum texture size of bouncegrid on X axis"};
cvar_t r_shadow_bouncegrid_dynamic_y = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_y", "64", "maximum texture size of bouncegrid on Y axis"};
cvar_t r_shadow_bouncegrid_dynamic_z = {CVAR_SAVE, "r_shadow_bouncegrid_dynamic_z", "32", "maximum texture size of bouncegrid on Z axis"};
cvar_t r_shadow_bouncegrid_floatcolors = {CVAR_SAVE, "r_shadow_bouncegrid_floatcolors", "1", "upload texture as RGBA16F (or RGBA32F when set to 2) rather than RGBA8 format - this gives more dynamic range and accuracy"};
cvar_t r_shadow_bouncegrid_includedirectlighting = {CVAR_SAVE, "r_shadow_bouncegrid_includedirectlighting", "0", "allows direct lighting to be recorded, not just indirect (gives an effect somewhat like r_shadow_realtime_world_lightmaps)"};
cvar_t r_shadow_bouncegrid_intensity = {CVAR_SAVE, "r_shadow_bouncegrid_intensity", "4", "overall brightness of bouncegrid texture"};
cvar_t r_shadow_bouncegrid_lightpathsize_conespread = {CVAR_SAVE, "r_shadow_bouncegrid_lightpathsize_conespread", "0.015625", "increase lightpathsize over distance at this rate per grid cell"};
cvar_t r_shadow_bouncegrid_lightpathsize_initial = {CVAR_SAVE, "r_shadow_bouncegrid_lightpathsize_initial", "0.5", "width (in grid cells) of the light path for accumulation of light in the bouncegrid texture"};
cvar_t r_shadow_bouncegrid_normalizevectors = { CVAR_SAVE, "r_shadow_bouncegrid_normalizevectors", "1", "normalize random vectors (otherwise their length can vary, which dims the lighting further from the light)" };
cvar_t r_shadow_bouncegrid_particlebounceintensity = {CVAR_SAVE, "r_shadow_bouncegrid_particlebounceintensity", "2", "amount of energy carried over after each bounce, this is a multiplier of texture color and the result is clamped to 1 or less, to prevent adding energy on each bounce"};
cvar_t r_shadow_bouncegrid_particleintensity = {CVAR_SAVE, "r_shadow_bouncegrid_particleintensity", "0.25", "brightness of particles contributing to bouncegrid texture"};
cvar_t r_shadow_bouncegrid_rng_seed = { CVAR_SAVE, "r_shadow_bouncegrid_rng_seed", "0", "0+ = use this number as RNG seed, -1 = use time instead for disco-like craziness in dynamic mode" };
cvar_t r_shadow_bouncegrid_rng_type = { CVAR_SAVE, "r_shadow_bouncegrid_rng_type", "0", "0 = Lehmer 128bit RNG (slow but high quality), 1 = lhcheeserand 32bit RNG (quick)" };
cvar_t r_shadow_bouncegrid_sortlightpaths = {CVAR_SAVE, "r_shadow_bouncegrid_sortlightpaths", "1", "sort light paths before accumulating them into the bouncegrid texture, this reduces cpu cache misses"};
cvar_t r_shadow_bouncegrid_static = {CVAR_SAVE, "r_shadow_bouncegrid_static", "1", "use static radiosity solution (high quality) rather than dynamic (splotchy)"};
cvar_t r_shadow_bouncegrid_static_bounceminimumintensity = { CVAR_SAVE, "r_shadow_bouncegrid_static_bounceminimumintensity", "0.01", "stop bouncing once intensity drops below this fraction of the original particle color" };
cvar_t r_shadow_bouncegrid_static_directionalshading = {CVAR_SAVE, "r_shadow_bouncegrid_static_directionalshading", "1", "whether to use directionalshading when in static mode"};
cvar_t r_shadow_bouncegrid_static_lightradiusscale = {CVAR_SAVE, "r_shadow_bouncegrid_static_lightradiusscale", "2", "particles stop at this fraction of light radius (can be more than 1) when in static mode"};
cvar_t r_shadow_bouncegrid_static_maxbounce = {CVAR_SAVE, "r_shadow_bouncegrid_static_maxbounce", "5", "maximum number of bounces for a particle (minimum is 0) in static mode"};
cvar_t r_shadow_bouncegrid_static_maxphotons = {CVAR_SAVE, "r_shadow_bouncegrid_static_maxphotons", "250000", "upper bound on photons in static mode"};
cvar_t r_shadow_bouncegrid_static_quality = { CVAR_SAVE, "r_shadow_bouncegrid_static_quality", "16", "amount of photons that should be fired (this is multiplied by spacing^2 to make it adaptive with spacing changes)" };
cvar_t r_shadow_bouncegrid_static_spacing = {CVAR_SAVE, "r_shadow_bouncegrid_static_spacing", "64", "unit size of bouncegrid pixel when in static mode"};
cvar_t r_coronas = {CVAR_SAVE, "r_coronas", "0", "brightness of corona flare effects around certain lights, 0 disables corona effects"};
cvar_t r_coronas_occlusionsizescale = {CVAR_SAVE, "r_coronas_occlusionsizescale", "0.1", "size of light source for corona occlusion checksum the proportion of hidden pixels controls corona intensity"};
cvar_t r_coronas_occlusionquery = {CVAR_SAVE, "r_coronas_occlusionquery", "0", "use GL_ARB_occlusion_query extension if supported (fades coronas according to visibility) - bad performance (synchronous rendering) - worse on multi-gpu!"};
cvar_t gl_flashblend = {CVAR_SAVE, "gl_flashblend", "0", "render bright coronas for dynamic lights instead of actual lighting, fast but ugly"};
cvar_t gl_ext_separatestencil = {0, "gl_ext_separatestencil", "1", "make use of OpenGL 2.0 glStencilOpSeparate or GL_ATI_separate_stencil extension"};
cvar_t gl_ext_stenciltwoside = {0, "gl_ext_stenciltwoside", "1", "make use of GL_EXT_stenciltwoside extension (NVIDIA only)"};
cvar_t r_editlights = {0, "r_editlights", "0", "enables .rtlights file editing mode"};
cvar_t r_editlights_cursordistance = {0, "r_editlights_cursordistance", "1024", "maximum distance of cursor from eye"};
cvar_t r_editlights_cursorpushback = {0, "r_editlights_cursorpushback", "0", "how far to pull the cursor back toward the eye"};
cvar_t r_editlights_cursorpushoff = {0, "r_editlights_cursorpushoff", "4", "how far to push the cursor off the impacted surface"};
cvar_t r_editlights_cursorgrid = {0, "r_editlights_cursorgrid", "4", "snaps cursor to this grid size"};
cvar_t r_editlights_quakelightsizescale = {CVAR_SAVE, "r_editlights_quakelightsizescale", "1", "changes size of light entities loaded from a map"};
cvar_t r_editlights_drawproperties = {0, "r_editlights_drawproperties", "1", "draw properties of currently selected light"};
cvar_t r_editlights_current_origin = {0, "r_editlights_current_origin", "0 0 0", "origin of selected light"};
cvar_t r_editlights_current_angles = {0, "r_editlights_current_angles", "0 0 0", "angles of selected light"};
cvar_t r_editlights_current_color = {0, "r_editlights_current_color", "1 1 1", "color of selected light"};
cvar_t r_editlights_current_radius = {0, "r_editlights_current_radius", "0", "radius of selected light"};
cvar_t r_editlights_current_corona = {0, "r_editlights_current_corona", "0", "corona intensity of selected light"};
cvar_t r_editlights_current_coronasize = {0, "r_editlights_current_coronasize", "0", "corona size of selected light"};
cvar_t r_editlights_current_style = {0, "r_editlights_current_style", "0", "style of selected light"};
cvar_t r_editlights_current_shadows = {0, "r_editlights_current_shadows", "0", "shadows flag of selected light"};
cvar_t r_editlights_current_cubemap = {0, "r_editlights_current_cubemap", "0", "cubemap of selected light"};
cvar_t r_editlights_current_ambient = {0, "r_editlights_current_ambient", "0", "ambient intensity of selected light"};
cvar_t r_editlights_current_diffuse = {0, "r_editlights_current_diffuse", "1", "diffuse intensity of selected light"};
cvar_t r_editlights_current_specular = {0, "r_editlights_current_specular", "1", "specular intensity of selected light"};
cvar_t r_editlights_current_normalmode = {0, "r_editlights_current_normalmode", "0", "normalmode flag of selected light"};
cvar_t r_editlights_current_realtimemode = {0, "r_editlights_current_realtimemode", "0", "realtimemode flag of selected light"};

r_shadow_bouncegrid_state_t r_shadow_bouncegrid_state;

// note the table actually includes one more value, just to avoid the need to clamp the distance index due to minor math error
#define ATTENTABLESIZE 256
// 1D gradient, 2D circle and 3D sphere attenuation textures
#define ATTEN1DSIZE 32
#define ATTEN2DSIZE 64
#define ATTEN3DSIZE 32

static float r_shadow_attendividebias; // r_shadow_lightattenuationdividebias
static float r_shadow_attenlinearscale; // r_shadow_lightattenuationlinearscale
static float r_shadow_attentable[ATTENTABLESIZE+1];

rtlight_t *r_shadow_compilingrtlight;
static memexpandablearray_t r_shadow_worldlightsarray;
dlight_t *r_shadow_selectedlight;
dlight_t r_shadow_bufferlight;
vec3_t r_editlights_cursorlocation;
qboolean r_editlights_lockcursor;

extern int con_vislines;

void R_Shadow_UncompileWorldLights(void);
void R_Shadow_ClearWorldLights(void);
void R_Shadow_SaveWorldLights(void);
void R_Shadow_LoadWorldLights(void);
void R_Shadow_LoadLightsFile(void);
void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void);
void R_Shadow_EditLights_Reload_f(void);
void R_Shadow_ValidateCvars(void);
static void R_Shadow_MakeTextures(void);

#define EDLIGHTSPRSIZE			8
skinframe_t *r_editlights_sprcursor;
skinframe_t *r_editlights_sprlight;
skinframe_t *r_editlights_sprnoshadowlight;
skinframe_t *r_editlights_sprcubemaplight;
skinframe_t *r_editlights_sprcubemapnoshadowlight;
skinframe_t *r_editlights_sprselection;

static void R_Shadow_DrawModelShadowMaps(void);
static void R_Shadow_MakeShadowMap(int texturesize);
static void R_Shadow_MakeVSDCT(void);
static void R_Shadow_SetShadowMode(void)
{
	r_shadow_shadowmapborder = bound(1, r_shadow_shadowmapping_bordersize.integer, 16);
	r_shadow_shadowmaptexturesize = bound(256, r_shadow_shadowmapping_texturesize.integer, (int)vid.maxtexturesize_2d);
	r_shadow_shadowmapmaxsize = bound(r_shadow_shadowmapborder+2, r_shadow_shadowmapping_maxsize.integer, r_shadow_shadowmaptexturesize / 8);
	r_shadow_shadowmapvsdct = r_shadow_shadowmapping_vsdct.integer != 0 && vid.renderpath == RENDERPATH_GL20;
	r_shadow_shadowmapfilterquality = r_shadow_shadowmapping_filterquality.integer;
	r_shadow_shadowmapshadowsampler = r_shadow_shadowmapping_useshadowsampler.integer != 0;
	r_shadow_shadowmapdepthbits = r_shadow_shadowmapping_depthbits.integer;
	r_shadow_shadowmapsampler = false;
	r_shadow_shadowmappcf = 0;
	r_shadow_shadowmapdepthtexture = r_fb.usedepthtextures;
	r_shadow_shadowmode = R_SHADOW_SHADOWMODE_STENCIL;
	Mod_AllocLightmap_Init(&r_shadow_shadowmapatlas_state, r_main_mempool, r_shadow_shadowmaptexturesize, r_shadow_shadowmaptexturesize);
	if ((r_shadow_shadowmapping.integer || r_shadow_deferred.integer) && vid.support.ext_framebuffer_object)
	{
		switch(vid.renderpath)
		{
		case RENDERPATH_GL20:
			if(r_shadow_shadowmapfilterquality < 0)
			{
				if (!r_fb.usedepthtextures)
					r_shadow_shadowmappcf = 1;
				else if((strstr(gl_vendor, "NVIDIA") || strstr(gl_renderer, "Radeon HD")) && vid.support.arb_shadow && r_shadow_shadowmapshadowsampler)
				{
					r_shadow_shadowmapsampler = true;
					r_shadow_shadowmappcf = 1;
				}
				else if(vid.support.amd_texture_texture4 || vid.support.arb_texture_gather)
					r_shadow_shadowmappcf = 1;
				else if((strstr(gl_vendor, "ATI") || strstr(gl_vendor, "Advanced Micro Devices")) && !strstr(gl_renderer, "Mesa") && !strstr(gl_version, "Mesa"))
					r_shadow_shadowmappcf = 1;
				else
					r_shadow_shadowmapsampler = vid.support.arb_shadow && r_shadow_shadowmapshadowsampler;
			}
			else
			{
                r_shadow_shadowmapsampler = vid.support.arb_shadow && r_shadow_shadowmapshadowsampler;
				switch (r_shadow_shadowmapfilterquality)
				{
				case 1:
					break;
				case 2:
					r_shadow_shadowmappcf = 1;
					break;
				case 3:
					r_shadow_shadowmappcf = 1;
					break;
				case 4:
					r_shadow_shadowmappcf = 2;
					break;
				}
			}
			if (!r_fb.usedepthtextures)
				r_shadow_shadowmapsampler = false;
			r_shadow_shadowmode = R_SHADOW_SHADOWMODE_SHADOWMAP2D;
			break;
		case RENDERPATH_D3D9:
		case RENDERPATH_D3D10:
		case RENDERPATH_D3D11:
		case RENDERPATH_SOFT:
			r_shadow_shadowmapsampler = false;
			r_shadow_shadowmappcf = 1;
			r_shadow_shadowmode = R_SHADOW_SHADOWMODE_SHADOWMAP2D;
			break;
		case RENDERPATH_GL11:
		case RENDERPATH_GL13:
		case RENDERPATH_GLES1:
		case RENDERPATH_GLES2:
			break;
		}
	}

	if(R_CompileShader_CheckStaticParms())
		R_GLSL_Restart_f();
}

qboolean R_Shadow_ShadowMappingEnabled(void)
{
	switch (r_shadow_shadowmode)
	{
	case R_SHADOW_SHADOWMODE_SHADOWMAP2D:
		return true;
	default:
		return false;
	}
}

static void R_Shadow_FreeShadowMaps(void)
{
	Mod_AllocLightmap_Free(&r_shadow_shadowmapatlas_state);

	R_Shadow_SetShadowMode();

	R_Mesh_DestroyFramebufferObject(r_shadow_fbo2d);

	r_shadow_fbo2d = 0;

	if (r_shadow_shadowmap2ddepthtexture)
		R_FreeTexture(r_shadow_shadowmap2ddepthtexture);
	r_shadow_shadowmap2ddepthtexture = NULL;

	if (r_shadow_shadowmap2ddepthbuffer)
		R_FreeTexture(r_shadow_shadowmap2ddepthbuffer);
	r_shadow_shadowmap2ddepthbuffer = NULL;

	if (r_shadow_shadowmapvsdcttexture)
		R_FreeTexture(r_shadow_shadowmapvsdcttexture);
	r_shadow_shadowmapvsdcttexture = NULL;
}

static void r_shadow_start(void)
{
	// allocate vertex processing arrays
	memset(&r_shadow_bouncegrid_state, 0, sizeof(r_shadow_bouncegrid_state));
	r_shadow_attenuationgradienttexture = NULL;
	r_shadow_attenuation2dtexture = NULL;
	r_shadow_attenuation3dtexture = NULL;
	r_shadow_shadowmode = R_SHADOW_SHADOWMODE_STENCIL;
	r_shadow_shadowmap2ddepthtexture = NULL;
	r_shadow_shadowmap2ddepthbuffer = NULL;
	r_shadow_shadowmapvsdcttexture = NULL;
	r_shadow_shadowmapmaxsize = 0;
	r_shadow_shadowmaptexturesize = 0;
	r_shadow_shadowmapfilterquality = -1;
	r_shadow_shadowmapdepthbits = 0;
	r_shadow_shadowmapvsdct = false;
	r_shadow_shadowmapsampler = false;
	r_shadow_shadowmappcf = 0;
	r_shadow_fbo2d = 0;

	R_Shadow_FreeShadowMaps();

	r_shadow_texturepool = NULL;
	r_shadow_filters_texturepool = NULL;
	R_Shadow_ValidateCvars();
	R_Shadow_MakeTextures();
	r_shadow_scenemaxlights = 0;
	r_shadow_scenenumlights = 0;
	r_shadow_scenelightlist = NULL;
	maxshadowtriangles = 0;
	shadowelements = NULL;
	maxshadowvertices = 0;
	shadowvertex3f = NULL;
	maxvertexupdate = 0;
	vertexupdate = NULL;
	vertexremap = NULL;
	vertexupdatenum = 0;
	maxshadowmark = 0;
	numshadowmark = 0;
	shadowmark = NULL;
	shadowmarklist = NULL;
	shadowmarkcount = 0;
	maxshadowsides = 0;
	numshadowsides = 0;
	shadowsides = NULL;
	shadowsideslist = NULL;
	r_shadow_buffer_numleafpvsbytes = 0;
	r_shadow_buffer_visitingleafpvs = NULL;
	r_shadow_buffer_leafpvs = NULL;
	r_shadow_buffer_leaflist = NULL;
	r_shadow_buffer_numsurfacepvsbytes = 0;
	r_shadow_buffer_surfacepvs = NULL;
	r_shadow_buffer_surfacelist = NULL;
	r_shadow_buffer_surfacesides = NULL;
	r_shadow_buffer_numshadowtrispvsbytes = 0;
	r_shadow_buffer_shadowtrispvs = NULL;
	r_shadow_buffer_numlighttrispvsbytes = 0;
	r_shadow_buffer_lighttrispvs = NULL;

	r_shadow_usingdeferredprepass = false;
	r_shadow_prepass_width = r_shadow_prepass_height = 0;

	// determine renderpath specific capabilities, we don't need to figure
	// these out per frame...
	switch(vid.renderpath)
	{
	case RENDERPATH_GL20:
		r_shadow_bouncegrid_state.allowdirectionalshading = true;
		r_shadow_bouncegrid_state.capable = vid.support.ext_texture_3d;
		break;
	case RENDERPATH_GLES2:
		// for performance reasons, do not use directional shading on GLES devices
		r_shadow_bouncegrid_state.capable = vid.support.ext_texture_3d;
		break;
		// these renderpaths do not currently have the code to display the bouncegrid, so disable it on them...
	case RENDERPATH_GL11:
	case RENDERPATH_GL13:
	case RENDERPATH_GLES1:
	case RENDERPATH_SOFT:
	case RENDERPATH_D3D9:
	case RENDERPATH_D3D10:
	case RENDERPATH_D3D11:
		break;
	}
}

static void R_Shadow_FreeDeferred(void);
static void r_shadow_shutdown(void)
{
	CHECKGLERROR
	R_Shadow_UncompileWorldLights();

	R_Shadow_FreeShadowMaps();

	r_shadow_usingdeferredprepass = false;
	if (r_shadow_prepass_width)
		R_Shadow_FreeDeferred();
	r_shadow_prepass_width = r_shadow_prepass_height = 0;

	CHECKGLERROR
	r_shadow_scenemaxlights = 0;
	r_shadow_scenenumlights = 0;
	if (r_shadow_scenelightlist)
		Mem_Free(r_shadow_scenelightlist);
	r_shadow_scenelightlist = NULL;
	r_shadow_bouncegrid_state.highpixels = NULL;
	if (r_shadow_bouncegrid_state.blurpixels[0]) Mem_Free(r_shadow_bouncegrid_state.blurpixels[0]); r_shadow_bouncegrid_state.blurpixels[0] = NULL;
	if (r_shadow_bouncegrid_state.blurpixels[1]) Mem_Free(r_shadow_bouncegrid_state.blurpixels[1]); r_shadow_bouncegrid_state.blurpixels[1] = NULL;
	if (r_shadow_bouncegrid_state.u8pixels) Mem_Free(r_shadow_bouncegrid_state.u8pixels); r_shadow_bouncegrid_state.u8pixels = NULL;
	if (r_shadow_bouncegrid_state.fp16pixels) Mem_Free(r_shadow_bouncegrid_state.fp16pixels); r_shadow_bouncegrid_state.fp16pixels = NULL;
	if (r_shadow_bouncegrid_state.splatpaths) Mem_Free(r_shadow_bouncegrid_state.splatpaths); r_shadow_bouncegrid_state.splatpaths = NULL;
	r_shadow_bouncegrid_state.maxsplatpaths = 0;
	memset(&r_shadow_bouncegrid_state, 0, sizeof(r_shadow_bouncegrid_state));
	r_shadow_attenuationgradienttexture = NULL;
	r_shadow_attenuation2dtexture = NULL;
	r_shadow_attenuation3dtexture = NULL;
	R_FreeTexturePool(&r_shadow_texturepool);
	R_FreeTexturePool(&r_shadow_filters_texturepool);
	maxshadowtriangles = 0;
	if (shadowelements)
		Mem_Free(shadowelements);
	shadowelements = NULL;
	if (shadowvertex3f)
		Mem_Free(shadowvertex3f);
	shadowvertex3f = NULL;
	maxvertexupdate = 0;
	if (vertexupdate)
		Mem_Free(vertexupdate);
	vertexupdate = NULL;
	if (vertexremap)
		Mem_Free(vertexremap);
	vertexremap = NULL;
	vertexupdatenum = 0;
	maxshadowmark = 0;
	numshadowmark = 0;
	if (shadowmark)
		Mem_Free(shadowmark);
	shadowmark = NULL;
	if (shadowmarklist)
		Mem_Free(shadowmarklist);
	shadowmarklist = NULL;
	shadowmarkcount = 0;
	maxshadowsides = 0;
	numshadowsides = 0;
	if (shadowsides)
		Mem_Free(shadowsides);
	shadowsides = NULL;
	if (shadowsideslist)
		Mem_Free(shadowsideslist);
	shadowsideslist = NULL;
	r_shadow_buffer_numleafpvsbytes = 0;
	if (r_shadow_buffer_visitingleafpvs)
		Mem_Free(r_shadow_buffer_visitingleafpvs);
	r_shadow_buffer_visitingleafpvs = NULL;
	if (r_shadow_buffer_leafpvs)
		Mem_Free(r_shadow_buffer_leafpvs);
	r_shadow_buffer_leafpvs = NULL;
	if (r_shadow_buffer_leaflist)
		Mem_Free(r_shadow_buffer_leaflist);
	r_shadow_buffer_leaflist = NULL;
	r_shadow_buffer_numsurfacepvsbytes = 0;
	if (r_shadow_buffer_surfacepvs)
		Mem_Free(r_shadow_buffer_surfacepvs);
	r_shadow_buffer_surfacepvs = NULL;
	if (r_shadow_buffer_surfacelist)
		Mem_Free(r_shadow_buffer_surfacelist);
	r_shadow_buffer_surfacelist = NULL;
	if (r_shadow_buffer_surfacesides)
		Mem_Free(r_shadow_buffer_surfacesides);
	r_shadow_buffer_surfacesides = NULL;
	r_shadow_buffer_numshadowtrispvsbytes = 0;
	if (r_shadow_buffer_shadowtrispvs)
		Mem_Free(r_shadow_buffer_shadowtrispvs);
	r_shadow_buffer_numlighttrispvsbytes = 0;
	if (r_shadow_buffer_lighttrispvs)
		Mem_Free(r_shadow_buffer_lighttrispvs);
}

static void r_shadow_newmap(void)
{
	r_shadow_bouncegrid_state.highpixels = NULL;
	if (r_shadow_bouncegrid_state.blurpixels[0]) Mem_Free(r_shadow_bouncegrid_state.blurpixels[0]); r_shadow_bouncegrid_state.blurpixels[0] = NULL;
	if (r_shadow_bouncegrid_state.blurpixels[1]) Mem_Free(r_shadow_bouncegrid_state.blurpixels[1]); r_shadow_bouncegrid_state.blurpixels[1] = NULL;
	if (r_shadow_bouncegrid_state.u8pixels) Mem_Free(r_shadow_bouncegrid_state.u8pixels); r_shadow_bouncegrid_state.u8pixels = NULL;
	if (r_shadow_bouncegrid_state.fp16pixels) Mem_Free(r_shadow_bouncegrid_state.fp16pixels); r_shadow_bouncegrid_state.fp16pixels = NULL;
	if (r_shadow_bouncegrid_state.splatpaths) Mem_Free(r_shadow_bouncegrid_state.splatpaths); r_shadow_bouncegrid_state.splatpaths = NULL;
	r_shadow_bouncegrid_state.maxsplatpaths = 0;
	if (r_shadow_bouncegrid_state.texture)    R_FreeTexture(r_shadow_bouncegrid_state.texture);r_shadow_bouncegrid_state.texture = NULL;
	if (r_shadow_lightcorona)                 R_SkinFrame_MarkUsed(r_shadow_lightcorona);
	if (r_editlights_sprcursor)               R_SkinFrame_MarkUsed(r_editlights_sprcursor);
	if (r_editlights_sprlight)                R_SkinFrame_MarkUsed(r_editlights_sprlight);
	if (r_editlights_sprnoshadowlight)        R_SkinFrame_MarkUsed(r_editlights_sprnoshadowlight);
	if (r_editlights_sprcubemaplight)         R_SkinFrame_MarkUsed(r_editlights_sprcubemaplight);
	if (r_editlights_sprcubemapnoshadowlight) R_SkinFrame_MarkUsed(r_editlights_sprcubemapnoshadowlight);
	if (r_editlights_sprselection)            R_SkinFrame_MarkUsed(r_editlights_sprselection);
	if (strncmp(cl.worldname, r_shadow_mapname, sizeof(r_shadow_mapname)))
		R_Shadow_EditLights_Reload_f();
}

void R_Shadow_Init(void)
{
	Cvar_RegisterVariable(&r_shadow_bumpscale_basetexture);
	Cvar_RegisterVariable(&r_shadow_bumpscale_bumpmap);
	Cvar_RegisterVariable(&r_shadow_usebihculling);
	Cvar_RegisterVariable(&r_shadow_usenormalmap);
	Cvar_RegisterVariable(&r_shadow_debuglight);
	Cvar_RegisterVariable(&r_shadow_deferred);
	Cvar_RegisterVariable(&r_shadow_gloss);
	Cvar_RegisterVariable(&r_shadow_gloss2intensity);
	Cvar_RegisterVariable(&r_shadow_glossintensity);
	Cvar_RegisterVariable(&r_shadow_glossexponent);
	Cvar_RegisterVariable(&r_shadow_gloss2exponent);
	Cvar_RegisterVariable(&r_shadow_glossexact);
	Cvar_RegisterVariable(&r_shadow_lightattenuationdividebias);
	Cvar_RegisterVariable(&r_shadow_lightattenuationlinearscale);
	Cvar_RegisterVariable(&r_shadow_lightintensityscale);
	Cvar_RegisterVariable(&r_shadow_lightradiusscale);
	Cvar_RegisterVariable(&r_shadow_projectdistance);
	Cvar_RegisterVariable(&r_shadow_frontsidecasting);
	Cvar_RegisterVariable(&r_shadow_realtime_world_importlightentitiesfrommap);
	Cvar_RegisterVariable(&r_shadow_realtime_dlight);
	Cvar_RegisterVariable(&r_shadow_realtime_dlight_shadows);
	Cvar_RegisterVariable(&r_shadow_realtime_dlight_svbspculling);
	Cvar_RegisterVariable(&r_shadow_realtime_dlight_portalculling);
	Cvar_RegisterVariable(&r_shadow_realtime_world);
	Cvar_RegisterVariable(&r_shadow_realtime_world_lightmaps);
	Cvar_RegisterVariable(&r_shadow_realtime_world_shadows);
	Cvar_RegisterVariable(&r_shadow_realtime_world_compile);
	Cvar_RegisterVariable(&r_shadow_realtime_world_compileshadow);
	Cvar_RegisterVariable(&r_shadow_realtime_world_compilesvbsp);
	Cvar_RegisterVariable(&r_shadow_realtime_world_compileportalculling);
	Cvar_RegisterVariable(&r_shadow_scissor);
	Cvar_RegisterVariable(&r_shadow_shadowmapping);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_vsdct);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_filterquality);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_useshadowsampler);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_depthbits);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_precision);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_maxsize);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_minsize);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_texturesize);
//	Cvar_RegisterVariable(&r_shadow_shadowmapping_lod_bias);
//	Cvar_RegisterVariable(&r_shadow_shadowmapping_lod_scale);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_bordersize);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_nearclip);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_bias);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_polygonfactor);
	Cvar_RegisterVariable(&r_shadow_shadowmapping_polygonoffset);
	Cvar_RegisterVariable(&r_shadow_sortsurfaces);
	Cvar_RegisterVariable(&r_shadow_polygonfactor);
	Cvar_RegisterVariable(&r_shadow_polygonoffset);
	Cvar_RegisterVariable(&r_shadow_texture3d);
	Cvar_RegisterVariable(&r_shadow_culllights_pvs);
	Cvar_RegisterVariable(&r_shadow_culllights_trace);
	Cvar_RegisterVariable(&r_shadow_culllights_trace_eyejitter);
	Cvar_RegisterVariable(&r_shadow_culllights_trace_enlarge);
	Cvar_RegisterVariable(&r_shadow_culllights_trace_samples);
	Cvar_RegisterVariable(&r_shadow_culllights_trace_tempsamples);
	Cvar_RegisterVariable(&r_shadow_culllights_trace_delay);
	Cvar_RegisterVariable(&r_shadow_bouncegrid);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_blur);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_bounceanglediffuse);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_bounceminimumintensity);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_culllightpaths);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_directionalshading);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_dlightparticlemultiplier);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_hitmodels);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_lightradiusscale);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_maxbounce);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_maxphotons);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_quality);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_spacing);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_updateinterval);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_x);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_y);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_dynamic_z);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_floatcolors);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_includedirectlighting);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_intensity);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_lightpathsize_conespread);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_lightpathsize_initial);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_normalizevectors);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_particlebounceintensity);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_particleintensity);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_rng_seed);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_rng_type);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_sortlightpaths);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_static);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_static_bounceminimumintensity);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_static_directionalshading);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_static_lightradiusscale);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_static_maxbounce);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_static_maxphotons);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_static_quality);
	Cvar_RegisterVariable(&r_shadow_bouncegrid_static_spacing);
	Cvar_RegisterVariable(&r_coronas);
	Cvar_RegisterVariable(&r_coronas_occlusionsizescale);
	Cvar_RegisterVariable(&r_coronas_occlusionquery);
	Cvar_RegisterVariable(&gl_flashblend);
	Cvar_RegisterVariable(&gl_ext_separatestencil);
	Cvar_RegisterVariable(&gl_ext_stenciltwoside);
	R_Shadow_EditLights_Init();
	Mem_ExpandableArray_NewArray(&r_shadow_worldlightsarray, r_main_mempool, sizeof(dlight_t), 128);
	r_shadow_scenemaxlights = 0;
	r_shadow_scenenumlights = 0;
	r_shadow_scenelightlist = NULL;
	maxshadowtriangles = 0;
	shadowelements = NULL;
	maxshadowvertices = 0;
	shadowvertex3f = NULL;
	maxvertexupdate = 0;
	vertexupdate = NULL;
	vertexremap = NULL;
	vertexupdatenum = 0;
	maxshadowmark = 0;
	numshadowmark = 0;
	shadowmark = NULL;
	shadowmarklist = NULL;
	shadowmarkcount = 0;
	maxshadowsides = 0;
	numshadowsides = 0;
	shadowsides = NULL;
	shadowsideslist = NULL;
	r_shadow_buffer_numleafpvsbytes = 0;
	r_shadow_buffer_visitingleafpvs = NULL;
	r_shadow_buffer_leafpvs = NULL;
	r_shadow_buffer_leaflist = NULL;
	r_shadow_buffer_numsurfacepvsbytes = 0;
	r_shadow_buffer_surfacepvs = NULL;
	r_shadow_buffer_surfacelist = NULL;
	r_shadow_buffer_surfacesides = NULL;
	r_shadow_buffer_shadowtrispvs = NULL;
	r_shadow_buffer_lighttrispvs = NULL;
	R_RegisterModule("R_Shadow", r_shadow_start, r_shadow_shutdown, r_shadow_newmap, NULL, NULL);
}

matrix4x4_t matrix_attenuationxyz =
{
	{
		{0.5, 0.0, 0.0, 0.5},
		{0.0, 0.5, 0.0, 0.5},
		{0.0, 0.0, 0.5, 0.5},
		{0.0, 0.0, 0.0, 1.0}
	}
};

matrix4x4_t matrix_attenuationz =
{
	{
		{0.0, 0.0, 0.5, 0.5},
		{0.0, 0.0, 0.0, 0.5},
		{0.0, 0.0, 0.0, 0.5},
		{0.0, 0.0, 0.0, 1.0}
	}
};

static void R_Shadow_ResizeShadowArrays(int numvertices, int numtriangles, int vertscale, int triscale)
{
	numvertices = ((numvertices + 255) & ~255) * vertscale;
	numtriangles = ((numtriangles + 255) & ~255) * triscale;
	// make sure shadowelements is big enough for this volume
	if (maxshadowtriangles < numtriangles)
	{
		maxshadowtriangles = numtriangles;
		if (shadowelements)
			Mem_Free(shadowelements);
		shadowelements = (int *)Mem_Alloc(r_main_mempool, maxshadowtriangles * sizeof(int[3]));
	}
	// make sure shadowvertex3f is big enough for this volume
	if (maxshadowvertices < numvertices)
	{
		maxshadowvertices = numvertices;
		if (shadowvertex3f)
			Mem_Free(shadowvertex3f);
		shadowvertex3f = (float *)Mem_Alloc(r_main_mempool, maxshadowvertices * sizeof(float[3]));
	}
}

static void R_Shadow_EnlargeLeafSurfaceTrisBuffer(int numleafs, int numsurfaces, int numshadowtriangles, int numlighttriangles)
{
	int numleafpvsbytes = (((numleafs + 7) >> 3) + 255) & ~255;
	int numsurfacepvsbytes = (((numsurfaces + 7) >> 3) + 255) & ~255;
	int numshadowtrispvsbytes = (((numshadowtriangles + 7) >> 3) + 255) & ~255;
	int numlighttrispvsbytes = (((numlighttriangles + 7) >> 3) + 255) & ~255;
	if (r_shadow_buffer_numleafpvsbytes < numleafpvsbytes)
	{
		if (r_shadow_buffer_visitingleafpvs)
			Mem_Free(r_shadow_buffer_visitingleafpvs);
		if (r_shadow_buffer_leafpvs)
			Mem_Free(r_shadow_buffer_leafpvs);
		if (r_shadow_buffer_leaflist)
			Mem_Free(r_shadow_buffer_leaflist);
		r_shadow_buffer_numleafpvsbytes = numleafpvsbytes;
		r_shadow_buffer_visitingleafpvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes);
		r_shadow_buffer_leafpvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes);
		r_shadow_buffer_leaflist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numleafpvsbytes * 8 * sizeof(*r_shadow_buffer_leaflist));
	}
	if (r_shadow_buffer_numsurfacepvsbytes < numsurfacepvsbytes)
	{
		if (r_shadow_buffer_surfacepvs)
			Mem_Free(r_shadow_buffer_surfacepvs);
		if (r_shadow_buffer_surfacelist)
			Mem_Free(r_shadow_buffer_surfacelist);
		if (r_shadow_buffer_surfacesides)
			Mem_Free(r_shadow_buffer_surfacesides);
		r_shadow_buffer_numsurfacepvsbytes = numsurfacepvsbytes;
		r_shadow_buffer_surfacepvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes);
		r_shadow_buffer_surfacelist = (int *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes * 8 * sizeof(*r_shadow_buffer_surfacelist));
		r_shadow_buffer_surfacesides = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numsurfacepvsbytes * 8 * sizeof(*r_shadow_buffer_surfacelist));
	}
	if (r_shadow_buffer_numshadowtrispvsbytes < numshadowtrispvsbytes)
	{
		if (r_shadow_buffer_shadowtrispvs)
			Mem_Free(r_shadow_buffer_shadowtrispvs);
		r_shadow_buffer_numshadowtrispvsbytes = numshadowtrispvsbytes;
		r_shadow_buffer_shadowtrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numshadowtrispvsbytes);
	}
	if (r_shadow_buffer_numlighttrispvsbytes < numlighttrispvsbytes)
	{
		if (r_shadow_buffer_lighttrispvs)
			Mem_Free(r_shadow_buffer_lighttrispvs);
		r_shadow_buffer_numlighttrispvsbytes = numlighttrispvsbytes;
		r_shadow_buffer_lighttrispvs = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_buffer_numlighttrispvsbytes);
	}
}

void R_Shadow_PrepareShadowMark(int numtris)
{
	// make sure shadowmark is big enough for this volume
	if (maxshadowmark < numtris)
	{
		maxshadowmark = numtris;
		if (shadowmark)
			Mem_Free(shadowmark);
		if (shadowmarklist)
			Mem_Free(shadowmarklist);
		shadowmark = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmark));
		shadowmarklist = (int *)Mem_Alloc(r_main_mempool, maxshadowmark * sizeof(*shadowmarklist));
		shadowmarkcount = 0;
	}
	shadowmarkcount++;
	// if shadowmarkcount wrapped we clear the array and adjust accordingly
	if (shadowmarkcount == 0)
	{
		shadowmarkcount = 1;
		memset(shadowmark, 0, maxshadowmark * sizeof(*shadowmark));
	}
	numshadowmark = 0;
}

void R_Shadow_PrepareShadowSides(int numtris)
{
	if (maxshadowsides < numtris)
	{
		maxshadowsides = numtris;
		if (shadowsides)
			Mem_Free(shadowsides);
		if (shadowsideslist)
			Mem_Free(shadowsideslist);
		shadowsides = (unsigned char *)Mem_Alloc(r_main_mempool, maxshadowsides * sizeof(*shadowsides));
		shadowsideslist = (int *)Mem_Alloc(r_main_mempool, maxshadowsides * sizeof(*shadowsideslist));
	}
	numshadowsides = 0;
}

static int R_Shadow_ConstructShadowVolume_ZFail(int innumvertices, int innumtris, const int *inelement3i, const int *inneighbor3i, const float *invertex3f, int *outnumvertices, int *outelement3i, float *outvertex3f, const float *projectorigin, const float *projectdirection, float projectdistance, int numshadowmarktris, const int *shadowmarktris)
{
	int i, j;
	int outtriangles = 0, outvertices = 0;
	const int *element;
	const float *vertex;
	float ratio, direction[3], projectvector[3];

	if (projectdirection)
		VectorScale(projectdirection, projectdistance, projectvector);
	else
		VectorClear(projectvector);

	// create the vertices
	if (projectdirection)
	{
		for (i = 0;i < numshadowmarktris;i++)
		{
			element = inelement3i + shadowmarktris[i] * 3;
			for (j = 0;j < 3;j++)
			{
				if (vertexupdate[element[j]] != vertexupdatenum)
				{
					vertexupdate[element[j]] = vertexupdatenum;
					vertexremap[element[j]] = outvertices;
					vertex = invertex3f + element[j] * 3;
					// project one copy of the vertex according to projectvector
					VectorCopy(vertex, outvertex3f);
					VectorAdd(vertex, projectvector, (outvertex3f + 3));
					outvertex3f += 6;
					outvertices += 2;
				}
			}
		}
	}
	else
	{
		for (i = 0;i < numshadowmarktris;i++)
		{
			element = inelement3i + shadowmarktris[i] * 3;
			for (j = 0;j < 3;j++)
			{
				if (vertexupdate[element[j]] != vertexupdatenum)
				{
					vertexupdate[element[j]] = vertexupdatenum;
					vertexremap[element[j]] = outvertices;
					vertex = invertex3f + element[j] * 3;
					// project one copy of the vertex to the sphere radius of the light
					// (FIXME: would projecting it to the light box be better?)
					VectorSubtract(vertex, projectorigin, direction);
					ratio = projectdistance / VectorLength(direction);
					VectorCopy(vertex, outvertex3f);
					VectorMA(projectorigin, ratio, direction, (outvertex3f + 3));
					outvertex3f += 6;
					outvertices += 2;
				}
			}
		}
	}

	if (r_shadow_frontsidecasting.integer)
	{
		for (i = 0;i < numshadowmarktris;i++)
		{
			int remappedelement[3];
			int markindex;
			const int *neighbortriangle;

			markindex = shadowmarktris[i] * 3;
			element = inelement3i + markindex;
			neighbortriangle = inneighbor3i + markindex;
			// output the front and back triangles
			outelement3i[0] = vertexremap[element[0]];
			outelement3i[1] = vertexremap[element[1]];
			outelement3i[2] = vertexremap[element[2]];
			outelement3i[3] = vertexremap[element[2]] + 1;
			outelement3i[4] = vertexremap[element[1]] + 1;
			outelement3i[5] = vertexremap[element[0]] + 1;

			outelement3i += 6;
			outtriangles += 2;
			// output the sides (facing outward from this triangle)
			if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
			{
				remappedelement[0] = vertexremap[element[0]];
				remappedelement[1] = vertexremap[element[1]];
				outelement3i[0] = remappedelement[1];
				outelement3i[1] = remappedelement[0];
				outelement3i[2] = remappedelement[0] + 1;
				outelement3i[3] = remappedelement[1];
				outelement3i[4] = remappedelement[0] + 1;
				outelement3i[5] = remappedelement[1] + 1;

				outelement3i += 6;
				outtriangles += 2;
			}
			if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
			{
				remappedelement[1] = vertexremap[element[1]];
				remappedelement[2] = vertexremap[element[2]];
				outelement3i[0] = remappedelement[2];
				outelement3i[1] = remappedelement[1];
				outelement3i[2] = remappedelement[1] + 1;
				outelement3i[3] = remappedelement[2];
				outelement3i[4] = remappedelement[1] + 1;
				outelement3i[5] = remappedelement[2] + 1;

				outelement3i += 6;
				outtriangles += 2;
			}
			if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
			{
				remappedelement[0] = vertexremap[element[0]];
				remappedelement[2] = vertexremap[element[2]];
				outelement3i[0] = remappedelement[0];
				outelement3i[1] = remappedelement[2];
				outelement3i[2] = remappedelement[2] + 1;
				outelement3i[3] = remappedelement[0];
				outelement3i[4] = remappedelement[2] + 1;
				outelement3i[5] = remappedelement[0] + 1;

				outelement3i += 6;
				outtriangles += 2;
			}
		}
	}
	else
	{
		for (i = 0;i < numshadowmarktris;i++)
		{
			int remappedelement[3];
			int markindex;
			const int *neighbortriangle;

			markindex = shadowmarktris[i] * 3;
			element = inelement3i + markindex;
			neighbortriangle = inneighbor3i + markindex;
			// output the front and back triangles
			outelement3i[0] = vertexremap[element[2]];
			outelement3i[1] = vertexremap[element[1]];
			outelement3i[2] = vertexremap[element[0]];
			outelement3i[3] = vertexremap[element[0]] + 1;
			outelement3i[4] = vertexremap[element[1]] + 1;
			outelement3i[5] = vertexremap[element[2]] + 1;

			outelement3i += 6;
			outtriangles += 2;
			// output the sides (facing outward from this triangle)
			if (shadowmark[neighbortriangle[0]] != shadowmarkcount)
			{
				remappedelement[0] = vertexremap[element[0]];
				remappedelement[1] = vertexremap[element[1]];
				outelement3i[0] = remappedelement[0];
				outelement3i[1] = remappedelement[1];
				outelement3i[2] = remappedelement[1] + 1;
				outelement3i[3] = remappedelement[0];
				outelement3i[4] = remappedelement[1] + 1;
				outelement3i[5] = remappedelement[0] + 1;

				outelement3i += 6;
				outtriangles += 2;
			}
			if (shadowmark[neighbortriangle[1]] != shadowmarkcount)
			{
				remappedelement[1] = vertexremap[element[1]];
				remappedelement[2] = vertexremap[element[2]];
				outelement3i[0] = remappedelement[1];
				outelement3i[1] = remappedelement[2];
				outelement3i[2] = remappedelement[2] + 1;
				outelement3i[3] = remappedelement[1];
				outelement3i[4] = remappedelement[2] + 1;
				outelement3i[5] = remappedelement[1] + 1;

				outelement3i += 6;
				outtriangles += 2;
			}
			if (shadowmark[neighbortriangle[2]] != shadowmarkcount)
			{
				remappedelement[0] = vertexremap[element[0]];
				remappedelement[2] = vertexremap[element[2]];
				outelement3i[0] = remappedelement[2];
				outelement3i[1] = remappedelement[0];
				outelement3i[2] = remappedelement[0] + 1;
				outelement3i[3] = remappedelement[2];
				outelement3i[4] = remappedelement[0] + 1;
				outelement3i[5] = remappedelement[2] + 1;

				outelement3i += 6;
				outtriangles += 2;
			}
		}
	}
	if (outnumvertices)
		*outnumvertices = outvertices;
	return outtriangles;
}

static int R_Shadow_ConstructShadowVolume_ZPass(int innumvertices, int innumtris, const int *inelement3i, const int *inneighbor3i, const float *invertex3f, int *outnumvertices, int *outelement3i, float *outvertex3f, const float *projectorigin, const float *projectdirection, float projectdistance, int numshadowmarktris, const int *shadowmarktris)
{
	int i, j, k;
	int outtriangles = 0, outvertices = 0;
	const int *element;
	const float *vertex;
	float ratio, direction[3], projectvector[3];
	qboolean side[4];

	if (projectdirection)
		VectorScale(projectdirection, projectdistance, projectvector);
	else
		VectorClear(projectvector);

	for (i = 0;i < numshadowmarktris;i++)
	{
		int remappedelement[3];
		int markindex;
		const int *neighbortriangle;

		markindex = shadowmarktris[i] * 3;
		neighbortriangle = inneighbor3i + markindex;
		side[0] = shadowmark[neighbortriangle[0]] == shadowmarkcount;
		side[1] = shadowmark[neighbortriangle[1]] == shadowmarkcount;
		side[2] = shadowmark[neighbortriangle[2]] == shadowmarkcount;
		if (side[0] + side[1] + side[2] == 0)
			continue;

		side[3] = side[0];
		element = inelement3i + markindex;

		// create the vertices
		for (j = 0;j < 3;j++)
		{
			if (side[j] + side[j+1] == 0)
				continue;
			k = element[j];
			if (vertexupdate[k] != vertexupdatenum)
			{
				vertexupdate[k] = vertexupdatenum;
				vertexremap[k] = outvertices;
				vertex = invertex3f + k * 3;
				VectorCopy(vertex, outvertex3f);
				if (projectdirection)
				{
					// project one copy of the vertex according to projectvector
					VectorAdd(vertex, projectvector, (outvertex3f + 3));
				}
				else
				{
					// project one copy of the vertex to the sphere radius of the light
					// (FIXME: would projecting it to the light box be better?)
					VectorSubtract(vertex, projectorigin, direction);
					ratio = projectdistance / VectorLength(direction);
					VectorMA(projectorigin, ratio, direction, (outvertex3f + 3));
				}
				outvertex3f += 6;
				outvertices += 2;
			}
		}

		// output the sides (facing outward from this triangle)
		if (!side[0])
		{
			remappedelement[0] = vertexremap[element[0]];
			remappedelement[1] = vertexremap[element[1]];
			outelement3i[0] = remappedelement[1];
			outelement3i[1] = remappedelement[0];
			outelement3i[2] = remappedelement[0] + 1;
			outelement3i[3] = remappedelement[1];
			outelement3i[4] = remappedelement[0] + 1;
			outelement3i[5] = remappedelement[1] + 1;

			outelement3i += 6;
			outtriangles += 2;
		}
		if (!side[1])
		{
			remappedelement[1] = vertexremap[element[1]];
			remappedelement[2] = vertexremap[element[2]];
			outelement3i[0] = remappedelement[2];
			outelement3i[1] = remappedelement[1];
			outelement3i[2] = remappedelement[1] + 1;
			outelement3i[3] = remappedelement[2];
			outelement3i[4] = remappedelement[1] + 1;
			outelement3i[5] = remappedelement[2] + 1;

			outelement3i += 6;
			outtriangles += 2;
		}
		if (!side[2])
		{
			remappedelement[0] = vertexremap[element[0]];
			remappedelement[2] = vertexremap[element[2]];
			outelement3i[0] = remappedelement[0];
			outelement3i[1] = remappedelement[2];
			outelement3i[2] = remappedelement[2] + 1;
			outelement3i[3] = remappedelement[0];
			outelement3i[4] = remappedelement[2] + 1;
			outelement3i[5] = remappedelement[0] + 1;

			outelement3i += 6;
			outtriangles += 2;
		}
	}
	if (outnumvertices)
		*outnumvertices = outvertices;
	return outtriangles;
}

void R_Shadow_MarkVolumeFromBox(int firsttriangle, int numtris, const float *invertex3f, const int *elements, const vec3_t projectorigin, const vec3_t projectdirection, const vec3_t lightmins, const vec3_t lightmaxs, const vec3_t surfacemins, const vec3_t surfacemaxs)
{
	int t, tend;
	const int *e;
	const float *v[3];
	float normal[3];
	if (!BoxesOverlap(lightmins, lightmaxs, surfacemins, surfacemaxs))
		return;
	tend = firsttriangle + numtris;
	if (BoxInsideBox(surfacemins, surfacemaxs, lightmins, lightmaxs))
	{
		// surface box entirely inside light box, no box cull
		if (projectdirection)
		{
			for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
			{
				TriangleNormal(invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3, normal);
				if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0))
					shadowmarklist[numshadowmark++] = t;
			}
		}
		else
		{
			for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
				if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, invertex3f + e[0] * 3, invertex3f + e[1] * 3, invertex3f + e[2] * 3))
					shadowmarklist[numshadowmark++] = t;
		}
	}
	else
	{
		// surface box not entirely inside light box, cull each triangle
		if (projectdirection)
		{
			for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
			{
				v[0] = invertex3f + e[0] * 3;
				v[1] = invertex3f + e[1] * 3;
				v[2] = invertex3f + e[2] * 3;
				TriangleNormal(v[0], v[1], v[2], normal);
				if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0)
				 && TriangleBBoxOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
					shadowmarklist[numshadowmark++] = t;
			}
		}
		else
		{
			for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
			{
				v[0] = invertex3f + e[0] * 3;
				v[1] = invertex3f + e[1] * 3;
				v[2] = invertex3f + e[2] * 3;
				if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2])
				 && TriangleBBoxOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
					shadowmarklist[numshadowmark++] = t;
			}
		}
	}
}

static qboolean R_Shadow_UseZPass(vec3_t mins, vec3_t maxs)
{
#if 1
	return false;
#else
	if (r_shadow_compilingrtlight || !r_shadow_frontsidecasting.integer || !r_shadow_usezpassifpossible.integer)
		return false;
	// check if the shadow volume intersects the near plane
	//
	// a ray between the eye and light origin may intersect the caster,
	// indicating that the shadow may touch the eye location, however we must
	// test the near plane (a polygon), not merely the eye location, so it is
	// easiest to enlarge the caster bounding shape slightly for this.
	// TODO
	return true;
#endif
}

void R_Shadow_VolumeFromList(int numverts, int numtris, const float *invertex3f, const int *elements, const int *neighbors, const vec3_t projectorigin, const vec3_t projectdirection, float projectdistance, int nummarktris, const int *marktris, vec3_t trismins, vec3_t trismaxs)
{
	int i, tris, outverts;
	if (projectdistance < 0.1)
	{
		Con_Printf("R_Shadow_Volume: projectdistance %f\n", projectdistance);
		return;
	}
	if (!numverts || !nummarktris)
		return;
	// make sure shadowelements is big enough for this volume
	if (maxshadowtriangles < nummarktris*8 || maxshadowvertices < numverts*2)
		R_Shadow_ResizeShadowArrays(numverts, nummarktris, 2, 8);

	if (maxvertexupdate < numverts)
	{
		maxvertexupdate = numverts;
		if (vertexupdate)
			Mem_Free(vertexupdate);
		if (vertexremap)
			Mem_Free(vertexremap);
		vertexupdate = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
		vertexremap = (int *)Mem_Alloc(r_main_mempool, maxvertexupdate * sizeof(int));
		vertexupdatenum = 0;
	}
	vertexupdatenum++;
	if (vertexupdatenum == 0)
	{
		vertexupdatenum = 1;
		memset(vertexupdate, 0, maxvertexupdate * sizeof(int));
		memset(vertexremap, 0, maxvertexupdate * sizeof(int));
	}

	for (i = 0;i < nummarktris;i++)
		shadowmark[marktris[i]] = shadowmarkcount;

	if (r_shadow_compilingrtlight)
	{
		// if we're compiling an rtlight, capture the mesh
		//tris = R_Shadow_ConstructShadowVolume_ZPass(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
		//Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_zpass, NULL, NULL, NULL, shadowvertex3f, NULL, NULL, NULL, NULL, tris, shadowelements);
		tris = R_Shadow_ConstructShadowVolume_ZFail(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
		Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_zfail, NULL, NULL, NULL, shadowvertex3f, NULL, NULL, NULL, NULL, tris, shadowelements);
	}
	else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_VISIBLEVOLUMES)
	{
		tris = R_Shadow_ConstructShadowVolume_ZFail(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
		R_Mesh_PrepareVertices_Vertex3f(outverts, shadowvertex3f, NULL, 0);
		R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
	}
	else
	{
		// decide which type of shadow to generate and set stencil mode
		R_Shadow_RenderMode_StencilShadowVolumes(R_Shadow_UseZPass(trismins, trismaxs));
		// generate the sides or a solid volume, depending on type
		if (r_shadow_rendermode >= R_SHADOW_RENDERMODE_ZPASS_STENCIL && r_shadow_rendermode <= R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE)
			tris = R_Shadow_ConstructShadowVolume_ZPass(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
		else
			tris = R_Shadow_ConstructShadowVolume_ZFail(numverts, numtris, elements, neighbors, invertex3f, &outverts, shadowelements, shadowvertex3f, projectorigin, projectdirection, projectdistance, nummarktris, marktris);
		r_refdef.stats[r_stat_lights_dynamicshadowtriangles] += tris;
		r_refdef.stats[r_stat_lights_shadowtriangles] += tris;
		if (r_shadow_rendermode == R_SHADOW_RENDERMODE_ZPASS_STENCIL)
		{
			// increment stencil if frontface is infront of depthbuffer
			GL_CullFace(r_refdef.view.cullface_front);
			R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_DECR, GL_ALWAYS, 128, 255);
			R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
			// decrement stencil if backface is infront of depthbuffer
			GL_CullFace(r_refdef.view.cullface_back);
			R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_INCR, GL_ALWAYS, 128, 255);
		}
		else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_ZFAIL_STENCIL)
		{
			// decrement stencil if backface is behind depthbuffer
			GL_CullFace(r_refdef.view.cullface_front);
			R_SetStencil(true, 255, GL_KEEP, GL_DECR, GL_KEEP, GL_ALWAYS, 128, 255);
			R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
			// increment stencil if frontface is behind depthbuffer
			GL_CullFace(r_refdef.view.cullface_back);
			R_SetStencil(true, 255, GL_KEEP, GL_INCR, GL_KEEP, GL_ALWAYS, 128, 255);
		}
		R_Mesh_PrepareVertices_Vertex3f(outverts, shadowvertex3f, NULL, 0);
		R_Mesh_Draw(0, outverts, 0, tris, shadowelements, NULL, 0, NULL, NULL, 0);
	}
}

int R_Shadow_CalcTriangleSideMask(const vec3_t p1, const vec3_t p2, const vec3_t p3, float bias)
{
	// p1, p2, p3 are in the cubemap's local coordinate system
	// bias = border/(size - border)
	int mask = 0x3F;

	float dp1 = p1[0] + p1[1], dn1 = p1[0] - p1[1], ap1 = fabs(dp1), an1 = fabs(dn1),
		  dp2 = p2[0] + p2[1], dn2 = p2[0] - p2[1], ap2 = fabs(dp2), an2 = fabs(dn2),
		  dp3 = p3[0] + p3[1], dn3 = p3[0] - p3[1], ap3 = fabs(dp3), an3 = fabs(dn3);
	if(ap1 > bias*an1 && ap2 > bias*an2 && ap3 > bias*an3)
		mask &= (3<<4)
			| (dp1 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2))
			| (dp2 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2))
			| (dp3 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
	if(an1 > bias*ap1 && an2 > bias*ap2 && an3 > bias*ap3)
		mask &= (3<<4)
			| (dn1 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2))
			| (dn2 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2))			
			| (dn3 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));

	dp1 = p1[1] + p1[2], dn1 = p1[1] - p1[2], ap1 = fabs(dp1), an1 = fabs(dn1),
	dp2 = p2[1] + p2[2], dn2 = p2[1] - p2[2], ap2 = fabs(dp2), an2 = fabs(dn2),
	dp3 = p3[1] + p3[2], dn3 = p3[1] - p3[2], ap3 = fabs(dp3), an3 = fabs(dn3);
	if(ap1 > bias*an1 && ap2 > bias*an2 && ap3 > bias*an3)
		mask &= (3<<0)
			| (dp1 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4))
			| (dp2 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4))			
			| (dp3 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
	if(an1 > bias*ap1 && an2 > bias*ap2 && an3 > bias*ap3)
		mask &= (3<<0)
			| (dn1 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4))
			| (dn2 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4))
			| (dn3 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));

	dp1 = p1[2] + p1[0], dn1 = p1[2] - p1[0], ap1 = fabs(dp1), an1 = fabs(dn1),
	dp2 = p2[2] + p2[0], dn2 = p2[2] - p2[0], ap2 = fabs(dp2), an2 = fabs(dn2),
	dp3 = p3[2] + p3[0], dn3 = p3[2] - p3[0], ap3 = fabs(dp3), an3 = fabs(dn3);
	if(ap1 > bias*an1 && ap2 > bias*an2 && ap3 > bias*an3)
		mask &= (3<<2)
			| (dp1 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0))
			| (dp2 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0))
			| (dp3 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
	if(an1 > bias*ap1 && an2 > bias*ap2 && an3 > bias*ap3)
		mask &= (3<<2)
			| (dn1 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0))
			| (dn2 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0))
			| (dn3 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));

	return mask;
}

static int R_Shadow_CalcBBoxSideMask(const vec3_t mins, const vec3_t maxs, const matrix4x4_t *worldtolight, const matrix4x4_t *radiustolight, float bias)
{
	vec3_t center, radius, lightcenter, lightradius, pmin, pmax;
	float dp1, dn1, ap1, an1, dp2, dn2, ap2, an2;
	int mask = 0x3F;

	VectorSubtract(maxs, mins, radius);
	VectorScale(radius, 0.5f, radius);
	VectorAdd(mins, radius, center);
	Matrix4x4_Transform(worldtolight, center, lightcenter);
	Matrix4x4_Transform3x3(radiustolight, radius, lightradius);
	VectorSubtract(lightcenter, lightradius, pmin);
	VectorAdd(lightcenter, lightradius, pmax);

	dp1 = pmax[0] + pmax[1], dn1 = pmax[0] - pmin[1], ap1 = fabs(dp1), an1 = fabs(dn1),
	dp2 = pmin[0] + pmin[1], dn2 = pmin[0] - pmax[1], ap2 = fabs(dp2), an2 = fabs(dn2);
	if(ap1 > bias*an1 && ap2 > bias*an2)
		mask &= (3<<4)
			| (dp1 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2))
			| (dp2 >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
	if(an1 > bias*ap1 && an2 > bias*ap2)
		mask &= (3<<4)
			| (dn1 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2))
			| (dn2 >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));

	dp1 = pmax[1] + pmax[2], dn1 = pmax[1] - pmin[2], ap1 = fabs(dp1), an1 = fabs(dn1),
	dp2 = pmin[1] + pmin[2], dn2 = pmin[1] - pmax[2], ap2 = fabs(dp2), an2 = fabs(dn2);
	if(ap1 > bias*an1 && ap2 > bias*an2)
		mask &= (3<<0)
			| (dp1 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4))
			| (dp2 >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
	if(an1 > bias*ap1 && an2 > bias*ap2)
		mask &= (3<<0)
			| (dn1 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4))
			| (dn2 >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));

	dp1 = pmax[2] + pmax[0], dn1 = pmax[2] - pmin[0], ap1 = fabs(dp1), an1 = fabs(dn1),
	dp2 = pmin[2] + pmin[0], dn2 = pmin[2] - pmax[0], ap2 = fabs(dp2), an2 = fabs(dn2);
	if(ap1 > bias*an1 && ap2 > bias*an2)
		mask &= (3<<2)
			| (dp1 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0))
			| (dp2 >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
	if(an1 > bias*ap1 && an2 > bias*ap2)
		mask &= (3<<2)
			| (dn1 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0))
			| (dn2 >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));

	return mask;
}

#define R_Shadow_CalcEntitySideMask(ent, worldtolight, radiustolight, bias) R_Shadow_CalcBBoxSideMask((ent)->mins, (ent)->maxs, worldtolight, radiustolight, bias)

int R_Shadow_CalcSphereSideMask(const vec3_t p, float radius, float bias)
{
	// p is in the cubemap's local coordinate system
	// bias = border/(size - border)
	float dxyp = p[0] + p[1], dxyn = p[0] - p[1], axyp = fabs(dxyp), axyn = fabs(dxyn);
	float dyzp = p[1] + p[2], dyzn = p[1] - p[2], ayzp = fabs(dyzp), ayzn = fabs(dyzn);
	float dzxp = p[2] + p[0], dzxn = p[2] - p[0], azxp = fabs(dzxp), azxn = fabs(dzxn);
	int mask = 0x3F;
	if(axyp > bias*axyn + radius) mask &= dxyp < 0 ? ~((1<<0)|(1<<2)) : ~((2<<0)|(2<<2));
	if(axyn > bias*axyp + radius) mask &= dxyn < 0 ? ~((1<<0)|(2<<2)) : ~((2<<0)|(1<<2));
	if(ayzp > bias*ayzn + radius) mask &= dyzp < 0 ? ~((1<<2)|(1<<4)) : ~((2<<2)|(2<<4));
	if(ayzn > bias*ayzp + radius) mask &= dyzn < 0 ? ~((1<<2)|(2<<4)) : ~((2<<2)|(1<<4));
	if(azxp > bias*azxn + radius) mask &= dzxp < 0 ? ~((1<<4)|(1<<0)) : ~((2<<4)|(2<<0));
	if(azxn > bias*azxp + radius) mask &= dzxn < 0 ? ~((1<<4)|(2<<0)) : ~((2<<4)|(1<<0));
	return mask;
}

static int R_Shadow_CullFrustumSides(rtlight_t *rtlight, float size, float border)
{
	int i;
	vec3_t o, p, n;
	int sides = 0x3F, masks[6] = { 3<<4, 3<<4, 3<<0, 3<<0, 3<<2, 3<<2 };
	float scale = (size - 2*border)/size, len;
	float bias = border / (float)(size - border), dp, dn, ap, an;
	// check if cone enclosing side would cross frustum plane
	scale = 2 / (scale*scale + 2);
	Matrix4x4_OriginFromMatrix(&rtlight->matrix_lighttoworld, o);
	for (i = 0;i < 5;i++)
	{
		if (PlaneDiff(o, &r_refdef.view.frustum[i]) > -0.03125)
			continue;
		Matrix4x4_Transform3x3(&rtlight->matrix_worldtolight, r_refdef.view.frustum[i].normal, n);
		len = scale*VectorLength2(n);
		if(n[0]*n[0] > len) sides &= n[0] < 0 ? ~(1<<0) : ~(2 << 0);
		if(n[1]*n[1] > len) sides &= n[1] < 0 ? ~(1<<2) : ~(2 << 2);
		if(n[2]*n[2] > len) sides &= n[2] < 0 ? ~(1<<4) : ~(2 << 4);
	}
	if (PlaneDiff(o, &r_refdef.view.frustum[4]) >= r_refdef.farclip - r_refdef.nearclip + 0.03125)
	{
		Matrix4x4_Transform3x3(&rtlight->matrix_worldtolight, r_refdef.view.frustum[4].normal, n);
		len = scale*VectorLength2(n);
		if(n[0]*n[0] > len) sides &= n[0] >= 0 ? ~(1<<0) : ~(2 << 0);
		if(n[1]*n[1] > len) sides &= n[1] >= 0 ? ~(1<<2) : ~(2 << 2);
		if(n[2]*n[2] > len) sides &= n[2] >= 0 ? ~(1<<4) : ~(2 << 4);
	}
	// this next test usually clips off more sides than the former, but occasionally clips fewer/different ones, so do both and combine results
	// check if frustum corners/origin cross plane sides
#if 1
	// infinite version, assumes frustum corners merely give direction and extend to infinite distance
	Matrix4x4_Transform(&rtlight->matrix_worldtolight, r_refdef.view.origin, p);
	dp = p[0] + p[1], dn = p[0] - p[1], ap = fabs(dp), an = fabs(dn);
	masks[0] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
	masks[1] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
	dp = p[1] + p[2], dn = p[1] - p[2], ap = fabs(dp), an = fabs(dn);
	masks[2] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
	masks[3] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
	dp = p[2] + p[0], dn = p[2] - p[0], ap = fabs(dp), an = fabs(dn);
	masks[4] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
	masks[5] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
	for (i = 0;i < 4;i++)
	{
		Matrix4x4_Transform(&rtlight->matrix_worldtolight, r_refdef.view.frustumcorner[i], n);
		VectorSubtract(n, p, n);
		dp = n[0] + n[1], dn = n[0] - n[1], ap = fabs(dp), an = fabs(dn);
		if(ap > 0) masks[0] |= dp >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2);
		if(an > 0) masks[1] |= dn >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2);
		dp = n[1] + n[2], dn = n[1] - n[2], ap = fabs(dp), an = fabs(dn);
		if(ap > 0) masks[2] |= dp >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4);
		if(an > 0) masks[3] |= dn >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4);
		dp = n[2] + n[0], dn = n[2] - n[0], ap = fabs(dp), an = fabs(dn);
		if(ap > 0) masks[4] |= dp >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0);
		if(an > 0) masks[5] |= dn >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0);
	}
#else
	// finite version, assumes corners are a finite distance from origin dependent on far plane
	for (i = 0;i < 5;i++)
	{
		Matrix4x4_Transform(&rtlight->matrix_worldtolight, !i ? r_refdef.view.origin : r_refdef.view.frustumcorner[i-1], p);
		dp = p[0] + p[1], dn = p[0] - p[1], ap = fabs(dp), an = fabs(dn);
		masks[0] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<0)|(1<<2) : (2<<0)|(2<<2));
		masks[1] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<0)|(2<<2) : (2<<0)|(1<<2));
		dp = p[1] + p[2], dn = p[1] - p[2], ap = fabs(dp), an = fabs(dn);
		masks[2] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<2)|(1<<4) : (2<<2)|(2<<4));
		masks[3] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<2)|(2<<4) : (2<<2)|(1<<4));
		dp = p[2] + p[0], dn = p[2] - p[0], ap = fabs(dp), an = fabs(dn);
		masks[4] |= ap <= bias*an ? 0x3F : (dp >= 0 ? (1<<4)|(1<<0) : (2<<4)|(2<<0));
		masks[5] |= an <= bias*ap ? 0x3F : (dn >= 0 ? (1<<4)|(2<<0) : (2<<4)|(1<<0));
	}
#endif
	return sides & masks[0] & masks[1] & masks[2] & masks[3] & masks[4] & masks[5];
}

int R_Shadow_ChooseSidesFromBox(int firsttriangle, int numtris, const float *invertex3f, const int *elements, const matrix4x4_t *worldtolight, const vec3_t projectorigin, const vec3_t projectdirection, const vec3_t lightmins, const vec3_t lightmaxs, const vec3_t surfacemins, const vec3_t surfacemaxs, int *totals)
{
	int t, tend;
	const int *e;
	const float *v[3];
	float normal[3];
	vec3_t p[3];
	float bias;
	int mask, surfacemask = 0;
	if (!BoxesOverlap(lightmins, lightmaxs, surfacemins, surfacemaxs))
		return 0;
	bias = r_shadow_shadowmapborder / (float)(r_shadow_shadowmapmaxsize - r_shadow_shadowmapborder);
	tend = firsttriangle + numtris;
	if (BoxInsideBox(surfacemins, surfacemaxs, lightmins, lightmaxs))
	{
		// surface box entirely inside light box, no box cull
		if (projectdirection)
		{
			for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
			{
				v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3, v[2] = invertex3f + e[2] * 3;
				TriangleNormal(v[0], v[1], v[2], normal);
				if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0))
				{
					Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
					mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
					surfacemask |= mask;
					if(totals)
					{
						totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
						shadowsides[numshadowsides] = mask;
						shadowsideslist[numshadowsides++] = t;
					}
				}
			}
		}
		else
		{
			for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
			{
				v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3,	v[2] = invertex3f + e[2] * 3;
				if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2]))
				{
					Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
					mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
					surfacemask |= mask;
					if(totals)
					{
						totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
						shadowsides[numshadowsides] = mask;
						shadowsideslist[numshadowsides++] = t;
					}
				}
			}
		}
	}
	else
	{
		// surface box not entirely inside light box, cull each triangle
		if (projectdirection)
		{
			for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
			{
				v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3,	v[2] = invertex3f + e[2] * 3;
				TriangleNormal(v[0], v[1], v[2], normal);
				if (r_shadow_frontsidecasting.integer == (DotProduct(normal, projectdirection) < 0)
				 && TriangleBBoxOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
				{
					Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
					mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
					surfacemask |= mask;
					if(totals)
					{
						totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
						shadowsides[numshadowsides] = mask;
						shadowsideslist[numshadowsides++] = t;
					}
				}
			}
		}
		else
		{
			for (t = firsttriangle, e = elements + t * 3;t < tend;t++, e += 3)
			{
				v[0] = invertex3f + e[0] * 3, v[1] = invertex3f + e[1] * 3, v[2] = invertex3f + e[2] * 3;
				if (r_shadow_frontsidecasting.integer == PointInfrontOfTriangle(projectorigin, v[0], v[1], v[2])
				 && TriangleBBoxOverlapsBox(v[0], v[1], v[2], lightmins, lightmaxs))
				{
					Matrix4x4_Transform(worldtolight, v[0], p[0]), Matrix4x4_Transform(worldtolight, v[1], p[1]), Matrix4x4_Transform(worldtolight, v[2], p[2]);
					mask = R_Shadow_CalcTriangleSideMask(p[0], p[1], p[2], bias);
					surfacemask |= mask;
					if(totals)
					{
						totals[0] += mask&1, totals[1] += (mask>>1)&1, totals[2] += (mask>>2)&1, totals[3] += (mask>>3)&1, totals[4] += (mask>>4)&1, totals[5] += mask>>5;
						shadowsides[numshadowsides] = mask;
						shadowsideslist[numshadowsides++] = t;
					}
				}
			}
		}
	}
	return surfacemask;
}

void R_Shadow_ShadowMapFromList(int numverts, int numtris, const float *vertex3f, const int *elements, int numsidetris, const int *sidetotals, const unsigned char *sides, const int *sidetris)
{
	int i, j, outtriangles = 0;
	int *outelement3i[6];
	if (!numverts || !numsidetris || !r_shadow_compilingrtlight)
		return;
	outtriangles = sidetotals[0] + sidetotals[1] + sidetotals[2] + sidetotals[3] + sidetotals[4] + sidetotals[5];
	// make sure shadowelements is big enough for this mesh
	if (maxshadowtriangles < outtriangles)
		R_Shadow_ResizeShadowArrays(0, outtriangles, 0, 1);

	// compute the offset and size of the separate index lists for each cubemap side
	outtriangles = 0;
	for (i = 0;i < 6;i++)
	{
		outelement3i[i] = shadowelements + outtriangles * 3;
		r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap->sideoffsets[i] = outtriangles;
		r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap->sidetotals[i] = sidetotals[i];
		outtriangles += sidetotals[i];
	}

	// gather up the (sparse) triangles into separate index lists for each cubemap side
	for (i = 0;i < numsidetris;i++)
	{
		const int *element = elements + sidetris[i] * 3;
		for (j = 0;j < 6;j++)
		{
			if (sides[i] & (1 << j))
			{
				outelement3i[j][0] = element[0];
				outelement3i[j][1] = element[1];
				outelement3i[j][2] = element[2];
				outelement3i[j] += 3;
			}
		}
	}
			
	Mod_ShadowMesh_AddMesh(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap, NULL, NULL, NULL, vertex3f, NULL, NULL, NULL, NULL, outtriangles, shadowelements);
}

static void R_Shadow_MakeTextures_MakeCorona(void)
{
	float dx, dy;
	int x, y, a;
	unsigned char pixels[32][32][4];
	for (y = 0;y < 32;y++)
	{
		dy = (y - 15.5f) * (1.0f / 16.0f);
		for (x = 0;x < 32;x++)
		{
			dx = (x - 15.5f) * (1.0f / 16.0f);
			a = (int)(((1.0f / (dx * dx + dy * dy + 0.2f)) - (1.0f / (1.0f + 0.2))) * 32.0f / (1.0f / (1.0f + 0.2)));
			a = bound(0, a, 255);
			pixels[y][x][0] = a;
			pixels[y][x][1] = a;
			pixels[y][x][2] = a;
			pixels[y][x][3] = 255;
		}
	}
	r_shadow_lightcorona = R_SkinFrame_LoadInternalBGRA("lightcorona", TEXF_FORCELINEAR, &pixels[0][0][0], 32, 32, false);
}

static unsigned int R_Shadow_MakeTextures_SamplePoint(float x, float y, float z)
{
	float dist = sqrt(x*x+y*y+z*z);
	float intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
	// note this code could suffer byte order issues except that it is multiplying by an integer that reads the same both ways
	return (unsigned char)bound(0, intensity * 256.0f, 255) * 0x01010101;
}

static void R_Shadow_MakeTextures(void)
{
	int x, y, z;
	float intensity, dist;
	unsigned int *data;
	R_Shadow_FreeShadowMaps();
	R_FreeTexturePool(&r_shadow_texturepool);
	r_shadow_texturepool = R_AllocTexturePool();
	r_shadow_attenlinearscale = r_shadow_lightattenuationlinearscale.value;
	r_shadow_attendividebias = r_shadow_lightattenuationdividebias.value;
	data = (unsigned int *)Mem_Alloc(tempmempool, max(max(ATTEN3DSIZE*ATTEN3DSIZE*ATTEN3DSIZE, ATTEN2DSIZE*ATTEN2DSIZE), ATTEN1DSIZE) * 4);
	// the table includes one additional value to avoid the need to clamp indexing due to minor math errors
	for (x = 0;x <= ATTENTABLESIZE;x++)
	{
		dist = (x + 0.5f) * (1.0f / ATTENTABLESIZE) * (1.0f / 0.9375);
		intensity = dist < 1 ? ((1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) : 0;
		r_shadow_attentable[x] = bound(0, intensity, 1);
	}
	// 1D gradient texture
	for (x = 0;x < ATTEN1DSIZE;x++)
		data[x] = R_Shadow_MakeTextures_SamplePoint((x + 0.5f) * (1.0f / ATTEN1DSIZE) * (1.0f / 0.9375), 0, 0);
	r_shadow_attenuationgradienttexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation1d", ATTEN1DSIZE, 1, (unsigned char *)data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, -1, NULL);
	// 2D circle texture
	for (y = 0;y < ATTEN2DSIZE;y++)
		for (x = 0;x < ATTEN2DSIZE;x++)
			data[y*ATTEN2DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN2DSIZE) - 1.0f) * (1.0f / 0.9375), 0);
	r_shadow_attenuation2dtexture = R_LoadTexture2D(r_shadow_texturepool, "attenuation2d", ATTEN2DSIZE, ATTEN2DSIZE, (unsigned char *)data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, -1, NULL);
	// 3D sphere texture
	if (r_shadow_texture3d.integer && vid.support.ext_texture_3d)
	{
		for (z = 0;z < ATTEN3DSIZE;z++)
			for (y = 0;y < ATTEN3DSIZE;y++)
				for (x = 0;x < ATTEN3DSIZE;x++)
					data[(z*ATTEN3DSIZE+y)*ATTEN3DSIZE+x] = R_Shadow_MakeTextures_SamplePoint(((x + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((y + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375), ((z + 0.5f) * (2.0f / ATTEN3DSIZE) - 1.0f) * (1.0f / 0.9375));
		r_shadow_attenuation3dtexture = R_LoadTexture3D(r_shadow_texturepool, "attenuation3d", ATTEN3DSIZE, ATTEN3DSIZE, ATTEN3DSIZE, (unsigned char *)data, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, -1, NULL);
	}
	else
		r_shadow_attenuation3dtexture = NULL;
	Mem_Free(data);

	R_Shadow_MakeTextures_MakeCorona();

	// Editor light sprites
	r_editlights_sprcursor = R_SkinFrame_LoadInternal8bit("gfx/editlights/cursor", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
	"................"
	".3............3."
	"..5...2332...5.."
	"...7.3....3.7..."
	"....7......7...."
	"...3.7....7.3..."
	"..2...7..7...2.."
	"..3..........3.."
	"..3..........3.."
	"..2...7..7...2.."
	"...3.7....7.3..."
	"....7......7...."
	"...7.3....3.7..."
	"..5...2332...5.."
	".3............3."
	"................"
	, 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
	r_editlights_sprlight = R_SkinFrame_LoadInternal8bit("gfx/editlights/light", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
	"................"
	"................"
	"......1111......"
	"....11233211...."
	"...1234554321..."
	"...1356776531..."
	"..124677776421.."
	"..135777777531.."
	"..135777777531.."
	"..124677776421.."
	"...1356776531..."
	"...1234554321..."
	"....11233211...."
	"......1111......"
	"................"
	"................"
	, 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
	r_editlights_sprnoshadowlight = R_SkinFrame_LoadInternal8bit("gfx/editlights/noshadow", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
	"................"
	"................"
	"......1111......"
	"....11233211...."
	"...1234554321..."
	"...1356226531..."
	"..12462..26421.."
	"..1352....2531.."
	"..1352....2531.."
	"..12462..26421.."
	"...1356226531..."
	"...1234554321..."
	"....11233211...."
	"......1111......"
	"................"
	"................"
	, 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
	r_editlights_sprcubemaplight = R_SkinFrame_LoadInternal8bit("gfx/editlights/cubemaplight", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
	"................"
	"................"
	"......2772......"
	"....27755772...."
	"..277533335772.."
	"..753333333357.."
	"..777533335777.."
	"..735775577537.."
	"..733357753337.."
	"..733337733337.."
	"..753337733357.."
	"..277537735772.."
	"....27777772...."
	"......2772......"
	"................"
	"................"
	, 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
	r_editlights_sprcubemapnoshadowlight = R_SkinFrame_LoadInternal8bit("gfx/editlights/cubemapnoshadowlight", TEXF_ALPHA | TEXF_CLAMP, (const unsigned char *)
	"................"
	"................"
	"......2772......"
	"....27722772...."
	"..2772....2772.."
	"..72........27.."
	"..7772....2777.."
	"..7.27722772.7.."
	"..7...2772...7.."
	"..7....77....7.."
	"..72...77...27.."
	"..2772.77.2772.."
	"....27777772...."
	"......2772......"
	"................"
	"................"
	, 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
	r_editlights_sprselection = R_SkinFrame_LoadInternal8bit("gfx/editlights/selection", TEXF_ALPHA | TEXF_CLAMP, (unsigned char *)
	"................"
	".777752..257777."
	".742........247."
	".72..........27."
	".7............7."
	".5............5."
	".2............2."
	"................"
	"................"
	".2............2."
	".5............5."
	".7............7."
	".72..........27."
	".742........247."
	".777752..257777."
	"................"
	, 16, 16, palette_bgra_embeddedpic, palette_bgra_embeddedpic);
}

void R_Shadow_ValidateCvars(void)
{
	if (r_shadow_texture3d.integer && !vid.support.ext_texture_3d)
		Cvar_SetValueQuick(&r_shadow_texture3d, 0);
	if (gl_ext_separatestencil.integer && !vid.support.ati_separate_stencil)
		Cvar_SetValueQuick(&gl_ext_separatestencil, 0);
	if (gl_ext_stenciltwoside.integer && !vid.support.ext_stencil_two_side)
		Cvar_SetValueQuick(&gl_ext_stenciltwoside, 0);
}

void R_Shadow_RenderMode_Begin(void)
{
#if 0
	GLint drawbuffer;
	GLint readbuffer;
#endif
	R_Shadow_ValidateCvars();

	if (!r_shadow_attenuation2dtexture
	 || (!r_shadow_attenuation3dtexture && r_shadow_texture3d.integer)
	 || r_shadow_lightattenuationdividebias.value != r_shadow_attendividebias
	 || r_shadow_lightattenuationlinearscale.value != r_shadow_attenlinearscale)
		R_Shadow_MakeTextures();

	CHECKGLERROR
	R_Mesh_ResetTextureState();
	GL_BlendFunc(GL_ONE, GL_ZERO);
	GL_DepthRange(0, 1);
	GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
	GL_DepthTest(true);
	GL_DepthMask(false);
	GL_Color(0, 0, 0, 1);
	GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
	
	r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;

	if (gl_ext_separatestencil.integer && vid.support.ati_separate_stencil)
	{
		r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_ZPASS_SEPARATESTENCIL;
		r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_ZFAIL_SEPARATESTENCIL;
	}
	else if (gl_ext_stenciltwoside.integer && vid.support.ext_stencil_two_side)
	{
		r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE;
		r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_ZFAIL_STENCILTWOSIDE;
	}
	else
	{
		r_shadow_shadowingrendermode_zpass = R_SHADOW_RENDERMODE_ZPASS_STENCIL;
		r_shadow_shadowingrendermode_zfail = R_SHADOW_RENDERMODE_ZFAIL_STENCIL;
	}

	switch(vid.renderpath)
	{
	case RENDERPATH_GL20:
	case RENDERPATH_D3D9:
	case RENDERPATH_D3D10:
	case RENDERPATH_D3D11:
	case RENDERPATH_SOFT:
	case RENDERPATH_GLES2:
		r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_GLSL;
		break;
	case RENDERPATH_GL11:
	case RENDERPATH_GL13:
	case RENDERPATH_GLES1:
		if (r_textureunits.integer >= 2 && vid.texunits >= 2 && r_shadow_texture3d.integer && r_shadow_attenuation3dtexture)
			r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN;
		else if (r_textureunits.integer >= 3 && vid.texunits >= 3)
			r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN;
		else if (r_textureunits.integer >= 2 && vid.texunits >= 2)
			r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN;
		else
			r_shadow_lightingrendermode = R_SHADOW_RENDERMODE_LIGHT_VERTEX;
		break;
	}

	CHECKGLERROR
#if 0
	qglGetIntegerv(GL_DRAW_BUFFER, &drawbuffer);CHECKGLERROR
	qglGetIntegerv(GL_READ_BUFFER, &readbuffer);CHECKGLERROR
	r_shadow_drawbuffer = drawbuffer;
	r_shadow_readbuffer = readbuffer;
#endif
	r_shadow_cullface_front = r_refdef.view.cullface_front;
	r_shadow_cullface_back = r_refdef.view.cullface_back;
}

void R_Shadow_RenderMode_ActiveLight(const rtlight_t *rtlight)
{
	rsurface.rtlight = rtlight;
}

void R_Shadow_RenderMode_Reset(void)
{
	R_Mesh_ResetTextureState();
	R_Mesh_SetRenderTargets(r_shadow_fb_fbo, r_shadow_fb_depthtexture, r_shadow_fb_colortexture, NULL, NULL, NULL);
	R_SetViewport(&r_refdef.view.viewport);
	GL_Scissor(r_shadow_lightscissor[0], r_shadow_lightscissor[1], r_shadow_lightscissor[2], r_shadow_lightscissor[3]);
	GL_DepthRange(0, 1);
	GL_DepthTest(true);
	GL_DepthMask(false);
	GL_DepthFunc(GL_LEQUAL);
	GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);CHECKGLERROR
	r_refdef.view.cullface_front = r_shadow_cullface_front;
	r_refdef.view.cullface_back = r_shadow_cullface_back;
	GL_CullFace(r_refdef.view.cullface_back);
	GL_Color(1, 1, 1, 1);
	GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
	GL_BlendFunc(GL_ONE, GL_ZERO);
	R_SetupShader_Generic_NoTexture(false, false);
	r_shadow_usingshadowmap2d = false;
	R_SetStencil(false, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_ALWAYS, 128, 255);
}

void R_Shadow_ClearStencil(void)
{
	GL_Clear(GL_STENCIL_BUFFER_BIT, NULL, 1.0f, 128);
	r_refdef.stats[r_stat_lights_clears]++;
}

void R_Shadow_RenderMode_StencilShadowVolumes(qboolean zpass)
{
	r_shadow_rendermode_t mode = zpass ? r_shadow_shadowingrendermode_zpass : r_shadow_shadowingrendermode_zfail;
	if (r_shadow_rendermode == mode)
		return;
	R_Shadow_RenderMode_Reset();
	GL_DepthFunc(GL_LESS);
	GL_ColorMask(0, 0, 0, 0);
	GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
	GL_CullFace(GL_NONE);
	R_SetupShader_DepthOrShadow(false, false, false); // FIXME test if we have a skeletal model?
	r_shadow_rendermode = mode;
	switch(mode)
	{
	default:
		break;
	case R_SHADOW_RENDERMODE_ZPASS_STENCILTWOSIDE:
	case R_SHADOW_RENDERMODE_ZPASS_SEPARATESTENCIL:
		R_SetStencilSeparate(true, 255, GL_KEEP, GL_KEEP, GL_INCR, GL_KEEP, GL_KEEP, GL_DECR, GL_ALWAYS, GL_ALWAYS, 128, 255);
		break;
	case R_SHADOW_RENDERMODE_ZFAIL_STENCILTWOSIDE:
	case R_SHADOW_RENDERMODE_ZFAIL_SEPARATESTENCIL:
		R_SetStencilSeparate(true, 255, GL_KEEP, GL_INCR, GL_KEEP, GL_KEEP, GL_DECR, GL_KEEP, GL_ALWAYS, GL_ALWAYS, 128, 255);
		break;
	}
}

static void R_Shadow_MakeVSDCT(void)
{
	// maps to a 2x3 texture rectangle with normalized coordinates
	// +-
	// XX
	// YY
	// ZZ
	// stores abs(dir.xy), offset.xy/2.5
	unsigned char data[4*6] =
	{
		255, 0, 0x33, 0x33, // +X: <1, 0>, <0.5, 0.5>
		255, 0, 0x99, 0x33, // -X: <1, 0>, <1.5, 0.5>
		0, 255, 0x33, 0x99, // +Y: <0, 1>, <0.5, 1.5>
		0, 255, 0x99, 0x99, // -Y: <0, 1>, <1.5, 1.5>
		0,   0, 0x33, 0xFF, // +Z: <0, 0>, <0.5, 2.5>
		0,   0, 0x99, 0xFF, // -Z: <0, 0>, <1.5, 2.5>
	};
	r_shadow_shadowmapvsdcttexture = R_LoadTextureCubeMap(r_shadow_texturepool, "shadowmapvsdct", 1, data, TEXTYPE_RGBA, TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALPHA, -1, NULL);
}

static void R_Shadow_MakeShadowMap(int texturesize)
{
	switch (r_shadow_shadowmode)
	{
	case R_SHADOW_SHADOWMODE_SHADOWMAP2D:
		if (r_shadow_shadowmap2ddepthtexture) return;
		if (r_fb.usedepthtextures)
		{
			r_shadow_shadowmap2ddepthtexture = R_LoadTextureShadowMap2D(r_shadow_texturepool, "shadowmap", texturesize, texturesize, r_shadow_shadowmapdepthbits >= 24 ? (r_shadow_shadowmapsampler ? TEXTYPE_SHADOWMAP24_COMP : TEXTYPE_SHADOWMAP24_RAW) : (r_shadow_shadowmapsampler ? TEXTYPE_SHADOWMAP16_COMP : TEXTYPE_SHADOWMAP16_RAW), r_shadow_shadowmapsampler);
			r_shadow_shadowmap2ddepthbuffer = NULL;
			r_shadow_fbo2d = R_Mesh_CreateFramebufferObject(r_shadow_shadowmap2ddepthtexture, NULL, NULL, NULL, NULL);
		}
		else
		{
			r_shadow_shadowmap2ddepthtexture = R_LoadTexture2D(r_shadow_texturepool, "shadowmaprendertarget", texturesize, texturesize, NULL, TEXTYPE_COLORBUFFER, TEXF_RENDERTARGET | TEXF_FORCENEAREST | TEXF_CLAMP | TEXF_ALPHA, -1, NULL);
			r_shadow_shadowmap2ddepthbuffer = R_LoadTextureRenderBuffer(r_shadow_texturepool, "shadowmap", texturesize, texturesize, r_shadow_shadowmapdepthbits >= 24 ? TEXTYPE_DEPTHBUFFER24 : TEXTYPE_DEPTHBUFFER16);
			r_shadow_fbo2d = R_Mesh_CreateFramebufferObject(r_shadow_shadowmap2ddepthbuffer, r_shadow_shadowmap2ddepthtexture, NULL, NULL, NULL);
		}
		break;
	default:
		return;
	}
}

void R_Shadow_ClearShadowMapTexture(void)
{
	r_viewport_t viewport;
	float clearcolor[4];

	// if they don't exist, create our textures now
	if (!r_shadow_shadowmap2ddepthtexture)
		R_Shadow_MakeShadowMap(r_shadow_shadowmaptexturesize);
	if (r_shadow_shadowmapvsdct && !r_shadow_shadowmapvsdcttexture)
		R_Shadow_MakeVSDCT();

	// we're setting up to render shadowmaps, so change rendermode
	r_shadow_rendermode = R_SHADOW_RENDERMODE_SHADOWMAP2D;

	R_Mesh_ResetTextureState();
	R_Shadow_RenderMode_Reset();
	if (r_shadow_shadowmap2ddepthbuffer)
		R_Mesh_SetRenderTargets(r_shadow_fbo2d, r_shadow_shadowmap2ddepthbuffer, r_shadow_shadowmap2ddepthtexture, NULL, NULL, NULL);
	else
		R_Mesh_SetRenderTargets(r_shadow_fbo2d, r_shadow_shadowmap2ddepthtexture, NULL, NULL, NULL, NULL);
	R_SetupShader_DepthOrShadow(true, r_shadow_shadowmap2ddepthbuffer != NULL, false); // FIXME test if we have a skeletal model?
	GL_PolygonOffset(r_shadow_shadowmapping_polygonfactor.value, r_shadow_shadowmapping_polygonoffset.value);
	GL_DepthMask(true);
	GL_DepthTest(true);

	// we have to set a viewport to clear anything in some renderpaths (D3D)
	R_Viewport_InitOrtho(&viewport, &identitymatrix, 0, 0, r_shadow_shadowmaptexturesize, r_shadow_shadowmaptexturesize, 0, 0, 1.0, 1.0, 0.001f, 1.0f, NULL);
	R_SetViewport(&viewport);
	GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
	if (r_shadow_shadowmap2ddepthbuffer)
		GL_ColorMask(1, 1, 1, 1);
	else
		GL_ColorMask(0, 0, 0, 0);
	switch (vid.renderpath)
	{
	case RENDERPATH_GL11:
	case RENDERPATH_GL13:
	case RENDERPATH_GL20:
	case RENDERPATH_SOFT:
	case RENDERPATH_GLES1:
	case RENDERPATH_GLES2:
		GL_CullFace(r_refdef.view.cullface_back);
		break;
	case RENDERPATH_D3D9:
	case RENDERPATH_D3D10:
	case RENDERPATH_D3D11:
		// we invert the cull mode because we flip the projection matrix
		// NOTE: this actually does nothing because the DrawShadowMap code sets it to doublesided...
		GL_CullFace(r_refdef.view.cullface_front);
		break;
	}
	Vector4Set(clearcolor, 1, 1, 1, 1);
	if (r_shadow_shadowmap2ddepthbuffer)
		GL_Clear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT, clearcolor, 1.0f, 0);
	else
		GL_Clear(GL_DEPTH_BUFFER_BIT, clearcolor, 1.0f, 0);
}

static void R_Shadow_SetShadowmapParametersForLight(qboolean noselfshadowpass)
{
	int size = rsurface.rtlight->shadowmapatlassidesize;
	float nearclip = r_shadow_shadowmapping_nearclip.value / rsurface.rtlight->radius;
	float farclip = 1.0f;
	float bias = r_shadow_shadowmapping_bias.value * nearclip * (1024.0f / size);// * rsurface.rtlight->radius;
	r_shadow_lightshadowmap_texturescale[0] = 1.0f / R_TextureWidth(r_shadow_shadowmap2ddepthtexture);
	r_shadow_lightshadowmap_texturescale[1] = 1.0f / R_TextureHeight(r_shadow_shadowmap2ddepthtexture);
	r_shadow_lightshadowmap_texturescale[2] = rsurface.rtlight->shadowmapatlasposition[0] + (noselfshadowpass ? size * 2 : 0);
	r_shadow_lightshadowmap_texturescale[3] = rsurface.rtlight->shadowmapatlasposition[1];
	r_shadow_lightshadowmap_parameters[0] = 0.5f * (size - r_shadow_shadowmapborder);
	r_shadow_lightshadowmap_parameters[1] = -nearclip * farclip / (farclip - nearclip) - 0.5f * bias;
	r_shadow_lightshadowmap_parameters[2] = r_shadow_shadowmapvsdct ? 2.5f*size : size;
	r_shadow_lightshadowmap_parameters[3] = 0.5f + 0.5f * (farclip + nearclip) / (farclip - nearclip);
	if (r_shadow_shadowmap2ddepthbuffer)
	{
		// completely different meaning than in depthtexture approach
		r_shadow_lightshadowmap_parameters[1] = 0;
		r_shadow_lightshadowmap_parameters[3] = -bias;
	}
}

static void R_Shadow_RenderMode_ShadowMap(int side, int size, int x, int y)
{
	float nearclip, farclip, bias;
	r_viewport_t viewport;
	int flipped;
	float clearcolor[4];

	if (r_shadow_rendermode != R_SHADOW_RENDERMODE_SHADOWMAP2D)
	{
		r_shadow_rendermode = R_SHADOW_RENDERMODE_SHADOWMAP2D;

		R_Mesh_ResetTextureState();
		R_Shadow_RenderMode_Reset();
		if (r_shadow_shadowmap2ddepthbuffer)
			R_Mesh_SetRenderTargets(r_shadow_fbo2d, r_shadow_shadowmap2ddepthbuffer, r_shadow_shadowmap2ddepthtexture, NULL, NULL, NULL);
		else
			R_Mesh_SetRenderTargets(r_shadow_fbo2d, r_shadow_shadowmap2ddepthtexture, NULL, NULL, NULL, NULL);
		R_SetupShader_DepthOrShadow(true, r_shadow_shadowmap2ddepthbuffer != NULL, false); // FIXME test if we have a skeletal model?
		GL_PolygonOffset(r_shadow_shadowmapping_polygonfactor.value, r_shadow_shadowmapping_polygonoffset.value);
		GL_DepthMask(true);
		GL_DepthTest(true);
	}

	nearclip = r_shadow_shadowmapping_nearclip.value / rsurface.rtlight->radius;
	farclip = 1.0f;
	bias = r_shadow_shadowmapping_bias.value * nearclip * (1024.0f / size);// * rsurface.rtlight->radius;

	R_Viewport_InitRectSideView(&viewport, &rsurface.rtlight->matrix_lighttoworld, side, size, r_shadow_shadowmapborder, nearclip, farclip, NULL, x, y);
	R_SetViewport(&viewport);
	GL_Scissor(viewport.x, viewport.y, viewport.width, viewport.height);
	flipped = (side & 1) ^ (side >> 2);
	r_refdef.view.cullface_front = flipped ? r_shadow_cullface_back : r_shadow_cullface_front;
	r_refdef.view.cullface_back = flipped ? r_shadow_cullface_front : r_shadow_cullface_back;

	Vector4Set(clearcolor, 1,1,1,1);
	if (r_shadow_shadowmap2ddepthbuffer)
		GL_ColorMask(1,1,1,1);
	else
		GL_ColorMask(0,0,0,0);
	switch(vid.renderpath)
	{
	case RENDERPATH_GL11:
	case RENDERPATH_GL13:
	case RENDERPATH_GL20:
	case RENDERPATH_SOFT:
	case RENDERPATH_GLES1:
	case RENDERPATH_GLES2:
		GL_CullFace(r_refdef.view.cullface_back);
		break;
	case RENDERPATH_D3D9:
	case RENDERPATH_D3D10:
	case RENDERPATH_D3D11:
		// we invert the cull mode because we flip the projection matrix
		// NOTE: this actually does nothing because the DrawShadowMap code sets it to doublesided...
		GL_CullFace(r_refdef.view.cullface_front);
		break;
	}

	// used in R_Q1BSP_DrawShadowMap code to check surfacesides[]
	r_shadow_shadowmapside = side;
}

void R_Shadow_RenderMode_Lighting(qboolean stenciltest, qboolean transparent, qboolean shadowmapping, qboolean noselfshadowpass)
{
	R_Mesh_ResetTextureState();
	if (transparent)
	{
		r_shadow_lightscissor[0] = r_refdef.view.viewport.x;
		r_shadow_lightscissor[1] = r_refdef.view.viewport.y;
		r_shadow_lightscissor[2] = r_refdef.view.viewport.width;
		r_shadow_lightscissor[3] = r_refdef.view.viewport.height;
	}
	if (shadowmapping)
		R_Shadow_SetShadowmapParametersForLight(noselfshadowpass);
	R_Shadow_RenderMode_Reset();
	GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
	if (!transparent)
		GL_DepthFunc(GL_EQUAL);
	// do global setup needed for the chosen lighting mode
	if (r_shadow_rendermode == R_SHADOW_RENDERMODE_LIGHT_GLSL)
		GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 0);
	r_shadow_usingshadowmap2d = shadowmapping;
	r_shadow_rendermode = r_shadow_lightingrendermode;
	// only draw light where this geometry was already rendered AND the
	// stencil is 128 (values other than this mean shadow)
	if (stenciltest)
		R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
	else
		R_SetStencil(false, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_ALWAYS, 128, 255);
}

static const unsigned short bboxelements[36] =
{
	5, 1, 3, 5, 3, 7,
	6, 2, 0, 6, 0, 4,
	7, 3, 2, 7, 2, 6,
	4, 0, 1, 4, 1, 5,
	4, 5, 7, 4, 7, 6,
	1, 0, 2, 1, 2, 3,
};

static const float bboxpoints[8][3] =
{
	{-1,-1,-1},
	{ 1,-1,-1},
	{-1, 1,-1},
	{ 1, 1,-1},
	{-1,-1, 1},
	{ 1,-1, 1},
	{-1, 1, 1},
	{ 1, 1, 1},
};

void R_Shadow_RenderMode_DrawDeferredLight(qboolean shadowmapping)
{
	int i;
	float vertex3f[8*3];
	const matrix4x4_t *matrix = &rsurface.rtlight->matrix_lighttoworld;
// do global setup needed for the chosen lighting mode
	R_Shadow_RenderMode_Reset();
	r_shadow_rendermode = r_shadow_lightingrendermode;
	R_EntityMatrix(&identitymatrix);
	GL_BlendFunc(GL_SRC_ALPHA, GL_ONE);
	R_SetStencil(false, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
	if (rsurface.rtlight->specularscale > 0 && r_shadow_gloss.integer > 0)
		R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusespecularfbo, r_shadow_prepassgeometrydepthbuffer, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
	else
		R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusefbo, r_shadow_prepassgeometrydepthbuffer, r_shadow_prepasslightingdiffusetexture, NULL, NULL, NULL);

	r_shadow_usingshadowmap2d = shadowmapping;

	// render the lighting
	R_SetupShader_DeferredLight(rsurface.rtlight);
	for (i = 0;i < 8;i++)
		Matrix4x4_Transform(matrix, bboxpoints[i], vertex3f + i*3);
	GL_ColorMask(1,1,1,1);
	GL_DepthMask(false);
	GL_DepthRange(0, 1);
	GL_PolygonOffset(0, 0);
	GL_DepthTest(true);
	GL_DepthFunc(GL_GREATER);
	GL_CullFace(r_refdef.view.cullface_back);
	R_Mesh_PrepareVertices_Vertex3f(8, vertex3f, NULL, 0);
	R_Mesh_Draw(0, 8, 0, 12, NULL, NULL, 0, bboxelements, NULL, 0);
}

#define MAXBOUNCEGRIDSPLATSIZE 7
#define MAXBOUNCEGRIDSPLATSIZE1 (MAXBOUNCEGRIDSPLATSIZE+1)

// these are temporary data per-frame, sorted and performed in a more
// cache-friendly order than the original photons
typedef struct r_shadow_bouncegrid_splatpath_s
{
	vec3_t point;
	vec3_t step;
	vec3_t splatcolor;
	vec3_t splatdir;
	vec_t splatintensity;
	vec_t splatsize_current;
	vec_t splatsize_perstep;
	int remainingsplats;
}
r_shadow_bouncegrid_splatpath_t;

static void R_Shadow_BounceGrid_AddSplatPath(vec3_t originalstart, vec3_t originalend, vec3_t color, vec_t distancetraveled)
{
	int bestaxis;
	int numsplats;
	float len;
	float ilen;
	vec3_t start;
	vec3_t end;
	vec3_t diff;
	vec3_t originaldir;
	r_shadow_bouncegrid_splatpath_t *path;

	// cull paths that fail R_CullBox in dynamic mode
	if (!r_shadow_bouncegrid_state.settings.staticmode
	 && r_shadow_bouncegrid_dynamic_culllightpaths.integer)
	{
		vec3_t cullmins, cullmaxs;
		cullmins[0] = min(originalstart[0], originalend[0]) - r_shadow_bouncegrid_state.settings.spacing[0];
		cullmins[1] = min(originalstart[1], originalend[1]) - r_shadow_bouncegrid_state.settings.spacing[1];
		cullmins[2] = min(originalstart[2], originalend[2]) - r_shadow_bouncegrid_state.settings.spacing[2];
		cullmaxs[0] = max(originalstart[0], originalend[0]) + r_shadow_bouncegrid_state.settings.spacing[0];
		cullmaxs[1] = max(originalstart[1], originalend[1]) + r_shadow_bouncegrid_state.settings.spacing[1];
		cullmaxs[2] = max(originalstart[2], originalend[2]) + r_shadow_bouncegrid_state.settings.spacing[2];
		if (R_CullBox(cullmins, cullmaxs))
			return;
	}

	// if the light path is going upward, reverse it - we always draw down.
	if (originalend[2] < originalstart[2])
	{
		VectorCopy(originalend, start);
		VectorCopy(originalstart, end);
	}
	else
	{
		VectorCopy(originalstart, start);
		VectorCopy(originalend, end);
	}

	// transform to texture pixels
	start[0] = (start[0] - r_shadow_bouncegrid_state.mins[0]) * r_shadow_bouncegrid_state.ispacing[0];
	start[1] = (start[1] - r_shadow_bouncegrid_state.mins[1]) * r_shadow_bouncegrid_state.ispacing[1];
	start[2] = (start[2] - r_shadow_bouncegrid_state.mins[2]) * r_shadow_bouncegrid_state.ispacing[2];
	end[0] = (end[0] - r_shadow_bouncegrid_state.mins[0]) * r_shadow_bouncegrid_state.ispacing[0];
	end[1] = (end[1] - r_shadow_bouncegrid_state.mins[1]) * r_shadow_bouncegrid_state.ispacing[1];
	end[2] = (end[2] - r_shadow_bouncegrid_state.mins[2]) * r_shadow_bouncegrid_state.ispacing[2];

	// check if we need to grow the splatpaths array
	if (r_shadow_bouncegrid_state.maxsplatpaths <= r_shadow_bouncegrid_state.numsplatpaths)
	{
		// double the limit, this will persist from frame to frame so we don't
		// make the same mistake each time
		r_shadow_bouncegrid_state.maxsplatpaths *= 2;
		if (r_shadow_bouncegrid_state.maxsplatpaths < 16384)
			r_shadow_bouncegrid_state.maxsplatpaths = 16384;
		r_shadow_bouncegrid_state.splatpaths = (r_shadow_bouncegrid_splatpath_t *)Mem_Realloc(r_main_mempool, r_shadow_bouncegrid_state.splatpaths, sizeof(r_shadow_bouncegrid_splatpath_t) * r_shadow_bouncegrid_state.maxsplatpaths);
	}

	// divide a series of splats along the length using the maximum axis
	VectorSubtract(end, start, diff);
	// pick the best axis to trace along
	bestaxis = 0;
	if (diff[1]*diff[1] > diff[bestaxis]*diff[bestaxis])
		bestaxis = 1;
	if (diff[2]*diff[2] > diff[bestaxis]*diff[bestaxis])
		bestaxis = 2;
	len = fabs(diff[bestaxis]);
	ilen = 1.0f / len;
	numsplats = (int)(floor(len + 0.5f));
	// sanity limits
	numsplats = bound(0, numsplats, 1024);

	VectorSubtract(originalstart, originalend, originaldir);
	VectorNormalize(originaldir);

	path = r_shadow_bouncegrid_state.splatpaths + r_shadow_bouncegrid_state.numsplatpaths++;
	VectorCopy(start, path->point);
	VectorScale(diff, ilen, path->step);
	VectorCopy(color, path->splatcolor);
	VectorCopy(originaldir, path->splatdir);
	path->splatsize_current = r_shadow_bouncegrid_state.settings.lightpathsize_initial + r_shadow_bouncegrid_state.settings.lightpathsize_conespread * distancetraveled * r_shadow_bouncegrid_state.ispacing[0];
	path->splatsize_perstep = r_shadow_bouncegrid_state.settings.lightpathsize_conespread;
	path->splatintensity = VectorLength(color);
	path->remainingsplats = numsplats;
}

static qboolean R_Shadow_BounceGrid_CheckEnable(int flag)
{
	qboolean enable = r_shadow_bouncegrid_state.capable && r_shadow_bouncegrid.integer != 0 && r_refdef.scene.worldmodel;
	int lightindex;
	int range;
	dlight_t *light;
	rtlight_t *rtlight;
	vec3_t lightcolor;

	// see if there are really any lights to render...
	if (enable && r_shadow_bouncegrid_static.integer)
	{
		enable = false;
		range = (unsigned int)Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
		for (lightindex = 0;lightindex < range;lightindex++)
		{
			light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
			if (!light || !(light->flags & flag))
				continue;
			rtlight = &light->rtlight;
			// when static, we skip styled lights because they tend to change...
			if (rtlight->style > 0)
				continue;
			VectorScale(rtlight->color, (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale), lightcolor);
			if (!VectorLength2(lightcolor))
				continue;
			enable = true;
			break;
		}
	}

	return enable;
}

static void R_Shadow_BounceGrid_GenerateSettings(r_shadow_bouncegrid_settings_t *settings)
{
	qboolean s = r_shadow_bouncegrid_static.integer != 0;
	float spacing = bound(1.0f, s ? r_shadow_bouncegrid_static_spacing.value : r_shadow_bouncegrid_dynamic_spacing.value, 1024.0f);
	float quality = bound(0.0001f, (s ? r_shadow_bouncegrid_static_quality.value : r_shadow_bouncegrid_dynamic_quality.value), 1024.0f);
	float bounceminimumintensity = s ? r_shadow_bouncegrid_static_bounceminimumintensity.value : r_shadow_bouncegrid_dynamic_bounceminimumintensity.value;

	// prevent any garbage in alignment padded areas as we'll be using memcmp
	memset(settings, 0, sizeof(*settings));

	// build up a complete collection of the desired settings, so that memcmp can be used to compare parameters
	settings->staticmode                    = s;
	settings->blur                          = r_shadow_bouncegrid_blur.integer != 0;
	settings->floatcolors                   = bound(0, r_shadow_bouncegrid_floatcolors.integer, 2);
	settings->lightpathsize_initial         = bound(0.0f, r_shadow_bouncegrid_lightpathsize_initial.value, 1024.0f);
	settings->lightpathsize_conespread      = bound(0.0f, r_shadow_bouncegrid_lightpathsize_conespread.value, 1024.0f);
	settings->bounceanglediffuse            = r_shadow_bouncegrid_bounceanglediffuse.integer != 0;
	settings->directionalshading            = (s ? r_shadow_bouncegrid_static_directionalshading.integer != 0 : r_shadow_bouncegrid_dynamic_directionalshading.integer != 0) && r_shadow_bouncegrid_state.allowdirectionalshading;
	settings->dlightparticlemultiplier      = s ? 0 : r_shadow_bouncegrid_dynamic_dlightparticlemultiplier.value;
	settings->hitmodels                     = s ? false : r_shadow_bouncegrid_dynamic_hitmodels.integer != 0;
	settings->includedirectlighting         = r_shadow_bouncegrid_includedirectlighting.integer != 0 || r_shadow_bouncegrid.integer == 2;
	settings->lightradiusscale              = (s ? r_shadow_bouncegrid_static_lightradiusscale.value : r_shadow_bouncegrid_dynamic_lightradiusscale.value);
	settings->maxbounce                     = (s ? r_shadow_bouncegrid_static_maxbounce.integer : r_shadow_bouncegrid_dynamic_maxbounce.integer);
	settings->particlebounceintensity       = r_shadow_bouncegrid_particlebounceintensity.value;
	settings->particleintensity             = r_shadow_bouncegrid_particleintensity.value * (settings->directionalshading ? 4.0f : 1.0f) * 16384 / (spacing * spacing) / 262144.0f;
	settings->maxphotons                    = s ? r_shadow_bouncegrid_static_maxphotons.integer : r_shadow_bouncegrid_dynamic_maxphotons.integer;
	settings->energyperphoton               = spacing * spacing / quality;
	settings->spacing[0]                    = spacing;
	settings->spacing[1]                    = spacing;
	settings->spacing[2]                    = spacing;
	settings->rng_type                      = r_shadow_bouncegrid_rng_type.integer;
	settings->rng_seed                      = r_shadow_bouncegrid_rng_seed.integer;
	settings->bounceminimumintensity2       = bounceminimumintensity * bounceminimumintensity;
	settings->bounceminimumintensity2       = bounceminimumintensity * bounceminimumintensity;
	settings->normalizevectors              = r_shadow_bouncegrid_normalizevectors.integer != 0;

	// bound the values for sanity
	settings->maxphotons = bound(1, settings->maxphotons, 25000000);
	settings->lightradiusscale = bound(0.0001f, settings->lightradiusscale, 1024.0f);
	settings->maxbounce = bound(0, settings->maxbounce, 16);
	settings->spacing[0] = bound(1, settings->spacing[0], 512);
	settings->spacing[1] = bound(1, settings->spacing[1], 512);
	settings->spacing[2] = bound(1, settings->spacing[2], 512);
}

static void R_Shadow_BounceGrid_UpdateSpacing(void)
{
	float m[16];
	int c[4];
	int resolution[3];
	int numpixels;
	vec3_t ispacing;
	vec3_t maxs;
	vec3_t mins;
	vec3_t size;
	vec3_t spacing;
	r_shadow_bouncegrid_settings_t *settings = &r_shadow_bouncegrid_state.settings;

	// get the spacing values
	spacing[0] = settings->spacing[0];
	spacing[1] = settings->spacing[1];
	spacing[2] = settings->spacing[2];
	ispacing[0] = 1.0f / spacing[0];
	ispacing[1] = 1.0f / spacing[1];
	ispacing[2] = 1.0f / spacing[2];

	// calculate texture size enclosing entire world bounds at the spacing
	if (r_refdef.scene.worldmodel)
	{
		int lightindex;
		int range;
		qboolean bounds_set = false;
		dlight_t *light;
		rtlight_t *rtlight;

		// calculate bounds enclosing world lights as they should be noticably tighter 
		// than the world bounds on maps with unlit monster containers (see e1m7 etc)
		range = (unsigned int)Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
		for (lightindex = 0;lightindex < range;lightindex++)
		{
			const vec_t *rtlmins, *rtlmaxs;

			light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
			if (!light)
				continue;

			rtlight = &light->rtlight;
			rtlmins = rtlight->cullmins;
			rtlmaxs = rtlight->cullmaxs;

			if (!bounds_set)
			{
				VectorCopy(rtlmins, mins);
				VectorCopy(rtlmaxs, maxs);
				bounds_set = true;
			}
			else
			{
				mins[0] = min(mins[0], rtlmins[0]);
				mins[1] = min(mins[1], rtlmins[1]);
				mins[2] = min(mins[2], rtlmins[2]);
				maxs[0] = max(maxs[0], rtlmaxs[0]);
				maxs[1] = max(maxs[1], rtlmaxs[1]);
				maxs[2] = max(maxs[2], rtlmaxs[2]);
			}
		}

		// limit to no larger than the world bounds
		mins[0] = max(mins[0], r_refdef.scene.worldmodel->normalmins[0]);
		mins[1] = max(mins[1], r_refdef.scene.worldmodel->normalmins[1]);
		mins[2] = max(mins[2], r_refdef.scene.worldmodel->normalmins[2]);
		maxs[0] = min(maxs[0], r_refdef.scene.worldmodel->normalmaxs[0]);
		maxs[1] = min(maxs[1], r_refdef.scene.worldmodel->normalmaxs[1]);
		maxs[2] = min(maxs[2], r_refdef.scene.worldmodel->normalmaxs[2]);

		VectorMA(mins, -2.0f, spacing, mins);
		VectorMA(maxs, 2.0f, spacing, maxs);
	}
	else
	{
		VectorSet(mins, -1048576.0f, -1048576.0f, -1048576.0f);
		VectorSet(maxs,  1048576.0f,  1048576.0f,  1048576.0f);
	}
	VectorSubtract(maxs, mins, size);
	// now we can calculate the resolution we want
	c[0] = (int)floor(size[0] / spacing[0] + 0.5f);
	c[1] = (int)floor(size[1] / spacing[1] + 0.5f);
	c[2] = (int)floor(size[2] / spacing[2] + 0.5f);
	// figure out the exact texture size (honoring power of 2 if required)
	c[0] = bound(4, c[0], (int)vid.maxtexturesize_3d);
	c[1] = bound(4, c[1], (int)vid.maxtexturesize_3d);
	c[2] = bound(4, c[2], (int)vid.maxtexturesize_3d);
	if (vid.support.arb_texture_non_power_of_two)
	{
		resolution[0] = c[0];
		resolution[1] = c[1];
		resolution[2] = c[2];
	}
	else
	{
		for (resolution[0] = 4;resolution[0] < c[0];resolution[0]*=2) ;
		for (resolution[1] = 4;resolution[1] < c[1];resolution[1]*=2) ;
		for (resolution[2] = 4;resolution[2] < c[2];resolution[2]*=2) ;
	}
	size[0] = spacing[0] * resolution[0];
	size[1] = spacing[1] * resolution[1];
	size[2] = spacing[2] * resolution[2];

	// if dynamic we may or may not want to use the world bounds
	// if the dynamic size is smaller than the world bounds, use it instead
	if (!settings->staticmode && (r_shadow_bouncegrid_dynamic_x.integer * r_shadow_bouncegrid_dynamic_y.integer * r_shadow_bouncegrid_dynamic_z.integer < resolution[0] * resolution[1] * resolution[2]))
	{
		// we know the resolution we want
		c[0] = r_shadow_bouncegrid_dynamic_x.integer;
		c[1] = r_shadow_bouncegrid_dynamic_y.integer;
		c[2] = r_shadow_bouncegrid_dynamic_z.integer;
		// now we can calculate the texture size (power of 2 if required)
		c[0] = bound(4, c[0], (int)vid.maxtexturesize_3d);
		c[1] = bound(4, c[1], (int)vid.maxtexturesize_3d);
		c[2] = bound(4, c[2], (int)vid.maxtexturesize_3d);
		if (vid.support.arb_texture_non_power_of_two)
		{
			resolution[0] = c[0];
			resolution[1] = c[1];
			resolution[2] = c[2];
		}
		else
		{
			for (resolution[0] = 4;resolution[0] < c[0];resolution[0]*=2) ;
			for (resolution[1] = 4;resolution[1] < c[1];resolution[1]*=2) ;
			for (resolution[2] = 4;resolution[2] < c[2];resolution[2]*=2) ;
		}
		size[0] = spacing[0] * resolution[0];
		size[1] = spacing[1] * resolution[1];
		size[2] = spacing[2] * resolution[2];
		// center the rendering on the view
		mins[0] = floor(r_refdef.view.origin[0] * ispacing[0] + 0.5f) * spacing[0] - 0.5f * size[0];
		mins[1] = floor(r_refdef.view.origin[1] * ispacing[1] + 0.5f) * spacing[1] - 0.5f * size[1];
		mins[2] = floor(r_refdef.view.origin[2] * ispacing[2] + 0.5f) * spacing[2] - 0.5f * size[2];
	}

	// recalculate the maxs in case the resolution was not satisfactory
	VectorAdd(mins, size, maxs);

	// check if this changed the texture size
	r_shadow_bouncegrid_state.createtexture = !(r_shadow_bouncegrid_state.texture && r_shadow_bouncegrid_state.resolution[0] == resolution[0] && r_shadow_bouncegrid_state.resolution[1] == resolution[1] && r_shadow_bouncegrid_state.resolution[2] == resolution[2] && r_shadow_bouncegrid_state.directional == r_shadow_bouncegrid_state.settings.directionalshading);
	r_shadow_bouncegrid_state.directional = r_shadow_bouncegrid_state.settings.directionalshading;
	VectorCopy(mins, r_shadow_bouncegrid_state.mins);
	VectorCopy(maxs, r_shadow_bouncegrid_state.maxs);
	VectorCopy(size, r_shadow_bouncegrid_state.size);
	VectorCopy(spacing, r_shadow_bouncegrid_state.spacing);
	VectorCopy(ispacing, r_shadow_bouncegrid_state.ispacing);
	VectorCopy(resolution, r_shadow_bouncegrid_state.resolution);

	// reallocate pixels for this update if needed...
	r_shadow_bouncegrid_state.pixelbands = settings->directionalshading ? 8 : 1;
	r_shadow_bouncegrid_state.pixelsperband = resolution[0]*resolution[1]*resolution[2];
	r_shadow_bouncegrid_state.bytesperband = r_shadow_bouncegrid_state.pixelsperband*4;
	numpixels = r_shadow_bouncegrid_state.pixelsperband*r_shadow_bouncegrid_state.pixelbands;
	if (r_shadow_bouncegrid_state.numpixels != numpixels)
	{
		if (r_shadow_bouncegrid_state.texture) R_FreeTexture(r_shadow_bouncegrid_state.texture);r_shadow_bouncegrid_state.texture = NULL;
		r_shadow_bouncegrid_state.highpixels = NULL;
		if (r_shadow_bouncegrid_state.blurpixels[0]) Mem_Free(r_shadow_bouncegrid_state.blurpixels[0]); r_shadow_bouncegrid_state.blurpixels[0] = NULL;
		if (r_shadow_bouncegrid_state.blurpixels[1]) Mem_Free(r_shadow_bouncegrid_state.blurpixels[1]); r_shadow_bouncegrid_state.blurpixels[1] = NULL;
		if (r_shadow_bouncegrid_state.u8pixels) Mem_Free(r_shadow_bouncegrid_state.u8pixels); r_shadow_bouncegrid_state.u8pixels = NULL;
		if (r_shadow_bouncegrid_state.fp16pixels) Mem_Free(r_shadow_bouncegrid_state.fp16pixels); r_shadow_bouncegrid_state.fp16pixels = NULL;
		if (r_shadow_bouncegrid_state.splatpaths) Mem_Free(r_shadow_bouncegrid_state.splatpaths); r_shadow_bouncegrid_state.splatpaths = NULL;
		r_shadow_bouncegrid_state.maxsplatpaths = 0;
		r_shadow_bouncegrid_state.numpixels = numpixels;
	}

	// update the bouncegrid matrix to put it in the world properly
	memset(m, 0, sizeof(m));
	m[0] = 1.0f / r_shadow_bouncegrid_state.size[0];
	m[3] = -r_shadow_bouncegrid_state.mins[0] * m[0];
	m[5] = 1.0f / r_shadow_bouncegrid_state.size[1];
	m[7] = -r_shadow_bouncegrid_state.mins[1] * m[5];
	m[10] = 1.0f / r_shadow_bouncegrid_state.size[2];
	m[11] = -r_shadow_bouncegrid_state.mins[2] * m[10];
	m[15] = 1.0f;
	Matrix4x4_FromArrayFloatD3D(&r_shadow_bouncegrid_state.matrix, m);
}

// enumerate world rtlights and sum the overall amount of light in the world,
// from that we can calculate a scaling factor to fairly distribute photons
// to all the lights
//
// this modifies rtlight->photoncolor and rtlight->photons
static void R_Shadow_BounceGrid_AssignPhotons(r_shadow_bouncegrid_settings_t *settings, unsigned int range, unsigned int range1, unsigned int range2, int flag)
{
	float normalphotonscaling;
	float photonscaling;
	float photonintensity;
	float photoncount = 0.0f;
	float lightintensity;
	float radius;
	float s;
	float w;
	vec3_t cullmins;
	vec3_t cullmaxs;
	unsigned int lightindex;
	dlight_t *light;
	rtlight_t *rtlight;
	normalphotonscaling = 1.0f / max(0.0001f, settings->energyperphoton);
	for (lightindex = 0;lightindex < range2;lightindex++)
	{
		if (lightindex < range)
		{
			light = (dlight_t *)Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
			if (!light)
				continue;
			rtlight = &light->rtlight;
			VectorClear(rtlight->bouncegrid_photoncolor);
			rtlight->bouncegrid_photons = 0;
			rtlight->bouncegrid_hits = 0;
			rtlight->bouncegrid_traces = 0;
			rtlight->bouncegrid_effectiveradius = 0;
			if (!(light->flags & flag))
				continue;
			if (settings->staticmode)
			{
				// when static, we skip styled lights because they tend to change...
				if (rtlight->style > 0 && r_shadow_bouncegrid.integer != 2)
					continue;
			}
			else if (r_shadow_debuglight.integer >= 0 && (int)lightindex != r_shadow_debuglight.integer)
				continue;
		}
		else
		{
			rtlight = r_refdef.scene.lights[lightindex - range];
			VectorClear(rtlight->bouncegrid_photoncolor);
			rtlight->bouncegrid_photons = 0;
			rtlight->bouncegrid_hits = 0;
			rtlight->bouncegrid_traces = 0;
			rtlight->bouncegrid_effectiveradius = 0;
		}
		// draw only visible lights (major speedup)
		radius = rtlight->radius * settings->lightradiusscale;
		cullmins[0] = rtlight->shadoworigin[0] - radius;
		cullmins[1] = rtlight->shadoworigin[1] - radius;
		cullmins[2] = rtlight->shadoworigin[2] - radius;
		cullmaxs[0] = rtlight->shadoworigin[0] + radius;
		cullmaxs[1] = rtlight->shadoworigin[1] + radius;
		cullmaxs[2] = rtlight->shadoworigin[2] + radius;
		w = r_shadow_lightintensityscale.value * (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale);
		if (!settings->staticmode)
		{
			// skip if the expanded light box does not touch any visible leafs
			if (r_refdef.scene.worldmodel
				&& r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs
				&& !r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, cullmins, cullmaxs))
				continue;
			// skip if the expanded light box is not visible to traceline
			// note that PrepareLight already did this check but for a smaller box, so we
			// end up casting more traces per frame per light when using bouncegrid, which
			// is probably fine (and they use the same timer)
			if (r_shadow_culllights_trace.integer)
			{
				if (rtlight->trace_timer != realtime && R_CanSeeBox(rtlight->trace_timer == 0 ? r_shadow_culllights_trace_tempsamples.integer : r_shadow_culllights_trace_samples.integer, r_shadow_culllights_trace_eyejitter.value, r_shadow_culllights_trace_enlarge.value, r_refdef.view.origin, rtlight->cullmins, rtlight->cullmaxs))
					rtlight->trace_timer = realtime;
				if (realtime - rtlight->trace_timer > r_shadow_culllights_trace_delay.value)
					return;
			}
			// skip if expanded light box is offscreen
			if (R_CullBox(cullmins, cullmaxs))
				continue;
			// skip if overall light intensity is zero
			if (w * VectorLength2(rtlight->color) == 0.0f)
				continue;
		}
		// a light that does not emit any light before style is applied, can be
		// skipped entirely (it may just be a corona)
		if (rtlight->radius == 0.0f || VectorLength2(rtlight->color) == 0.0f)
			continue;
		w *= ((rtlight->style >= 0 && rtlight->style < MAX_LIGHTSTYLES) ? r_refdef.scene.rtlightstylevalue[rtlight->style] : 1);
		VectorScale(rtlight->color, w, rtlight->bouncegrid_photoncolor);
		// skip lights that will emit no photons
		if (!VectorLength2(rtlight->bouncegrid_photoncolor))
			continue;
		// shoot particles from this light
		// use a calculation for the number of particles that will not
		// vary with lightstyle, otherwise we get randomized particle
		// distribution, the seeded random is only consistent for a
		// consistent number of particles on this light...
		s = rtlight->radius;
		lightintensity = VectorLength(rtlight->color) * (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale);
		if (lightindex >= range)
			lightintensity *= settings->dlightparticlemultiplier;
		rtlight->bouncegrid_photons = lightintensity * s * s * normalphotonscaling;
		photoncount += rtlight->bouncegrid_photons;
		VectorScale(rtlight->bouncegrid_photoncolor, settings->particleintensity * settings->energyperphoton, rtlight->bouncegrid_photoncolor);
		// if the lightstyle happens to be off right now, we can skip actually
		// firing the photons, but we did have to count them in the total.
		//if (VectorLength2(rtlight->photoncolor) == 0.0f)
		//	rtlight->bouncegrid_photons = 0;
	}
	// the user provided an energyperphoton value which we try to use
	// if that results in too many photons to shoot this frame, then we cap it
	// which causes photons to appear/disappear from frame to frame, so we don't
	// like doing that in the typical case
	photonscaling = 1.0f;
	photonintensity = 1.0f;
	if (photoncount > settings->maxphotons)
	{
		photonscaling = settings->maxphotons / photoncount;
		photonintensity = 1.0f / photonscaling;
	}

	// modify the lights to reflect our computed scaling
	for (lightindex = 0; lightindex < range2; lightindex++)
	{
		if (lightindex < range)
		{
			light = (dlight_t *)Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
			if (!light)
				continue;
			rtlight = &light->rtlight;
		}
		else
			rtlight = r_refdef.scene.lights[lightindex - range];
		rtlight->bouncegrid_photons *= photonscaling;
		VectorScale(rtlight->bouncegrid_photoncolor, photonintensity, rtlight->bouncegrid_photoncolor);
	}
}

static int R_Shadow_BounceGrid_SplatPathCompare(const void *pa, const void *pb)
{
	r_shadow_bouncegrid_splatpath_t *a = (r_shadow_bouncegrid_splatpath_t *)pa;
	r_shadow_bouncegrid_splatpath_t *b = (r_shadow_bouncegrid_splatpath_t *)pb;
	// we only really care about sorting by Z
	if (a->point[2] < b->point[2])
		return -1;
	if (a->point[2] > b->point[2])
		return 1;
	return 0;
}

static void R_Shadow_BounceGrid_ClearPixels(void)
{
	// clear the highpixels array we'll be accumulating into
	if (r_shadow_bouncegrid_state.blurpixels[0] == NULL)
		r_shadow_bouncegrid_state.blurpixels[0] = (float *)Mem_Alloc(r_main_mempool, r_shadow_bouncegrid_state.numpixels * sizeof(float[4]));
	if (r_shadow_bouncegrid_state.settings.blur && r_shadow_bouncegrid_state.blurpixels[1] == NULL)
		r_shadow_bouncegrid_state.blurpixels[1] = (float *)Mem_Alloc(r_main_mempool, r_shadow_bouncegrid_state.numpixels * sizeof(float[4]));
	r_shadow_bouncegrid_state.highpixels_index = 0;
	r_shadow_bouncegrid_state.highpixels = r_shadow_bouncegrid_state.blurpixels[r_shadow_bouncegrid_state.highpixels_index];
	memset(r_shadow_bouncegrid_state.highpixels, 0, r_shadow_bouncegrid_state.numpixels * sizeof(float[4]));
}

static void R_Shadow_BounceGrid_PerformSplats(void)
{
	r_shadow_bouncegrid_splatpath_t *splatpaths = r_shadow_bouncegrid_state.splatpaths;
	r_shadow_bouncegrid_splatpath_t *splatpath;
	float *highpixels = r_shadow_bouncegrid_state.highpixels;
	int numsplatpaths = r_shadow_bouncegrid_state.numsplatpaths;
	int splatindex;
	vec3_t steppos;
	vec3_t stepdelta;
	vec3_t dir;
	vec_t lightpathsize_current;
	vec_t lightpathsize_perstep;
	float splatcolor[32];
	int resolution[3];
	int pixelsperband = r_shadow_bouncegrid_state.pixelsperband;
	int pixelbands = r_shadow_bouncegrid_state.pixelbands;
	int numsteps;
	int step;

	// hush warnings about uninitialized data - pixelbands doesn't change but...
	memset(splatcolor, 0, sizeof(splatcolor));

	// we use this a lot, so get a local copy
	VectorCopy(r_shadow_bouncegrid_state.resolution, resolution);

	// sort the splats before we execute them, to reduce cache misses
	if (r_shadow_bouncegrid_sortlightpaths.integer)
		qsort(splatpaths, numsplatpaths, sizeof(*splatpaths), R_Shadow_BounceGrid_SplatPathCompare);

	splatpath = splatpaths;
	for (splatindex = 0;splatindex < numsplatpaths;splatindex++, splatpath++)
	{
		// calculate second order spherical harmonics values (average, slopeX, slopeY, slopeZ)
		// accumulate average shotcolor
		VectorCopy(splatpath->splatdir, dir);
		splatcolor[ 0] = splatpath->splatcolor[0];
		splatcolor[ 1] = splatpath->splatcolor[1];
		splatcolor[ 2] = splatpath->splatcolor[2];
		splatcolor[ 3] = 0.0f;
		if (pixelbands > 1)
		{
			// store bentnormal in case the shader has a use for it,
			// bentnormal is an intensity-weighted average of the directions,
			// and will be normalized on conversion to texture pixels.
			splatcolor[ 4] = dir[0] * splatpath->splatintensity;
			splatcolor[ 5] = dir[1] * splatpath->splatintensity;
			splatcolor[ 6] = dir[2] * splatpath->splatintensity;
			splatcolor[ 7] = splatpath->splatintensity;
			// for each color component (R, G, B) calculate the amount that a
			// direction contributes
			splatcolor[ 8] = splatcolor[0] * max(0.0f, dir[0]);
			splatcolor[ 9] = splatcolor[0] * max(0.0f, dir[1]);
			splatcolor[10] = splatcolor[0] * max(0.0f, dir[2]);
			splatcolor[11] = 0.0f;
			splatcolor[12] = splatcolor[1] * max(0.0f, dir[0]);
			splatcolor[13] = splatcolor[1] * max(0.0f, dir[1]);
			splatcolor[14] = splatcolor[1] * max(0.0f, dir[2]);
			splatcolor[15] = 0.0f;
			splatcolor[16] = splatcolor[2] * max(0.0f, dir[0]);
			splatcolor[17] = splatcolor[2] * max(0.0f, dir[1]);
			splatcolor[18] = splatcolor[2] * max(0.0f, dir[2]);
			splatcolor[19] = 0.0f;
			// and do the same for negative directions
			splatcolor[20] = splatcolor[0] * max(0.0f, -dir[0]);
			splatcolor[21] = splatcolor[0] * max(0.0f, -dir[1]);
			splatcolor[22] = splatcolor[0] * max(0.0f, -dir[2]);
			splatcolor[23] = 0.0f;
			splatcolor[24] = splatcolor[1] * max(0.0f, -dir[0]);
			splatcolor[25] = splatcolor[1] * max(0.0f, -dir[1]);
			splatcolor[26] = splatcolor[1] * max(0.0f, -dir[2]);
			splatcolor[27] = 0.0f;
			splatcolor[28] = splatcolor[2] * max(0.0f, -dir[0]);
			splatcolor[29] = splatcolor[2] * max(0.0f, -dir[1]);
			splatcolor[30] = splatcolor[2] * max(0.0f, -dir[2]);
			splatcolor[31] = 0.0f;
		}
		// calculate the number of steps we need to traverse this distance
		VectorCopy(splatpath->point, steppos);
		VectorCopy(splatpath->step, stepdelta);
		numsteps = splatpath->remainingsplats;
		lightpathsize_current = splatpath->splatsize_current + 1.0f; // add 1.0 for the gradient fade around the sphere
		lightpathsize_perstep = splatpath->splatsize_perstep;
		for (step = 0;step < numsteps;step++)
		{
			// the middle row/column/layer of each splat are full intensity
			float splatmins[3];
			float splatmaxs[3];
			if (lightpathsize_current > MAXBOUNCEGRIDSPLATSIZE)
				lightpathsize_current = MAXBOUNCEGRIDSPLATSIZE;
			splatmins[0] = max(1.0f, steppos[0] - lightpathsize_current * 0.5f);
			splatmins[1] = max(1.0f, steppos[1] - lightpathsize_current * 0.5f);
			splatmins[2] = max(1.0f, steppos[2] - lightpathsize_current * 0.5f);
			splatmaxs[0] = min(steppos[0] + lightpathsize_current * 0.5f, resolution[0] - 1.0f);
			splatmaxs[1] = min(steppos[1] + lightpathsize_current * 0.5f, resolution[1] - 1.0f);
			splatmaxs[2] = min(steppos[2] + lightpathsize_current * 0.5f, resolution[2] - 1.0f);
			if (splatmaxs[0] > splatmins[0] && splatmaxs[1] > splatmins[1] && splatmaxs[2] > splatmins[2])
			{
				// it is within bounds...  do the real work now
				int xi, yi, zi, band, row;
				float pixelpos[3];
				float w;
				float *p;
				float colorscale = 1.0f / lightpathsize_current;
				r_refdef.stats[r_stat_bouncegrid_splats]++;
				// accumulate light onto the pixels
				for (zi = (int)floor(splatmins[2]);zi < splatmaxs[2];zi++)
				{
					pixelpos[2] = zi + 0.5f;
					for (yi = (int)floor(splatmins[1]); yi < splatmaxs[1]; yi++)
					{
						pixelpos[1] = yi + 0.5f;
						row = (zi*resolution[1] + yi)*resolution[0];
						for (xi = (int)floor(splatmins[0]); xi < splatmaxs[0]; xi++)
						{
							pixelpos[0] = xi + 0.5f;
							// simple radial antialiased sphere - linear gradient fade over 1 pixel from the edge
							w = lightpathsize_current - VectorDistance(pixelpos, steppos);
							if (w > 0.0f)
							{
								if (w > 1.0f)
									w = 1.0f;
								w *= colorscale;
								p = highpixels + 4 * (row + xi);
								for (band = 0; band < pixelbands; band++, p += pixelsperband * 4)
								{
									// add to the pixel color
									p[0] += splatcolor[band * 4 + 0] * w;
									p[1] += splatcolor[band * 4 + 1] * w;
									p[2] += splatcolor[band * 4 + 2] * w;
									p[3] += splatcolor[band * 4 + 3] * w;
								}
							}
						}
					}
				}
			}
			VectorAdd(steppos, stepdelta, steppos);
			lightpathsize_current += lightpathsize_perstep;
		}
	}
}

static void R_Shadow_BounceGrid_BlurPixelsInDirection(const float *inpixels, float *outpixels, int off)
{
	const float *inpixel;
	float *outpixel;
	int pixelbands = r_shadow_bouncegrid_state.pixelbands;
	int pixelband;
	unsigned int index;
	unsigned int x, y, z;
	unsigned int resolution[3];
	VectorCopy(r_shadow_bouncegrid_state.resolution, resolution);
	for (pixelband = 0;pixelband < pixelbands;pixelband++)
	{
		for (z = 1;z < resolution[2]-1;z++)
		{
			for (y = 1;y < resolution[1]-1;y++)
			{
				x = 1;
				index = ((pixelband*resolution[2]+z)*resolution[1]+y)*resolution[0]+x;
				inpixel = inpixels + 4*index;
				outpixel = outpixels + 4*index;
				for (;x < resolution[0]-1;x++, inpixel += 4, outpixel += 4)
				{
					outpixel[0] = (inpixel[0] + inpixel[  off] + inpixel[0-off]) * (1.0f / 3.0);
					outpixel[1] = (inpixel[1] + inpixel[1+off] + inpixel[1-off]) * (1.0f / 3.0);
					outpixel[2] = (inpixel[2] + inpixel[2+off] + inpixel[2-off]) * (1.0f / 3.0);
					outpixel[3] = (inpixel[3] + inpixel[3+off] + inpixel[3-off]) * (1.0f / 3.0);
				}
			}
		}
	}
}

static void R_Shadow_BounceGrid_BlurPixels(void)
{
	float *pixels[4];
	unsigned int resolution[3];

	if (!r_shadow_bouncegrid_state.settings.blur)
		return;
	
	VectorCopy(r_shadow_bouncegrid_state.resolution, resolution);

	pixels[0] = r_shadow_bouncegrid_state.blurpixels[r_shadow_bouncegrid_state.highpixels_index];
	pixels[1] = r_shadow_bouncegrid_state.blurpixels[r_shadow_bouncegrid_state.highpixels_index ^ 1];
	pixels[2] = r_shadow_bouncegrid_state.blurpixels[r_shadow_bouncegrid_state.highpixels_index];
	pixels[3] = r_shadow_bouncegrid_state.blurpixels[r_shadow_bouncegrid_state.highpixels_index ^ 1];

	// blur on X
	R_Shadow_BounceGrid_BlurPixelsInDirection(pixels[0], pixels[1], 4);
	// blur on Y
	R_Shadow_BounceGrid_BlurPixelsInDirection(pixels[1], pixels[2], resolution[0] * 4);
	// blur on Z
	R_Shadow_BounceGrid_BlurPixelsInDirection(pixels[2], pixels[3], resolution[0] * resolution[1] * 4);

	// toggle the state, highpixels now points to pixels[3] result
	r_shadow_bouncegrid_state.highpixels_index ^= 1;
	r_shadow_bouncegrid_state.highpixels = r_shadow_bouncegrid_state.blurpixels[r_shadow_bouncegrid_state.highpixels_index];
}

static void R_Shadow_BounceGrid_ConvertPixelsAndUpload(void)
{
	int floatcolors = r_shadow_bouncegrid_state.settings.floatcolors;
	unsigned char *pixelsbgra8 = NULL;
	unsigned char *pixelbgra8;
	unsigned short *pixelsrgba16f = NULL;
	unsigned short *pixelrgba16f;
	float *pixelsrgba32f = NULL;
	float *highpixels = r_shadow_bouncegrid_state.highpixels;
	float *highpixel;
	float *bandpixel;
	unsigned int pixelsperband = r_shadow_bouncegrid_state.pixelsperband;
	unsigned int pixelbands = r_shadow_bouncegrid_state.pixelbands;
	unsigned int pixelband;
	unsigned int x, y, z;
	unsigned int index, bandindex;
	unsigned int resolution[3];
	int c[4];
	VectorCopy(r_shadow_bouncegrid_state.resolution, resolution);

	if (r_shadow_bouncegrid_state.createtexture && r_shadow_bouncegrid_state.texture)
	{
		R_FreeTexture(r_shadow_bouncegrid_state.texture);
		r_shadow_bouncegrid_state.texture = NULL;
	}

	// if bentnormals exist, we need to normalize and bias them for the shader
	if (pixelbands > 1)
	{
		pixelband = 1;
		for (z = 0;z < resolution[2]-1;z++)
		{
			for (y = 0;y < resolution[1]-1;y++)
			{
				x = 1;
				index = ((pixelband*resolution[2]+z)*resolution[1]+y)*resolution[0]+x;
				highpixel = highpixels + 4*index;
				for (;x < resolution[0]-1;x++, index++, highpixel += 4)
				{
					// only convert pixels that were hit by photons
					if (highpixel[3] != 0.0f)
						VectorNormalize(highpixel);
					VectorSet(highpixel, highpixel[0] * 0.5f + 0.5f, highpixel[1] * 0.5f + 0.5f, highpixel[2] * 0.5f + 0.5f);
					highpixel[pixelsperband * 4 + 3] = 1.0f;
				}
			}
		}
	}

	// start by clearing the pixels array - we won't be writing to all of it
	//
	// then process only the pixels that have at least some color, skipping
	// the higher bands for speed on pixels that are black
	switch (floatcolors)
	{
	case 0:
		if (r_shadow_bouncegrid_state.u8pixels == NULL)
			r_shadow_bouncegrid_state.u8pixels = (unsigned char *)Mem_Alloc(r_main_mempool, r_shadow_bouncegrid_state.numpixels * sizeof(unsigned char[4]));
		pixelsbgra8 = r_shadow_bouncegrid_state.u8pixels;
		for (pixelband = 0;pixelband < pixelbands;pixelband++)
		{
			if (pixelband == 1)
				memset(pixelsbgra8 + pixelband * r_shadow_bouncegrid_state.bytesperband, 128, r_shadow_bouncegrid_state.bytesperband);
			else
				memset(pixelsbgra8 + pixelband * r_shadow_bouncegrid_state.bytesperband, 0, r_shadow_bouncegrid_state.bytesperband);
		}
		for (z = 1;z < resolution[2]-1;z++)
		{
			for (y = 1;y < resolution[1]-1;y++)
			{
				x = 1;
				pixelband = 0;
				index = ((pixelband*resolution[2]+z)*resolution[1]+y)*resolution[0]+x;
				highpixel = highpixels + 4*index;
				for (;x < resolution[0]-1;x++, index++, highpixel += 4)
				{
					// only convert pixels that were hit by photons
					if (VectorLength2(highpixel))
					{
						// normalize the bentnormal now
						if (pixelbands > 1)
						{
							VectorNormalize(highpixel + pixelsperband * 4);
							highpixel[pixelsperband * 4 + 3] = 1.0f;
						}
						// process all of the pixelbands for this pixel
						for (pixelband = 0, bandindex = index;pixelband < pixelbands;pixelband++, bandindex += pixelsperband)
						{
							pixelbgra8 = pixelsbgra8 + 4*bandindex;
							bandpixel = highpixels + 4*bandindex;
							c[0] = (int)(bandpixel[0]*256.0f);
							c[1] = (int)(bandpixel[1]*256.0f);
							c[2] = (int)(bandpixel[2]*256.0f);
							c[3] = (int)(bandpixel[3]*256.0f);
							pixelbgra8[2] = (unsigned char)bound(0, c[0], 255);
							pixelbgra8[1] = (unsigned char)bound(0, c[1], 255);
							pixelbgra8[0] = (unsigned char)bound(0, c[2], 255);
							pixelbgra8[3] = (unsigned char)bound(0, c[3], 255);
						}
					}
				}
			}
		}

		if (!r_shadow_bouncegrid_state.createtexture)
			R_UpdateTexture(r_shadow_bouncegrid_state.texture, pixelsbgra8, 0, 0, 0, resolution[0], resolution[1], resolution[2]*pixelbands);
		else
			r_shadow_bouncegrid_state.texture = R_LoadTexture3D(r_shadow_texturepool, "bouncegrid", resolution[0], resolution[1], resolution[2]*pixelbands, pixelsbgra8, TEXTYPE_BGRA, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, 0, NULL);
		break;
	case 1:
		if (r_shadow_bouncegrid_state.fp16pixels == NULL)
			r_shadow_bouncegrid_state.fp16pixels = (unsigned short *)Mem_Alloc(r_main_mempool, r_shadow_bouncegrid_state.numpixels * sizeof(unsigned short[4]));
		pixelsrgba16f = r_shadow_bouncegrid_state.fp16pixels;
		memset(pixelsrgba16f, 0, r_shadow_bouncegrid_state.numpixels * sizeof(unsigned short[4]));
		for (z = 1;z < resolution[2]-1;z++)
		{
			for (y = 1;y < resolution[1]-1;y++)
			{
				x = 1;
				pixelband = 0;
				index = ((pixelband*resolution[2]+z)*resolution[1]+y)*resolution[0]+x;
				highpixel = highpixels + 4*index;
				for (;x < resolution[0]-1;x++, index++, highpixel += 4)
				{
					// only convert pixels that were hit by photons
					if (VectorLength2(highpixel))
					{
						// process all of the pixelbands for this pixel
						for (pixelband = 0, bandindex = index;pixelband < pixelbands;pixelband++, bandindex += pixelsperband)
						{
							// time to have fun with IEEE 754 bit hacking...
							union {
								float f[4];
								unsigned int raw[4];
							} u;
							pixelrgba16f = pixelsrgba16f + 4*bandindex;
							bandpixel = highpixels + 4*bandindex;
							VectorCopy4(bandpixel, u.f);
							VectorCopy4(u.raw, c);
							// this math supports negative numbers, snaps denormals to zero
							//pixelrgba16f[0] = (unsigned short)(((c[0] & 0x7FFFFFFF) < 0x38000000) ? 0 : (((c[0] - 0x38000000) >> 13) & 0x7FFF) | ((c[0] >> 16) & 0x8000));
							//pixelrgba16f[1] = (unsigned short)(((c[1] & 0x7FFFFFFF) < 0x38000000) ? 0 : (((c[1] - 0x38000000) >> 13) & 0x7FFF) | ((c[1] >> 16) & 0x8000));
							//pixelrgba16f[2] = (unsigned short)(((c[2] & 0x7FFFFFFF) < 0x38000000) ? 0 : (((c[2] - 0x38000000) >> 13) & 0x7FFF) | ((c[2] >> 16) & 0x8000));
							//pixelrgba16f[3] = (unsigned short)(((c[3] & 0x7FFFFFFF) < 0x38000000) ? 0 : (((c[3] - 0x38000000) >> 13) & 0x7FFF) | ((c[3] >> 16) & 0x8000));
							// this math does not support negative
							pixelrgba16f[0] = (unsigned short)((c[0] < 0x38000000) ? 0 : ((c[0] - 0x38000000) >> 13));
							pixelrgba16f[1] = (unsigned short)((c[1] < 0x38000000) ? 0 : ((c[1] - 0x38000000) >> 13));
							pixelrgba16f[2] = (unsigned short)((c[2] < 0x38000000) ? 0 : ((c[2] - 0x38000000) >> 13));
							pixelrgba16f[3] = (unsigned short)((c[3] < 0x38000000) ? 0 : ((c[3] - 0x38000000) >> 13));
						}
					}
				}
			}
		}

		if (!r_shadow_bouncegrid_state.createtexture)
			R_UpdateTexture(r_shadow_bouncegrid_state.texture, (const unsigned char *)pixelsrgba16f, 0, 0, 0, resolution[0], resolution[1], resolution[2]*pixelbands);
		else
			r_shadow_bouncegrid_state.texture = R_LoadTexture3D(r_shadow_texturepool, "bouncegrid", resolution[0], resolution[1], resolution[2]*pixelbands, (const unsigned char *)pixelsrgba16f, TEXTYPE_COLORBUFFER16F, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, 0, NULL);
		break;
	case 2:
		// our native format happens to match, so this is easy.
		pixelsrgba32f = highpixels;

		if (!r_shadow_bouncegrid_state.createtexture)
			R_UpdateTexture(r_shadow_bouncegrid_state.texture, (const unsigned char *)pixelsrgba32f, 0, 0, 0, resolution[0], resolution[1], resolution[2]*pixelbands);
		else
			r_shadow_bouncegrid_state.texture = R_LoadTexture3D(r_shadow_texturepool, "bouncegrid", resolution[0], resolution[1], resolution[2]*pixelbands, (const unsigned char *)pixelsrgba32f, TEXTYPE_COLORBUFFER32F, TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCELINEAR, 0, NULL);
		break;
	}

	r_shadow_bouncegrid_state.lastupdatetime = realtime;
}

static void R_Shadow_BounceGrid_TracePhotons(r_shadow_bouncegrid_settings_t settings, unsigned int range, unsigned int range1, unsigned int range2, int flag)
{
	vec3_t bouncerandom[10];
	dlight_t *light;
	int bouncecount;
	int hitsupercontentsmask;
	int skipsupercontentsmask;
	int skipmaterialflagsmask;
	int maxbounce;
	int shootparticles;
	int shotparticles;
	float bounceminimumintensity2;
	trace_t cliptrace;
	//trace_t cliptrace2;
	//trace_t cliptrace3;
	unsigned int lightindex;
	unsigned int seed;
	randomseed_t randomseed;
	vec3_t shotcolor;
	vec3_t baseshotcolor;
	vec3_t surfcolor;
	vec3_t clipend;
	vec3_t clipstart;
	vec3_t clipdiff;
	vec_t radius;
	vec_t distancetraveled;
	vec_t s;
	rtlight_t *rtlight;

	// compute a seed for the unstable random modes
	Math_RandomSeed_FromInts(&randomseed, 0, 0, 0, realtime * 1000.0);
	seed = realtime * 1000.0;

	r_shadow_bouncegrid_state.numsplatpaths = 0;

	// figure out what we want to interact with
	if (settings.hitmodels)
		hitsupercontentsmask = SUPERCONTENTS_SOLID;// | SUPERCONTENTS_LIQUIDSMASK;
	else
		hitsupercontentsmask = SUPERCONTENTS_SOLID;// | SUPERCONTENTS_LIQUIDSMASK;
	skipsupercontentsmask = 0;
	skipmaterialflagsmask = MATERIALFLAGMASK_TRANSLUCENT;
	maxbounce = settings.maxbounce;

	for (lightindex = 0;lightindex < range2;lightindex++)
	{
		if (lightindex < range)
		{
			light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
			if (!light)
				continue;
			rtlight = &light->rtlight;
		}
		else
			rtlight = r_refdef.scene.lights[lightindex - range];
		// note that this code used to keep track of residual photons and
		// distribute them evenly to achieve exactly a desired photon count,
		// but that caused unwanted flickering in dynamic mode
		shootparticles = (int)floor(rtlight->bouncegrid_photons);
		// skip if we won't be shooting any photons
		if (!shootparticles)
			continue;
		radius = rtlight->radius * settings.lightradiusscale;
		//s = settings.particleintensity / shootparticles;
		//VectorScale(rtlight->bouncegrid_photoncolor, s, baseshotcolor);
		VectorCopy(rtlight->bouncegrid_photoncolor, baseshotcolor);
		if (VectorLength2(baseshotcolor) <= 0.0f)
			continue;
		r_refdef.stats[r_stat_bouncegrid_lights]++;
		r_refdef.stats[r_stat_bouncegrid_particles] += shootparticles;
		// we stop caring about bounces once the brightness goes below this fraction of the original intensity
		bounceminimumintensity2 = VectorLength(baseshotcolor) * settings.bounceminimumintensity2;

		// for seeded random we start the RNG with the position of the light
		if (settings.rng_seed >= 0)
		{
			union
			{
				unsigned int i[4];
				float f[4];
			}
			u;
			u.f[0] = rtlight->shadoworigin[0];
			u.f[1] = rtlight->shadoworigin[1];
			u.f[2] = rtlight->shadoworigin[2];
			u.f[3] = 1;
			switch (settings.rng_type)
			{
			default:
			case 0:
				// we have to shift the seed provided by the user because the result must be odd
				Math_RandomSeed_FromInts(&randomseed, u.i[0], u.i[1], u.i[2], u.i[3] ^ (settings.rng_seed << 1));
				break;
			case 1:
				seed = u.i[0] ^ u.i[1] ^ u.i[2] ^ u.i[3] ^ settings.rng_seed;
				break;
			}
		}

		for (shotparticles = 0;shotparticles < shootparticles;shotparticles++)
		{
			VectorCopy(baseshotcolor, shotcolor);
			VectorCopy(rtlight->shadoworigin, clipstart);
			switch (settings.rng_type)
			{
			default:
			case 0:
				VectorLehmerRandom(&randomseed, clipend);
				if (settings.bounceanglediffuse)
				{
					// we want random to be stable, so we still have to do all the random we would have done
					for (bouncecount = 0; bouncecount < maxbounce; bouncecount++)
						VectorLehmerRandom(&randomseed, bouncerandom[bouncecount]);
				}
				break;
			case 1:
				VectorCheeseRandom(seed, clipend);
				if (settings.bounceanglediffuse)
				{
					// we want random to be stable, so we still have to do all the random we would have done
					for (bouncecount = 0; bouncecount < maxbounce; bouncecount++)
						VectorCheeseRandom(seed, bouncerandom[bouncecount]);
				}
				break;
			}

			// we want a uniform distribution spherically, not merely within the sphere
			if (settings.normalizevectors)
				VectorNormalize(clipend);

			VectorMA(clipstart, radius, clipend, clipend);
			distancetraveled = 0.0f;
			for (bouncecount = 0;;bouncecount++)
			{
				r_refdef.stats[r_stat_bouncegrid_traces]++;
				rtlight->bouncegrid_traces++;
				//r_refdef.scene.worldmodel->TraceLineAgainstSurfaces(r_refdef.scene.worldmodel, NULL, NULL, &cliptrace, clipstart, clipend, hitsupercontentsmask);
				//r_refdef.scene.worldmodel->TraceLine(r_refdef.scene.worldmodel, NULL, NULL, &cliptrace2, clipstart, clipend, hitsupercontentsmask);
				if (settings.staticmode || settings.rng_seed < 0)
				{
					// static mode fires a LOT of rays but none of them are identical, so they are not cached
					// non-stable random in dynamic mode also never reuses a direction, so there's no reason to cache it
					cliptrace = CL_TraceLine(clipstart, clipend, settings.staticmode ? MOVE_WORLDONLY : (settings.hitmodels ? MOVE_HITMODEL : MOVE_NOMONSTERS), NULL, hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask, collision_extendmovelength.value, true, false, NULL, true, true);
				}
				else
				{
					// dynamic mode fires many rays and most will match the cache from the previous frame
					cliptrace = CL_Cache_TraceLineSurfaces(clipstart, clipend, settings.staticmode ? MOVE_WORLDONLY : (settings.hitmodels ? MOVE_HITMODEL : MOVE_NOMONSTERS), hitsupercontentsmask, skipsupercontentsmask, skipmaterialflagsmask);
				}
				if (bouncecount > 0 || settings.includedirectlighting)
				{
					vec3_t hitpos;
					VectorCopy(cliptrace.endpos, hitpos);
					R_Shadow_BounceGrid_AddSplatPath(clipstart, hitpos, shotcolor, distancetraveled);
				}
				distancetraveled += VectorDistance(clipstart, cliptrace.endpos);
				s = VectorDistance(rtlight->shadoworigin, cliptrace.endpos);
				if (rtlight->bouncegrid_effectiveradius < s)
					rtlight->bouncegrid_effectiveradius = s;
				if (cliptrace.fraction >= 1.0f)
					break;
				r_refdef.stats[r_stat_bouncegrid_hits]++;
				rtlight->bouncegrid_hits++;
				if (bouncecount >= maxbounce)
					break;
				// scale down shot color by bounce intensity and texture color (or 50% if no texture reported)
				// also clamp the resulting color to never add energy, even if the user requests extreme values
				if (cliptrace.hittexture && cliptrace.hittexture->currentskinframe)
					VectorCopy(cliptrace.hittexture->currentskinframe->avgcolor, surfcolor);
				else
					VectorSet(surfcolor, 0.5f, 0.5f, 0.5f);
				VectorScale(surfcolor, settings.particlebounceintensity, surfcolor);
				surfcolor[0] = min(surfcolor[0], 1.0f);
				surfcolor[1] = min(surfcolor[1], 1.0f);
				surfcolor[2] = min(surfcolor[2], 1.0f);
				VectorMultiply(shotcolor, surfcolor, shotcolor);
				if (VectorLength2(shotcolor) <= bounceminimumintensity2)
					break;
				r_refdef.stats[r_stat_bouncegrid_bounces]++;
				if (settings.bounceanglediffuse)
				{
					// random direction, primarily along plane normal
					s = VectorDistance(cliptrace.endpos, clipend);
					VectorMA(cliptrace.plane.normal, 0.95f, bouncerandom[bouncecount], clipend);
					VectorNormalize(clipend);
					VectorScale(clipend, s, clipend);
				}
				else
				{
					// reflect the remaining portion of the line across plane normal
					VectorSubtract(clipend, cliptrace.endpos, clipdiff);
					VectorReflect(clipdiff, 1.0, cliptrace.plane.normal, clipend);
				}
				// calculate the new line start and end
				VectorCopy(cliptrace.endpos, clipstart);
				VectorAdd(clipstart, clipend, clipend);
			}
		}
	}
}

void R_Shadow_UpdateBounceGridTexture(void)
{
	int flag = r_refdef.scene.rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE;
	r_shadow_bouncegrid_settings_t settings;
	qboolean enable = false;
	qboolean settingschanged;
	unsigned int range; // number of world lights
	unsigned int range1; // number of dynamic lights (or zero if disabled)
	unsigned int range2; // range+range1

	enable = R_Shadow_BounceGrid_CheckEnable(flag);
	
	R_Shadow_BounceGrid_GenerateSettings(&settings);
	
	// changing intensity does not require an update
	r_shadow_bouncegrid_state.intensity = r_shadow_bouncegrid_intensity.value;

	settingschanged = memcmp(&r_shadow_bouncegrid_state.settings, &settings, sizeof(settings)) != 0;

	// when settings change, we free everything as it is just simpler that way.
	if (settingschanged || !enable)
	{
		// not enabled, make sure we free anything we don't need anymore.
		if (r_shadow_bouncegrid_state.texture)
		{
			R_FreeTexture(r_shadow_bouncegrid_state.texture);
			r_shadow_bouncegrid_state.texture = NULL;
		}
		r_shadow_bouncegrid_state.highpixels = NULL;
		if (r_shadow_bouncegrid_state.blurpixels[0]) Mem_Free(r_shadow_bouncegrid_state.blurpixels[0]); r_shadow_bouncegrid_state.blurpixels[0] = NULL;
		if (r_shadow_bouncegrid_state.blurpixels[1]) Mem_Free(r_shadow_bouncegrid_state.blurpixels[1]); r_shadow_bouncegrid_state.blurpixels[1] = NULL;
		if (r_shadow_bouncegrid_state.u8pixels) Mem_Free(r_shadow_bouncegrid_state.u8pixels); r_shadow_bouncegrid_state.u8pixels = NULL;
		if (r_shadow_bouncegrid_state.fp16pixels) Mem_Free(r_shadow_bouncegrid_state.fp16pixels); r_shadow_bouncegrid_state.fp16pixels = NULL;
		if (r_shadow_bouncegrid_state.splatpaths) Mem_Free(r_shadow_bouncegrid_state.splatpaths); r_shadow_bouncegrid_state.splatpaths = NULL;
		r_shadow_bouncegrid_state.maxsplatpaths = 0;
		r_shadow_bouncegrid_state.numpixels = 0;
		r_shadow_bouncegrid_state.directional = false;

		if (!enable)
			return;
	}

	// if all the settings seem identical to the previous update, return
	if (r_shadow_bouncegrid_state.texture && (settings.staticmode || realtime < r_shadow_bouncegrid_state.lastupdatetime + r_shadow_bouncegrid_dynamic_updateinterval.value) && !settingschanged)
		return;

	// store the new settings
	r_shadow_bouncegrid_state.settings = settings;

	R_Shadow_BounceGrid_UpdateSpacing();

	// get the range of light numbers we'll be looping over:
	// range = static lights
	// range1 = dynamic lights (optional)
	// range2 = range + range1
	range = (unsigned int)Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
	range1 = settings.staticmode ? 0 : r_refdef.scene.numlights;
	range2 = range + range1;

	// calculate weighting factors for distributing photons among the lights
	R_Shadow_BounceGrid_AssignPhotons(&settings, range, range1, range2, flag);

	// trace the photons from lights and accumulate illumination
	R_Shadow_BounceGrid_TracePhotons(settings, range, range1, range2, flag);

	// clear the texture
	R_Shadow_BounceGrid_ClearPixels();
	
	// accumulate the light splatting into texture
	R_Shadow_BounceGrid_PerformSplats();

	// apply a mild blur filter to the texture
	R_Shadow_BounceGrid_BlurPixels();

	// convert the pixels to lower precision and upload the texture
	R_Shadow_BounceGrid_ConvertPixelsAndUpload();

	// after we compute the static lighting we don't need to keep the highpixels array around
	if (settings.staticmode)
	{
		r_shadow_bouncegrid_state.highpixels = NULL;
		if (r_shadow_bouncegrid_state.blurpixels[0]) Mem_Free(r_shadow_bouncegrid_state.blurpixels[0]); r_shadow_bouncegrid_state.blurpixels[0] = NULL;
		if (r_shadow_bouncegrid_state.blurpixels[1]) Mem_Free(r_shadow_bouncegrid_state.blurpixels[1]); r_shadow_bouncegrid_state.blurpixels[1] = NULL;
		if (r_shadow_bouncegrid_state.u8pixels) Mem_Free(r_shadow_bouncegrid_state.u8pixels); r_shadow_bouncegrid_state.u8pixels = NULL;
		if (r_shadow_bouncegrid_state.fp16pixels) Mem_Free(r_shadow_bouncegrid_state.fp16pixels); r_shadow_bouncegrid_state.fp16pixels = NULL;
		if (r_shadow_bouncegrid_state.splatpaths) Mem_Free(r_shadow_bouncegrid_state.splatpaths); r_shadow_bouncegrid_state.splatpaths = NULL;
		r_shadow_bouncegrid_state.maxsplatpaths = 0;
	}
}

void R_Shadow_RenderMode_VisibleShadowVolumes(void)
{
	R_Shadow_RenderMode_Reset();
	GL_BlendFunc(GL_ONE, GL_ONE);
	GL_DepthRange(0, 1);
	GL_DepthTest(r_showshadowvolumes.integer < 2);
	GL_Color(0.0, 0.0125 * r_refdef.view.colorscale, 0.1 * r_refdef.view.colorscale, 1);
	GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);CHECKGLERROR
	GL_CullFace(GL_NONE);
	r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLEVOLUMES;
}

void R_Shadow_RenderMode_VisibleLighting(qboolean stenciltest, qboolean transparent)
{
	R_Shadow_RenderMode_Reset();
	GL_BlendFunc(GL_ONE, GL_ONE);
	GL_DepthRange(0, 1);
	GL_DepthTest(r_showlighting.integer < 2);
	GL_Color(0.1 * r_refdef.view.colorscale, 0.0125 * r_refdef.view.colorscale, 0, 1);
	if (!transparent)
		GL_DepthFunc(GL_EQUAL);
	R_SetStencil(stenciltest, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_EQUAL, 128, 255);
	r_shadow_rendermode = R_SHADOW_RENDERMODE_VISIBLELIGHTING;
}

void R_Shadow_RenderMode_End(void)
{
	R_Shadow_RenderMode_Reset();
	R_Shadow_RenderMode_ActiveLight(NULL);
	GL_DepthMask(true);
	GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
	r_shadow_rendermode = R_SHADOW_RENDERMODE_NONE;
}

int bboxedges[12][2] =
{
	// top
	{0, 1}, // +X
	{0, 2}, // +Y
	{1, 3}, // Y, +X
	{2, 3}, // X, +Y
	// bottom
	{4, 5}, // +X
	{4, 6}, // +Y
	{5, 7}, // Y, +X
	{6, 7}, // X, +Y
	// verticals
	{0, 4}, // +Z
	{1, 5}, // X, +Z
	{2, 6}, // Y, +Z
	{3, 7}, // XY, +Z
};

qboolean R_Shadow_ScissorForBBox(const float *mins, const float *maxs)
{
	if (!r_shadow_scissor.integer || r_shadow_usingdeferredprepass || r_trippy.integer)
	{
		r_shadow_lightscissor[0] = r_refdef.view.viewport.x;
		r_shadow_lightscissor[1] = r_refdef.view.viewport.y;
		r_shadow_lightscissor[2] = r_refdef.view.viewport.width;
		r_shadow_lightscissor[3] = r_refdef.view.viewport.height;
		return false;
	}
	if(R_ScissorForBBox(mins, maxs, r_shadow_lightscissor))
		return true; // invisible
	if(r_shadow_lightscissor[0] != r_refdef.view.viewport.x
	|| r_shadow_lightscissor[1] != r_refdef.view.viewport.y
	|| r_shadow_lightscissor[2] != r_refdef.view.viewport.width
	|| r_shadow_lightscissor[3] != r_refdef.view.viewport.height)
		r_refdef.stats[r_stat_lights_scissored]++;
	return false;
}

static void R_Shadow_RenderLighting_Light_Vertex_Shading(int firstvertex, int numverts, const float *diffusecolor, const float *ambientcolor)
{
	int i;
	const float *vertex3f;
	const float *normal3f;
	float *color4f;
	float dist, dot, distintensity, shadeintensity, v[3], n[3];
	switch (r_shadow_rendermode)
	{
	case R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN:
	case R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN:
		if (VectorLength2(diffusecolor) > 0)
		{
			for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, normal3f = rsurface.batchnormal3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4)
			{
				Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
				Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
				if ((dot = DotProduct(n, v)) < 0)
				{
					shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
					VectorMA(ambientcolor, shadeintensity, diffusecolor, color4f);
				}
				else
					VectorCopy(ambientcolor, color4f);
				if (r_refdef.fogenabled)
				{
					float f;
					f = RSurf_FogVertex(vertex3f);
					VectorScale(color4f, f, color4f);
				}
				color4f[3] = 1;
			}
		}
		else
		{
			for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, color4f += 4)
			{
				VectorCopy(ambientcolor, color4f);
				if (r_refdef.fogenabled)
				{
					float f;
					Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
					f = RSurf_FogVertex(vertex3f);
					VectorScale(color4f + 4*i, f, color4f);
				}
				color4f[3] = 1;
			}
		}
		break;
	case R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN:
		if (VectorLength2(diffusecolor) > 0)
		{
			for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, normal3f = rsurface.batchnormal3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4)
			{
				Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
				if ((dist = fabs(v[2])) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
				{
					Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
					if ((dot = DotProduct(n, v)) < 0)
					{
						shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
						color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
						color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
						color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
					}
					else
					{
						color4f[0] = ambientcolor[0] * distintensity;
						color4f[1] = ambientcolor[1] * distintensity;
						color4f[2] = ambientcolor[2] * distintensity;
					}
					if (r_refdef.fogenabled)
					{
						float f;
						f = RSurf_FogVertex(vertex3f);
						VectorScale(color4f, f, color4f);
					}
				}
				else
					VectorClear(color4f);
				color4f[3] = 1;
			}
		}
		else
		{
			for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, color4f += 4)
			{
				Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
				if ((dist = fabs(v[2])) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
				{
					color4f[0] = ambientcolor[0] * distintensity;
					color4f[1] = ambientcolor[1] * distintensity;
					color4f[2] = ambientcolor[2] * distintensity;
					if (r_refdef.fogenabled)
					{
						float f;
						f = RSurf_FogVertex(vertex3f);
						VectorScale(color4f, f, color4f);
					}
				}
				else
					VectorClear(color4f);
				color4f[3] = 1;
			}
		}
		break;
	case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
		if (VectorLength2(diffusecolor) > 0)
		{
			for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, normal3f = rsurface.batchnormal3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, normal3f += 3, color4f += 4)
			{
				Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
				if ((dist = VectorLength(v)) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
				{
					distintensity = (1 - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
					Matrix4x4_Transform3x3(&rsurface.entitytolight, normal3f, n);
					if ((dot = DotProduct(n, v)) < 0)
					{
						shadeintensity = -dot / sqrt(VectorLength2(v) * VectorLength2(n));
						color4f[0] = (ambientcolor[0] + shadeintensity * diffusecolor[0]) * distintensity;
						color4f[1] = (ambientcolor[1] + shadeintensity * diffusecolor[1]) * distintensity;
						color4f[2] = (ambientcolor[2] + shadeintensity * diffusecolor[2]) * distintensity;
					}
					else
					{
						color4f[0] = ambientcolor[0] * distintensity;
						color4f[1] = ambientcolor[1] * distintensity;
						color4f[2] = ambientcolor[2] * distintensity;
					}
					if (r_refdef.fogenabled)
					{
						float f;
						f = RSurf_FogVertex(vertex3f);
						VectorScale(color4f, f, color4f);
					}
				}
				else
					VectorClear(color4f);
				color4f[3] = 1;
			}
		}
		else
		{
			for (i = 0, vertex3f = rsurface.batchvertex3f + 3*firstvertex, color4f = rsurface.passcolor4f + 4 * firstvertex;i < numverts;i++, vertex3f += 3, color4f += 4)
			{
				Matrix4x4_Transform(&rsurface.entitytolight, vertex3f, v);
				if ((dist = VectorLength(v)) < 1 && (distintensity = r_shadow_attentable[(int)(dist * ATTENTABLESIZE)]))
				{
					distintensity = (1 - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist);
					color4f[0] = ambientcolor[0] * distintensity;
					color4f[1] = ambientcolor[1] * distintensity;
					color4f[2] = ambientcolor[2] * distintensity;
					if (r_refdef.fogenabled)
					{
						float f;
						f = RSurf_FogVertex(vertex3f);
						VectorScale(color4f, f, color4f);
					}
				}
				else
					VectorClear(color4f);
				color4f[3] = 1;
			}
		}
		break;
	default:
		break;
	}
}

static void R_Shadow_RenderLighting_VisibleLighting(int texturenumsurfaces, const msurface_t **texturesurfacelist)
{
	// used to display how many times a surface is lit for level design purposes
	RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
	R_Mesh_PrepareVertices_Generic_Arrays(rsurface.batchnumvertices, rsurface.batchvertex3f, NULL, NULL);
	RSurf_DrawBatch();
}

static void R_Shadow_RenderLighting_Light_GLSL(int texturenumsurfaces, const msurface_t **texturesurfacelist, const float ambientcolor[3], const float diffusecolor[3], const float specularcolor[3])
{
	// ARB2 GLSL shader path (GFFX5200, Radeon 9500)
	R_SetupShader_Surface(ambientcolor, diffusecolor, specularcolor, RSURFPASS_RTLIGHT, texturenumsurfaces, texturesurfacelist, NULL, false);
	RSurf_DrawBatch();
}

static void R_Shadow_RenderLighting_Light_Vertex_Pass(int firstvertex, int numvertices, int numtriangles, const int *element3i, vec3_t diffusecolor2, vec3_t ambientcolor2)
{
	int renders;
	int i;
	int stop;
	int newfirstvertex;
	int newlastvertex;
	int newnumtriangles;
	int *newe;
	const int *e;
	float *c;
	int maxtriangles = 1024;
	int newelements[1024*3];
	R_Shadow_RenderLighting_Light_Vertex_Shading(firstvertex, numvertices, diffusecolor2, ambientcolor2);
	for (renders = 0;renders < 4;renders++)
	{
		stop = true;
		newfirstvertex = 0;
		newlastvertex = 0;
		newnumtriangles = 0;
		newe = newelements;
		// due to low fillrate on the cards this vertex lighting path is
		// designed for, we manually cull all triangles that do not
		// contain a lit vertex
		// this builds batches of triangles from multiple surfaces and
		// renders them at once
		for (i = 0, e = element3i;i < numtriangles;i++, e += 3)
		{
			if (VectorLength2(rsurface.passcolor4f + e[0] * 4) + VectorLength2(rsurface.passcolor4f + e[1] * 4) + VectorLength2(rsurface.passcolor4f + e[2] * 4) >= 0.01)
			{
				if (newnumtriangles)
				{
					newfirstvertex = min(newfirstvertex, e[0]);
					newlastvertex  = max(newlastvertex, e[0]);
				}
				else
				{
					newfirstvertex = e[0];
					newlastvertex = e[0];
				}
				newfirstvertex = min(newfirstvertex, e[1]);
				newlastvertex  = max(newlastvertex, e[1]);
				newfirstvertex = min(newfirstvertex, e[2]);
				newlastvertex  = max(newlastvertex, e[2]);
				newe[0] = e[0];
				newe[1] = e[1];
				newe[2] = e[2];
				newnumtriangles++;
				newe += 3;
				if (newnumtriangles >= maxtriangles)
				{
					R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, 0, newnumtriangles, newelements, NULL, 0, NULL, NULL, 0);
					newnumtriangles = 0;
					newe = newelements;
					stop = false;
				}
			}
		}
		if (newnumtriangles >= 1)
		{
			R_Mesh_Draw(newfirstvertex, newlastvertex - newfirstvertex + 1, 0, newnumtriangles, newelements, NULL, 0, NULL, NULL, 0);
			stop = false;
		}
		// if we couldn't find any lit triangles, exit early
		if (stop)
			break;
		// now reduce the intensity for the next overbright pass
		// we have to clamp to 0 here incase the drivers have improper
		// handling of negative colors
		// (some old drivers even have improper handling of >1 color)
		stop = true;
		for (i = 0, c = rsurface.passcolor4f + 4 * firstvertex;i < numvertices;i++, c += 4)
		{
			if (c[0] > 1 || c[1] > 1 || c[2] > 1)
			{
				c[0] = max(0, c[0] - 1);
				c[1] = max(0, c[1] - 1);
				c[2] = max(0, c[2] - 1);
				stop = false;
			}
			else
				VectorClear(c);
		}
		// another check...
		if (stop)
			break;
	}
}

static void R_Shadow_RenderLighting_Light_Vertex(int texturenumsurfaces, const msurface_t **texturesurfacelist, const float ambientcolor[3], const float diffusecolor[3])
{
	// OpenGL 1.1 path (anything)
	float ambientcolorbase[3], diffusecolorbase[3];
	float ambientcolorpants[3], diffusecolorpants[3];
	float ambientcolorshirt[3], diffusecolorshirt[3];
	const float *surfacepants = rsurface.texture->render_colormap_pants;
	const float *surfaceshirt = rsurface.texture->render_colormap_shirt;
	rtexture_t *basetexture = rsurface.texture->basetexture;
	rtexture_t *pantstexture = rsurface.texture->pantstexture;
	rtexture_t *shirttexture = rsurface.texture->shirttexture;
	qboolean dopants = pantstexture && VectorLength2(surfacepants) >= (1.0f / 1048576.0f);
	qboolean doshirt = shirttexture && VectorLength2(surfaceshirt) >= (1.0f / 1048576.0f);
	VectorCopy(ambientcolor, ambientcolorbase);
	VectorCopy(diffusecolor, diffusecolorbase);
	ambientcolorpants[0] = ambientcolorbase[0] * surfacepants[0];ambientcolorpants[1] = ambientcolorbase[1] * surfacepants[1];ambientcolorpants[2] = ambientcolorbase[2] * surfacepants[2];
	diffusecolorpants[0] = diffusecolorbase[0] * surfacepants[0];diffusecolorpants[1] = diffusecolorbase[1] * surfacepants[1];diffusecolorpants[2] = diffusecolorbase[2] * surfacepants[2];
	ambientcolorshirt[0] = ambientcolorbase[0] * surfaceshirt[0];ambientcolorshirt[1] = ambientcolorbase[1] * surfaceshirt[1];ambientcolorshirt[2] = ambientcolorbase[2] * surfaceshirt[2];
	diffusecolorshirt[0] = diffusecolorbase[0] * surfaceshirt[0];diffusecolorshirt[1] = diffusecolorbase[1] * surfaceshirt[1];diffusecolorshirt[2] = diffusecolorbase[2] * surfaceshirt[2];
	RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX | (VectorLength2(diffusecolor) > 0 ? BATCHNEED_ARRAY_NORMAL : 0) | BATCHNEED_ARRAY_TEXCOORD | BATCHNEED_NOGAPS, texturenumsurfaces, texturesurfacelist);
	rsurface.passcolor4f = (float *)R_FrameData_Alloc((rsurface.batchfirstvertex + rsurface.batchnumvertices) * sizeof(float[4]));
	R_Mesh_VertexPointer(3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
	R_Mesh_ColorPointer(4, GL_FLOAT, sizeof(float[4]), rsurface.passcolor4f, 0, 0);
	R_Mesh_TexCoordPointer(0, 2, GL_FLOAT, sizeof(float[2]), rsurface.batchtexcoordtexture2f, rsurface.batchtexcoordtexture2f_vertexbuffer, rsurface.batchtexcoordtexture2f_bufferoffset);
	R_Mesh_TexBind(0, basetexture);
	R_Mesh_TexMatrix(0, &rsurface.texture->currenttexmatrix);
	R_Mesh_TexCombine(0, GL_MODULATE, GL_MODULATE, 1, 1);
	switch(r_shadow_rendermode)
	{
	case R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN:
		R_Mesh_TexBind(1, r_shadow_attenuation3dtexture);
		R_Mesh_TexMatrix(1, &rsurface.entitytoattenuationxyz);
		R_Mesh_TexCombine(1, GL_MODULATE, GL_MODULATE, 1, 1);
		R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
		break;
	case R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN:
		R_Mesh_TexBind(2, r_shadow_attenuation2dtexture);
		R_Mesh_TexMatrix(2, &rsurface.entitytoattenuationz);
		R_Mesh_TexCombine(2, GL_MODULATE, GL_MODULATE, 1, 1);
		R_Mesh_TexCoordPointer(2, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
		// fall through
	case R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN:
		R_Mesh_TexBind(1, r_shadow_attenuation2dtexture);
		R_Mesh_TexMatrix(1, &rsurface.entitytoattenuationxyz);
		R_Mesh_TexCombine(1, GL_MODULATE, GL_MODULATE, 1, 1);
		R_Mesh_TexCoordPointer(1, 3, GL_FLOAT, sizeof(float[3]), rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer, rsurface.batchvertex3f_bufferoffset);
		break;
	case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
		break;
	default:
		break;
	}
	//R_Mesh_TexBind(0, basetexture);
	R_Shadow_RenderLighting_Light_Vertex_Pass(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.batchelement3i + 3*rsurface.batchfirsttriangle, diffusecolorbase, ambientcolorbase);
	if (dopants)
	{
		R_Mesh_TexBind(0, pantstexture);
		R_Shadow_RenderLighting_Light_Vertex_Pass(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.batchelement3i + 3*rsurface.batchfirsttriangle, diffusecolorpants, ambientcolorpants);
	}
	if (doshirt)
	{
		R_Mesh_TexBind(0, shirttexture);
		R_Shadow_RenderLighting_Light_Vertex_Pass(rsurface.batchfirstvertex, rsurface.batchnumvertices, rsurface.batchnumtriangles, rsurface.batchelement3i + 3*rsurface.batchfirsttriangle, diffusecolorshirt, ambientcolorshirt);
	}
}

extern cvar_t gl_lightmaps;
void R_Shadow_RenderLighting(int texturenumsurfaces, const msurface_t **texturesurfacelist)
{
	qboolean negated;
	float ambientcolor[3], diffusecolor[3], specularcolor[3];
	VectorM(rsurface.rtlight->ambientscale + rsurface.texture->rtlightambient, rsurface.texture->render_rtlight_diffuse, ambientcolor);
	VectorM(rsurface.rtlight->diffusescale * max(0, 1.0 - rsurface.texture->rtlightambient), rsurface.texture->render_rtlight_diffuse, diffusecolor);
	VectorM(rsurface.rtlight->specularscale, rsurface.texture->render_rtlight_specular, specularcolor);
	if (!r_shadow_usenormalmap.integer)
	{
		VectorMAM(1.0f, ambientcolor, 1.0f, diffusecolor, ambientcolor);
		VectorClear(diffusecolor);
		VectorClear(specularcolor);
	}
	VectorMultiply(ambientcolor, rsurface.rtlight->currentcolor, ambientcolor);
	VectorMultiply(diffusecolor, rsurface.rtlight->currentcolor, diffusecolor);
	VectorMultiply(specularcolor, rsurface.rtlight->currentcolor, specularcolor);
	if (VectorLength2(ambientcolor) + VectorLength2(diffusecolor) + VectorLength2(specularcolor) < (1.0f / 1048576.0f))
		return;
	negated = (rsurface.rtlight->currentcolor[0] + rsurface.rtlight->currentcolor[1] + rsurface.rtlight->currentcolor[2] < 0) && vid.support.ext_blend_subtract;
	if(negated)
	{
		VectorNegate(ambientcolor, ambientcolor);
		VectorNegate(diffusecolor, diffusecolor);
		VectorNegate(specularcolor, specularcolor);
		GL_BlendEquationSubtract(true);
	}
	RSurf_SetupDepthAndCulling();
	switch (r_shadow_rendermode)
	{
	case R_SHADOW_RENDERMODE_VISIBLELIGHTING:
		GL_DepthTest(!(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST) && !r_showdisabledepthtest.integer);
		R_Shadow_RenderLighting_VisibleLighting(texturenumsurfaces, texturesurfacelist);
		break;
	case R_SHADOW_RENDERMODE_LIGHT_GLSL:
		R_Shadow_RenderLighting_Light_GLSL(texturenumsurfaces, texturesurfacelist, ambientcolor, diffusecolor, specularcolor);
		break;
	case R_SHADOW_RENDERMODE_LIGHT_VERTEX3DATTEN:
	case R_SHADOW_RENDERMODE_LIGHT_VERTEX2D1DATTEN:
	case R_SHADOW_RENDERMODE_LIGHT_VERTEX2DATTEN:
	case R_SHADOW_RENDERMODE_LIGHT_VERTEX:
		R_Shadow_RenderLighting_Light_Vertex(texturenumsurfaces, texturesurfacelist, ambientcolor, diffusecolor);
		break;
	default:
		Con_Printf("R_Shadow_RenderLighting: unknown r_shadow_rendermode %i\n", r_shadow_rendermode);
		break;
	}
	if(negated)
		GL_BlendEquationSubtract(false);
}

void R_RTLight_Update(rtlight_t *rtlight, int isstatic, matrix4x4_t *matrix, vec3_t color, int style, const char *cubemapname, int shadow, vec_t corona, vec_t coronasizescale, vec_t ambientscale, vec_t diffusescale, vec_t specularscale, int flags)
{
	matrix4x4_t tempmatrix = *matrix;
	Matrix4x4_Scale(&tempmatrix, r_shadow_lightradiusscale.value, 1);

	// if this light has been compiled before, free the associated data
	R_RTLight_Uncompile(rtlight);

	// clear it completely to avoid any lingering data
	memset(rtlight, 0, sizeof(*rtlight));

	// copy the properties
	rtlight->matrix_lighttoworld = tempmatrix;
	Matrix4x4_Invert_Simple(&rtlight->matrix_worldtolight, &tempmatrix);
	Matrix4x4_OriginFromMatrix(&tempmatrix, rtlight->shadoworigin);
	rtlight->radius = Matrix4x4_ScaleFromMatrix(&tempmatrix);
	VectorCopy(color, rtlight->color);
	rtlight->cubemapname[0] = 0;
	if (cubemapname && cubemapname[0])
		strlcpy(rtlight->cubemapname, cubemapname, sizeof(rtlight->cubemapname));
	rtlight->shadow = shadow;
	rtlight->corona = corona;
	rtlight->style = style;
	rtlight->isstatic = isstatic;
	rtlight->coronasizescale = coronasizescale;
	rtlight->ambientscale = ambientscale;
	rtlight->diffusescale = diffusescale;
	rtlight->specularscale = specularscale;
	rtlight->flags = flags;

	// compute derived data
	//rtlight->cullradius = rtlight->radius;
	//rtlight->cullradius2 = rtlight->radius * rtlight->radius;
	rtlight->cullmins[0] = rtlight->shadoworigin[0] - rtlight->radius;
	rtlight->cullmins[1] = rtlight->shadoworigin[1] - rtlight->radius;
	rtlight->cullmins[2] = rtlight->shadoworigin[2] - rtlight->radius;
	rtlight->cullmaxs[0] = rtlight->shadoworigin[0] + rtlight->radius;
	rtlight->cullmaxs[1] = rtlight->shadoworigin[1] + rtlight->radius;
	rtlight->cullmaxs[2] = rtlight->shadoworigin[2] + rtlight->radius;
}

// compiles rtlight geometry
// (undone by R_FreeCompiledRTLight, which R_UpdateLight calls)
void R_RTLight_Compile(rtlight_t *rtlight)
{
	int i;
	int numsurfaces, numleafs, numleafpvsbytes, numshadowtrispvsbytes, numlighttrispvsbytes;
	int lighttris, shadowtris, shadowzpasstris, shadowzfailtris;
	entity_render_t *ent = r_refdef.scene.worldentity;
	dp_model_t *model = r_refdef.scene.worldmodel;
	unsigned char *data;
	shadowmesh_t *mesh;

	// compile the light
	rtlight->compiled = true;
	rtlight->shadowmode = rtlight->shadow ? (int)r_shadow_shadowmode : -1;
	rtlight->static_numleafs = 0;
	rtlight->static_numleafpvsbytes = 0;
	rtlight->static_leaflist = NULL;
	rtlight->static_leafpvs = NULL;
	rtlight->static_numsurfaces = 0;
	rtlight->static_surfacelist = NULL;
	rtlight->static_shadowmap_receivers = 0x3F;
	rtlight->static_shadowmap_casters = 0x3F;
	rtlight->cullmins[0] = rtlight->shadoworigin[0] - rtlight->radius;
	rtlight->cullmins[1] = rtlight->shadoworigin[1] - rtlight->radius;
	rtlight->cullmins[2] = rtlight->shadoworigin[2] - rtlight->radius;
	rtlight->cullmaxs[0] = rtlight->shadoworigin[0] + rtlight->radius;
	rtlight->cullmaxs[1] = rtlight->shadoworigin[1] + rtlight->radius;
	rtlight->cullmaxs[2] = rtlight->shadoworigin[2] + rtlight->radius;

	if (model && model->GetLightInfo)
	{
		// this variable must be set for the CompileShadowVolume/CompileShadowMap code
		r_shadow_compilingrtlight = rtlight;
		R_FrameData_SetMark();
		model->GetLightInfo(ent, rtlight->shadoworigin, rtlight->radius, rtlight->cullmins, rtlight->cullmaxs, r_shadow_buffer_leaflist, r_shadow_buffer_leafpvs, &numleafs, r_shadow_buffer_surfacelist, r_shadow_buffer_surfacepvs, &numsurfaces, r_shadow_buffer_shadowtrispvs, r_shadow_buffer_lighttrispvs, r_shadow_buffer_visitingleafpvs, 0, NULL, rtlight->shadow == 0);
		R_FrameData_ReturnToMark();
		numleafpvsbytes = (model->brush.num_leafs + 7) >> 3;
		numshadowtrispvsbytes = ((model->brush.shadowmesh ? model->brush.shadowmesh->numtriangles : model->surfmesh.num_triangles) + 7) >> 3;
		numlighttrispvsbytes = (model->surfmesh.num_triangles + 7) >> 3;
		data = (unsigned char *)Mem_Alloc(r_main_mempool, sizeof(int) * numsurfaces + sizeof(int) * numleafs + numleafpvsbytes + numshadowtrispvsbytes + numlighttrispvsbytes);
		rtlight->static_numsurfaces = numsurfaces;
		rtlight->static_surfacelist = (int *)data;data += sizeof(int) * numsurfaces;
		rtlight->static_numleafs = numleafs;
		rtlight->static_leaflist = (int *)data;data += sizeof(int) * numleafs;
		rtlight->static_numleafpvsbytes = numleafpvsbytes;
		rtlight->static_leafpvs = (unsigned char *)data;data += numleafpvsbytes;
		rtlight->static_numshadowtrispvsbytes = numshadowtrispvsbytes;
		rtlight->static_shadowtrispvs = (unsigned char *)data;data += numshadowtrispvsbytes;
		rtlight->static_numlighttrispvsbytes = numlighttrispvsbytes;
		rtlight->static_lighttrispvs = (unsigned char *)data;data += numlighttrispvsbytes;
		if (rtlight->static_numsurfaces)
			memcpy(rtlight->static_surfacelist, r_shadow_buffer_surfacelist, rtlight->static_numsurfaces * sizeof(*rtlight->static_surfacelist));
		if (rtlight->static_numleafs)
			memcpy(rtlight->static_leaflist, r_shadow_buffer_leaflist, rtlight->static_numleafs * sizeof(*rtlight->static_leaflist));
		if (rtlight->static_numleafpvsbytes)
			memcpy(rtlight->static_leafpvs, r_shadow_buffer_leafpvs, rtlight->static_numleafpvsbytes);
		if (rtlight->static_numshadowtrispvsbytes)
			memcpy(rtlight->static_shadowtrispvs, r_shadow_buffer_shadowtrispvs, rtlight->static_numshadowtrispvsbytes);
		if (rtlight->static_numlighttrispvsbytes)
			memcpy(rtlight->static_lighttrispvs, r_shadow_buffer_lighttrispvs, rtlight->static_numlighttrispvsbytes);
		R_FrameData_SetMark();
		switch (rtlight->shadowmode)
		{
		case R_SHADOW_SHADOWMODE_SHADOWMAP2D:
			if (model->CompileShadowMap && rtlight->shadow)
				model->CompileShadowMap(ent, rtlight->shadoworigin, NULL, rtlight->radius, numsurfaces, r_shadow_buffer_surfacelist);
			break;
		default:
			if (model->CompileShadowVolume && rtlight->shadow)
				model->CompileShadowVolume(ent, rtlight->shadoworigin, NULL, rtlight->radius, numsurfaces, r_shadow_buffer_surfacelist);
			break;
		}
		R_FrameData_ReturnToMark();
		// now we're done compiling the rtlight
		r_shadow_compilingrtlight = NULL;
	}


	// use smallest available cullradius - box radius or light radius
	//rtlight->cullradius = RadiusFromBoundsAndOrigin(rtlight->cullmins, rtlight->cullmaxs, rtlight->shadoworigin);
	//rtlight->cullradius = min(rtlight->cullradius, rtlight->radius);

	shadowzpasstris = 0;
	if (rtlight->static_meshchain_shadow_zpass)
		for (mesh = rtlight->static_meshchain_shadow_zpass;mesh;mesh = mesh->next)
			shadowzpasstris += mesh->numtriangles;

	shadowzfailtris = 0;
	if (rtlight->static_meshchain_shadow_zfail)
		for (mesh = rtlight->static_meshchain_shadow_zfail;mesh;mesh = mesh->next)
			shadowzfailtris += mesh->numtriangles;

	lighttris = 0;
	if (rtlight->static_numlighttrispvsbytes)
		for (i = 0;i < rtlight->static_numlighttrispvsbytes*8;i++)
			if (CHECKPVSBIT(rtlight->static_lighttrispvs, i))
				lighttris++;

	shadowtris = 0;
	if (rtlight->static_numshadowtrispvsbytes)
		for (i = 0;i < rtlight->static_numshadowtrispvsbytes*8;i++)
			if (CHECKPVSBIT(rtlight->static_shadowtrispvs, i))
				shadowtris++;

	if (developer_extra.integer)
		Con_DPrintf("static light built: %f %f %f : %f %f %f box, %i light triangles, %i shadow triangles, %i zpass/%i zfail compiled shadow volume triangles\n", rtlight->cullmins[0], rtlight->cullmins[1], rtlight->cullmins[2], rtlight->cullmaxs[0], rtlight->cullmaxs[1], rtlight->cullmaxs[2], lighttris, shadowtris, shadowzpasstris, shadowzfailtris);
}

void R_RTLight_Uncompile(rtlight_t *rtlight)
{
	if (rtlight->compiled)
	{
		if (rtlight->static_meshchain_shadow_zpass)
			Mod_ShadowMesh_Free(rtlight->static_meshchain_shadow_zpass);
		rtlight->static_meshchain_shadow_zpass = NULL;
		if (rtlight->static_meshchain_shadow_zfail)
			Mod_ShadowMesh_Free(rtlight->static_meshchain_shadow_zfail);
		rtlight->static_meshchain_shadow_zfail = NULL;
		if (rtlight->static_meshchain_shadow_shadowmap)
			Mod_ShadowMesh_Free(rtlight->static_meshchain_shadow_shadowmap);
		rtlight->static_meshchain_shadow_shadowmap = NULL;
		// these allocations are grouped
		if (rtlight->static_surfacelist)
			Mem_Free(rtlight->static_surfacelist);
		rtlight->static_numleafs = 0;
		rtlight->static_numleafpvsbytes = 0;
		rtlight->static_leaflist = NULL;
		rtlight->static_leafpvs = NULL;
		rtlight->static_numsurfaces = 0;
		rtlight->static_surfacelist = NULL;
		rtlight->static_numshadowtrispvsbytes = 0;
		rtlight->static_shadowtrispvs = NULL;
		rtlight->static_numlighttrispvsbytes = 0;
		rtlight->static_lighttrispvs = NULL;
		rtlight->compiled = false;
	}
}

void R_Shadow_UncompileWorldLights(void)
{
	size_t lightindex;
	dlight_t *light;
	size_t range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
	for (lightindex = 0;lightindex < range;lightindex++)
	{
		light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
		if (!light)
			continue;
		R_RTLight_Uncompile(&light->rtlight);
	}
}

static void R_Shadow_ComputeShadowCasterCullingPlanes(rtlight_t *rtlight)
{
	int i, j;
	mplane_t plane;
	// reset the count of frustum planes
	// see rtlight->cached_frustumplanes definition for how much this array
	// can hold
	rtlight->cached_numfrustumplanes = 0;

	if (r_trippy.integer)
		return;

	// haven't implemented a culling path for ortho rendering
	if (!r_refdef.view.useperspective)
	{
		// check if the light is on screen and copy the 4 planes if it is
		for (i = 0;i < 4;i++)
			if (PlaneDiff(rtlight->shadoworigin, &r_refdef.view.frustum[i]) < -0.03125)
				break;
		if (i == 4)
			for (i = 0;i < 4;i++)
				rtlight->cached_frustumplanes[rtlight->cached_numfrustumplanes++] = r_refdef.view.frustum[i];
		return;
	}

#if 1
	// generate a deformed frustum that includes the light origin, this is
	// used to cull shadow casting surfaces that can not possibly cast a
	// shadow onto the visible light-receiving surfaces, which can be a
	// performance gain
	//
	// if the light origin is onscreen the result will be 4 planes exactly
	// if the light origin is offscreen on only one axis the result will
	// be exactly 5 planes (split-side case)
	// if the light origin is offscreen on two axes the result will be
	// exactly 4 planes (stretched corner case)
	for (i = 0;i < 4;i++)
	{
		// quickly reject standard frustum planes that put the light
		// origin outside the frustum
		if (PlaneDiff(rtlight->shadoworigin, &r_refdef.view.frustum[i]) < -0.03125)
			continue;
		// copy the plane
		rtlight->cached_frustumplanes[rtlight->cached_numfrustumplanes++] = r_refdef.view.frustum[i];
	}
	// if all the standard frustum planes were accepted, the light is onscreen
	// otherwise we need to generate some more planes below...
	if (rtlight->cached_numfrustumplanes < 4)
	{
		// at least one of the stock frustum planes failed, so we need to
		// create one or two custom planes to enclose the light origin
		for (i = 0;i < 4;i++)
		{
			// create a plane using the view origin and light origin, and a
			// single point from the frustum corner set
			TriangleNormal(r_refdef.view.origin, r_refdef.view.frustumcorner[i], rtlight->shadoworigin, plane.normal);
			VectorNormalize(plane.normal);
			plane.dist = DotProduct(r_refdef.view.origin, plane.normal);
			// see if this plane is backwards and flip it if so
			for (j = 0;j < 4;j++)
				if (j != i && DotProduct(r_refdef.view.frustumcorner[j], plane.normal) - plane.dist < -0.03125)
					break;
			if (j < 4)
			{
				VectorNegate(plane.normal, plane.normal);
				plane.dist *= -1;
				// flipped plane, test again to see if it is now valid
				for (j = 0;j < 4;j++)
					if (j != i && DotProduct(r_refdef.view.frustumcorner[j], plane.normal) - plane.dist < -0.03125)
						break;
				// if the plane is still not valid, then it is dividing the
				// frustum and has to be rejected
				if (j < 4)
					continue;
			}
			// we have created a valid plane, compute extra info
			PlaneClassify(&plane);
			// copy the plane
			rtlight->cached_frustumplanes[rtlight->cached_numfrustumplanes++] = plane;
#if 1
			// if we've found 5 frustum planes then we have constructed a
			// proper split-side case and do not need to keep searching for
			// planes to enclose the light origin
			if (rtlight->cached_numfrustumplanes == 5)
				break;
#endif
		}
	}
#endif

#if 0
	for (i = 0;i < rtlight->cached_numfrustumplanes;i++)
	{
		plane = rtlight->cached_frustumplanes[i];
		Con_Printf("light %p plane #%i %f %f %f : %f (%f %f %f %f %f)\n", rtlight, i, plane.normal[0], plane.normal[1], plane.normal[2], plane.dist, PlaneDiff(r_refdef.view.frustumcorner[0], &plane), PlaneDiff(r_refdef.view.frustumcorner[1], &plane), PlaneDiff(r_refdef.view.frustumcorner[2], &plane), PlaneDiff(r_refdef.view.frustumcorner[3], &plane), PlaneDiff(rtlight->shadoworigin, &plane));
	}
#endif

#if 0
	// now add the light-space box planes if the light box is rotated, as any
	// caster outside the oriented light box is irrelevant (even if it passed
	// the worldspace light box, which is axial)
	if (rtlight->matrix_lighttoworld.m[0][0] != 1 || rtlight->matrix_lighttoworld.m[1][1] != 1 || rtlight->matrix_lighttoworld.m[2][2] != 1)
	{
		for (i = 0;i < 6;i++)
		{
			vec3_t v;
			VectorClear(v);
			v[i >> 1] = (i & 1) ? -1 : 1;
			Matrix4x4_Transform(&rtlight->matrix_lighttoworld, v, plane.normal);
			VectorSubtract(plane.normal, rtlight->shadoworigin, plane.normal);
			plane.dist = VectorNormalizeLength(plane.normal);
			plane.dist += DotProduct(plane.normal, rtlight->shadoworigin);
			rtlight->cached_frustumplanes[rtlight->cached_numfrustumplanes++] = plane;
		}
	}
#endif

#if 0
	// add the world-space reduced box planes
	for (i = 0;i < 6;i++)
	{
		VectorClear(plane.normal);
		plane.normal[i >> 1] = (i & 1) ? -1 : 1;
		plane.dist = (i & 1) ? -rtlight->cached_cullmaxs[i >> 1] : rtlight->cached_cullmins[i >> 1];
		rtlight->cached_frustumplanes[rtlight->cached_numfrustumplanes++] = plane;
	}
#endif

#if 0
	{
	int j, oldnum;
	vec3_t points[8];
	vec_t bestdist;
	// reduce all plane distances to tightly fit the rtlight cull box, which
	// is in worldspace
	VectorSet(points[0], rtlight->cached_cullmins[0], rtlight->cached_cullmins[1], rtlight->cached_cullmins[2]);
	VectorSet(points[1], rtlight->cached_cullmaxs[0], rtlight->cached_cullmins[1], rtlight->cached_cullmins[2]);
	VectorSet(points[2], rtlight->cached_cullmins[0], rtlight->cached_cullmaxs[1], rtlight->cached_cullmins[2]);
	VectorSet(points[3], rtlight->cached_cullmaxs[0], rtlight->cached_cullmaxs[1], rtlight->cached_cullmins[2]);
	VectorSet(points[4], rtlight->cached_cullmins[0], rtlight->cached_cullmins[1], rtlight->cached_cullmaxs[2]);
	VectorSet(points[5], rtlight->cached_cullmaxs[0], rtlight->cached_cullmins[1], rtlight->cached_cullmaxs[2]);
	VectorSet(points[6], rtlight->cached_cullmins[0], rtlight->cached_cullmaxs[1], rtlight->cached_cullmaxs[2]);
	VectorSet(points[7], rtlight->cached_cullmaxs[0], rtlight->cached_cullmaxs[1], rtlight->cached_cullmaxs[2]);
	oldnum = rtlight->cached_numfrustumplanes;
	rtlight->cached_numfrustumplanes = 0;
	for (j = 0;j < oldnum;j++)
	{
		// find the nearest point on the box to this plane
		bestdist = DotProduct(rtlight->cached_frustumplanes[j].normal, points[0]);
		for (i = 1;i < 8;i++)
		{
			dist = DotProduct(rtlight->cached_frustumplanes[j].normal, points[i]);
			if (bestdist > dist)
				bestdist = dist;
		}
		Con_Printf("light %p %splane #%i %f %f %f : %f < %f\n", rtlight, rtlight->cached_frustumplanes[j].dist < bestdist + 0.03125 ? "^2" : "^1", j, rtlight->cached_frustumplanes[j].normal[0], rtlight->cached_frustumplanes[j].normal[1], rtlight->cached_frustumplanes[j].normal[2], rtlight->cached_frustumplanes[j].dist, bestdist);
		// if the nearest point is near or behind the plane, we want this
		// plane, otherwise the plane is useless as it won't cull anything
		if (rtlight->cached_frustumplanes[j].dist < bestdist + 0.03125)
		{
			PlaneClassify(&rtlight->cached_frustumplanes[j]);
			rtlight->cached_frustumplanes[rtlight->cached_numfrustumplanes++] = rtlight->cached_frustumplanes[j];
		}
	}
	}
#endif
}

static void R_Shadow_DrawWorldShadow_ShadowMap(int numsurfaces, int *surfacelist, const unsigned char *trispvs, const unsigned char *surfacesides)
{
	shadowmesh_t *mesh;

	RSurf_ActiveModelEntity(r_refdef.scene.worldentity, false, false, false);

	if (rsurface.rtlight->compiled && r_shadow_realtime_world_compile.integer && r_shadow_realtime_world_compileshadow.integer)
	{
		CHECKGLERROR
		GL_CullFace(GL_NONE);
		mesh = rsurface.rtlight->static_meshchain_shadow_shadowmap;
		for (;mesh;mesh = mesh->next)
		{
			if (!mesh->sidetotals[r_shadow_shadowmapside])
				continue;
			r_refdef.stats[r_stat_lights_shadowtriangles] += mesh->sidetotals[r_shadow_shadowmapside];
			R_Mesh_PrepareVertices_Vertex3f(mesh->numverts, mesh->vertex3f, mesh->vbo_vertexbuffer, mesh->vbooffset_vertex3f);
			R_Mesh_Draw(0, mesh->numverts, mesh->sideoffsets[r_shadow_shadowmapside], mesh->sidetotals[r_shadow_shadowmapside], mesh->element3i, mesh->element3i_indexbuffer, mesh->element3i_bufferoffset, mesh->element3s, mesh->element3s_indexbuffer, mesh->element3s_bufferoffset);
		}
		CHECKGLERROR
	}
	else if (r_refdef.scene.worldentity->model)
		r_refdef.scene.worldmodel->DrawShadowMap(r_shadow_shadowmapside, r_refdef.scene.worldentity, rsurface.rtlight->shadoworigin, NULL, rsurface.rtlight->radius, numsurfaces, surfacelist, surfacesides, rsurface.rtlight->cached_cullmins, rsurface.rtlight->cached_cullmaxs);

	rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
}

static void R_Shadow_DrawWorldShadow_ShadowVolume(int numsurfaces, int *surfacelist, const unsigned char *trispvs)
{
	qboolean zpass = false;
	shadowmesh_t *mesh;
	int t, tend;
	int surfacelistindex;
	msurface_t *surface;

	// if triangle neighbors are disabled, shadowvolumes are disabled
	if (r_refdef.scene.worldmodel->brush.shadowmesh ? !r_refdef.scene.worldmodel->brush.shadowmesh->neighbor3i : !r_refdef.scene.worldmodel->surfmesh.data_neighbor3i)
		return;

	RSurf_ActiveModelEntity(r_refdef.scene.worldentity, false, false, false);

	if (rsurface.rtlight->compiled && r_shadow_realtime_world_compile.integer && r_shadow_realtime_world_compileshadow.integer)
	{
		CHECKGLERROR
		if (r_shadow_rendermode != R_SHADOW_RENDERMODE_VISIBLEVOLUMES)
		{
			zpass = R_Shadow_UseZPass(r_refdef.scene.worldmodel->normalmins, r_refdef.scene.worldmodel->normalmaxs);
			R_Shadow_RenderMode_StencilShadowVolumes(zpass);
		}
		mesh = zpass ? rsurface.rtlight->static_meshchain_shadow_zpass : rsurface.rtlight->static_meshchain_shadow_zfail;
		for (;mesh;mesh = mesh->next)
		{
			r_refdef.stats[r_stat_lights_shadowtriangles] += mesh->numtriangles;
			R_Mesh_PrepareVertices_Vertex3f(mesh->numverts, mesh->vertex3f, mesh->vbo_vertexbuffer, mesh->vbooffset_vertex3f);
			if (r_shadow_rendermode == R_SHADOW_RENDERMODE_ZPASS_STENCIL)
			{
				// increment stencil if frontface is infront of depthbuffer
				GL_CullFace(r_refdef.view.cullface_back);
				R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_INCR, GL_ALWAYS, 128, 255);
				R_Mesh_Draw(0, mesh->numverts, 0, mesh->numtriangles, mesh->element3i, mesh->element3i_indexbuffer, mesh->element3i_bufferoffset, mesh->element3s, mesh->element3s_indexbuffer, mesh->element3s_bufferoffset);
				// decrement stencil if backface is infront of depthbuffer
				GL_CullFace(r_refdef.view.cullface_front);
				R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_DECR, GL_ALWAYS, 128, 255);
			}
			else if (r_shadow_rendermode == R_SHADOW_RENDERMODE_ZFAIL_STENCIL)
			{
				// decrement stencil if backface is behind depthbuffer
				GL_CullFace(r_refdef.view.cullface_front);
				R_SetStencil(true, 255, GL_KEEP, GL_DECR, GL_KEEP, GL_ALWAYS, 128, 255);
				R_Mesh_Draw(0, mesh->numverts, 0, mesh->numtriangles, mesh->element3i, mesh->element3i_indexbuffer, mesh->element3i_bufferoffset, mesh->element3s, mesh->element3s_indexbuffer, mesh->element3s_bufferoffset);
				// increment stencil if frontface is behind depthbuffer
				GL_CullFace(r_refdef.view.cullface_back);
				R_SetStencil(true, 255, GL_KEEP, GL_INCR, GL_KEEP, GL_ALWAYS, 128, 255);
			}
			R_Mesh_Draw(0, mesh->numverts, 0, mesh->numtriangles, mesh->element3i, mesh->element3i_indexbuffer, mesh->element3i_bufferoffset, mesh->element3s, mesh->element3s_indexbuffer, mesh->element3s_bufferoffset);
		}
		CHECKGLERROR
	}
	else if (numsurfaces && r_refdef.scene.worldmodel->brush.shadowmesh)
	{
		// use the shadow trispvs calculated earlier by GetLightInfo to cull world triangles on this dynamic light
		R_Shadow_PrepareShadowMark(r_refdef.scene.worldmodel->brush.shadowmesh->numtriangles);
		for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
		{
			surface = r_refdef.scene.worldmodel->data_surfaces + surfacelist[surfacelistindex];
			for (t = surface->num_firstshadowmeshtriangle, tend = t + surface->num_triangles;t < tend;t++)
				if (CHECKPVSBIT(trispvs, t))
					shadowmarklist[numshadowmark++] = t;
		}
		R_Shadow_VolumeFromList(r_refdef.scene.worldmodel->brush.shadowmesh->numverts, r_refdef.scene.worldmodel->brush.shadowmesh->numtriangles, r_refdef.scene.worldmodel->brush.shadowmesh->vertex3f, r_refdef.scene.worldmodel->brush.shadowmesh->element3i, r_refdef.scene.worldmodel->brush.shadowmesh->neighbor3i, rsurface.rtlight->shadoworigin, NULL, rsurface.rtlight->radius + r_refdef.scene.worldmodel->radius*2 + r_shadow_projectdistance.value, numshadowmark, shadowmarklist, r_refdef.scene.worldmodel->normalmins, r_refdef.scene.worldmodel->normalmaxs);
	}
	else if (numsurfaces)
	{
		r_refdef.scene.worldmodel->DrawShadowVolume(r_refdef.scene.worldentity, rsurface.rtlight->shadoworigin, NULL, rsurface.rtlight->radius, numsurfaces, surfacelist, rsurface.rtlight->cached_cullmins, rsurface.rtlight->cached_cullmaxs);
	}

	rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
}

static void R_Shadow_DrawEntityShadow(entity_render_t *ent)
{
	vec3_t relativeshadoworigin, relativeshadowmins, relativeshadowmaxs;
	vec_t relativeshadowradius;
	RSurf_ActiveModelEntity(ent, false, false, false);
	Matrix4x4_Transform(&ent->inversematrix, rsurface.rtlight->shadoworigin, relativeshadoworigin);
	// we need to re-init the shader for each entity because the matrix changed
	relativeshadowradius = rsurface.rtlight->radius / ent->scale;
	relativeshadowmins[0] = relativeshadoworigin[0] - relativeshadowradius;
	relativeshadowmins[1] = relativeshadoworigin[1] - relativeshadowradius;
	relativeshadowmins[2] = relativeshadoworigin[2] - relativeshadowradius;
	relativeshadowmaxs[0] = relativeshadoworigin[0] + relativeshadowradius;
	relativeshadowmaxs[1] = relativeshadoworigin[1] + relativeshadowradius;
	relativeshadowmaxs[2] = relativeshadoworigin[2] + relativeshadowradius;
	switch (r_shadow_rendermode)
	{
	case R_SHADOW_RENDERMODE_SHADOWMAP2D:
		ent->model->DrawShadowMap(r_shadow_shadowmapside, ent, relativeshadoworigin, NULL, relativeshadowradius, ent->model->nummodelsurfaces, ent->model->sortedmodelsurfaces, NULL, relativeshadowmins, relativeshadowmaxs);
		break;
	default:
		ent->model->DrawShadowVolume(ent, relativeshadoworigin, NULL, relativeshadowradius, ent->model->nummodelsurfaces, ent->model->sortedmodelsurfaces, relativeshadowmins, relativeshadowmaxs);
		break;
	}
	rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
}

void R_Shadow_SetupEntityLight(const entity_render_t *ent)
{
	// set up properties for rendering light onto this entity
	RSurf_ActiveModelEntity(ent, true, true, false);
	Matrix4x4_Concat(&rsurface.entitytolight, &rsurface.rtlight->matrix_worldtolight, &ent->matrix);
	Matrix4x4_Concat(&rsurface.entitytoattenuationxyz, &matrix_attenuationxyz, &rsurface.entitytolight);
	Matrix4x4_Concat(&rsurface.entitytoattenuationz, &matrix_attenuationz, &rsurface.entitytolight);
	Matrix4x4_Transform(&ent->inversematrix, rsurface.rtlight->shadoworigin, rsurface.entitylightorigin);
}

static void R_Shadow_DrawWorldLight(int numsurfaces, int *surfacelist, const unsigned char *lighttrispvs)
{
	if (!r_refdef.scene.worldmodel->DrawLight)
		return;

	// set up properties for rendering light onto this entity
	RSurf_ActiveModelEntity(r_refdef.scene.worldentity, false, false, false);
	rsurface.entitytolight = rsurface.rtlight->matrix_worldtolight;
	Matrix4x4_Concat(&rsurface.entitytoattenuationxyz, &matrix_attenuationxyz, &rsurface.entitytolight);
	Matrix4x4_Concat(&rsurface.entitytoattenuationz, &matrix_attenuationz, &rsurface.entitytolight);
	VectorCopy(rsurface.rtlight->shadoworigin, rsurface.entitylightorigin);

	r_refdef.scene.worldmodel->DrawLight(r_refdef.scene.worldentity, numsurfaces, surfacelist, lighttrispvs);

	rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
}

static void R_Shadow_DrawEntityLight(entity_render_t *ent)
{
	dp_model_t *model = ent->model;
	if (!model->DrawLight)
		return;

	R_Shadow_SetupEntityLight(ent);

	model->DrawLight(ent, model->nummodelsurfaces, model->sortedmodelsurfaces, NULL);

	rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
}

static void R_Shadow_PrepareLight(rtlight_t *rtlight)
{
	int i;
	float f;
	int numleafs, numsurfaces;
	int *leaflist, *surfacelist;
	unsigned char *leafpvs;
	unsigned char *shadowtrispvs;
	unsigned char *lighttrispvs;
	//unsigned char *surfacesides;
	int numlightentities;
	int numlightentities_noselfshadow;
	int numshadowentities;
	int numshadowentities_noselfshadow;
	// FIXME: bounds check lightentities and shadowentities, etc.
	static entity_render_t *lightentities[MAX_EDICTS];
	static entity_render_t *lightentities_noselfshadow[MAX_EDICTS];
	static entity_render_t *shadowentities[MAX_EDICTS];
	static entity_render_t *shadowentities_noselfshadow[MAX_EDICTS];
	qboolean nolight;
	qboolean castshadows;

	rtlight->draw = false;
	rtlight->cached_numlightentities = 0;
	rtlight->cached_numlightentities_noselfshadow = 0;
	rtlight->cached_numshadowentities = 0;
	rtlight->cached_numshadowentities_noselfshadow = 0;
	rtlight->cached_numsurfaces = 0;
	rtlight->cached_lightentities = NULL;
	rtlight->cached_lightentities_noselfshadow = NULL;
	rtlight->cached_shadowentities = NULL;
	rtlight->cached_shadowentities_noselfshadow = NULL;
	rtlight->cached_shadowtrispvs = NULL;
	rtlight->cached_lighttrispvs = NULL;
	rtlight->cached_surfacelist = NULL;
	rtlight->shadowmapsidesize = 0;

	// skip lights that don't light because of ambientscale+diffusescale+specularscale being 0 (corona only lights)
	// skip lights that are basically invisible (color 0 0 0)
	nolight = VectorLength2(rtlight->color) * (rtlight->ambientscale + rtlight->diffusescale + rtlight->specularscale) < (1.0f / 1048576.0f);

	// loading is done before visibility checks because loading should happen
	// all at once at the start of a level, not when it stalls gameplay.
	// (especially important to benchmarks)
	// compile light
	if (rtlight->isstatic && !nolight && (!rtlight->compiled || (rtlight->shadow && rtlight->shadowmode != (int)r_shadow_shadowmode)) && r_shadow_realtime_world_compile.integer)
	{
		if (rtlight->compiled)
			R_RTLight_Uncompile(rtlight);
		R_RTLight_Compile(rtlight);
	}

	// load cubemap
	rtlight->currentcubemap = rtlight->cubemapname[0] ? R_GetCubemap(rtlight->cubemapname) : r_texture_whitecube;

	// look up the light style value at this time
	f = ((rtlight->style >= 0 && rtlight->style < MAX_LIGHTSTYLES) ? r_refdef.scene.rtlightstylevalue[rtlight->style] : 1) * r_shadow_lightintensityscale.value;
	VectorScale(rtlight->color, f, rtlight->currentcolor);
	/*
	if (rtlight->selected)
	{
		f = 2 + sin(realtime * M_PI * 4.0);
		VectorScale(rtlight->currentcolor, f, rtlight->currentcolor);
	}
	*/

	// skip if lightstyle is currently off
	if (VectorLength2(rtlight->currentcolor) < (1.0f / 1048576.0f))
		return;

	// skip processing on corona-only lights
	if (nolight)
		return;

	// skip if the light box is not touching any visible leafs
	if (r_shadow_culllights_pvs.integer
		&& r_refdef.scene.worldmodel
		&& r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs
		&& !r_refdef.scene.worldmodel->brush.BoxTouchingVisibleLeafs(r_refdef.scene.worldmodel, r_refdef.viewcache.world_leafvisible, rtlight->cullmins, rtlight->cullmaxs))
		return;

	// skip if the light box is not visible to traceline
	if (r_shadow_culllights_trace.integer)
	{
		if (rtlight->trace_timer != realtime && R_CanSeeBox(rtlight->trace_timer == 0 ? r_shadow_culllights_trace_tempsamples.integer : r_shadow_culllights_trace_samples.integer, r_shadow_culllights_trace_eyejitter.value, r_shadow_culllights_trace_enlarge.value, r_refdef.view.origin, rtlight->cullmins, rtlight->cullmaxs))
			rtlight->trace_timer = realtime;
		if (realtime - rtlight->trace_timer > r_shadow_culllights_trace_delay.value)
			return;
	}

	// skip if the light box is off screen
	if (R_CullBox(rtlight->cullmins, rtlight->cullmaxs))
		return;

	// in the typical case this will be quickly replaced by GetLightInfo
	VectorCopy(rtlight->cullmins, rtlight->cached_cullmins);
	VectorCopy(rtlight->cullmaxs, rtlight->cached_cullmaxs);

	R_Shadow_ComputeShadowCasterCullingPlanes(rtlight);

	// don't allow lights to be drawn if using r_shadow_bouncegrid 2, except if we're using static bouncegrid where dynamic lights still need to draw
	if (r_shadow_bouncegrid.integer == 2 && (rtlight->isstatic || !r_shadow_bouncegrid_static.integer))
		return;

	if (rtlight->compiled && r_shadow_realtime_world_compile.integer)
	{
		// compiled light, world available and can receive realtime lighting
		// retrieve leaf information
		numleafs = rtlight->static_numleafs;
		leaflist = rtlight->static_leaflist;
		leafpvs = rtlight->static_leafpvs;
		numsurfaces = rtlight->static_numsurfaces;
		surfacelist = rtlight->static_surfacelist;
		//surfacesides = NULL;
		shadowtrispvs = rtlight->static_shadowtrispvs;
		lighttrispvs = rtlight->static_lighttrispvs;
	}
	else if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->GetLightInfo)
	{
		// dynamic light, world available and can receive realtime lighting
		// calculate lit surfaces and leafs
		r_refdef.scene.worldmodel->GetLightInfo(r_refdef.scene.worldentity, rtlight->shadoworigin, rtlight->radius, rtlight->cached_cullmins, rtlight->cached_cullmaxs, r_shadow_buffer_leaflist, r_shadow_buffer_leafpvs, &numleafs, r_shadow_buffer_surfacelist, r_shadow_buffer_surfacepvs, &numsurfaces, r_shadow_buffer_shadowtrispvs, r_shadow_buffer_lighttrispvs, r_shadow_buffer_visitingleafpvs, rtlight->cached_numfrustumplanes, rtlight->cached_frustumplanes, rtlight->shadow == 0);
		R_Shadow_ComputeShadowCasterCullingPlanes(rtlight);
		leaflist = r_shadow_buffer_leaflist;
		leafpvs = r_shadow_buffer_leafpvs;
		surfacelist = r_shadow_buffer_surfacelist;
		//surfacesides = r_shadow_buffer_surfacesides;
		shadowtrispvs = r_shadow_buffer_shadowtrispvs;
		lighttrispvs = r_shadow_buffer_lighttrispvs;
		// if the reduced leaf bounds are offscreen, skip it
		if (R_CullBox(rtlight->cached_cullmins, rtlight->cached_cullmaxs))
			return;
	}
	else
	{
		// no world
		numleafs = 0;
		leaflist = NULL;
		leafpvs = NULL;
		numsurfaces = 0;
		surfacelist = NULL;
		//surfacesides = NULL;
		shadowtrispvs = NULL;
		lighttrispvs = NULL;
	}
	// check if light is illuminating any visible leafs
	if (numleafs)
	{
		for (i = 0; i < numleafs; i++)
			if (r_refdef.viewcache.world_leafvisible[leaflist[i]])
				break;
		if (i == numleafs)
			return;
	}

	// make a list of lit entities and shadow casting entities
	numlightentities = 0;
	numlightentities_noselfshadow = 0;
	numshadowentities = 0;
	numshadowentities_noselfshadow = 0;

	// add dynamic entities that are lit by the light
	for (i = 0; i < r_refdef.scene.numentities; i++)
	{
		dp_model_t *model;
		entity_render_t *ent = r_refdef.scene.entities[i];
		vec3_t org;
		if (!BoxesOverlap(ent->mins, ent->maxs, rtlight->cached_cullmins, rtlight->cached_cullmaxs))
			continue;
		// skip the object entirely if it is not within the valid
		// shadow-casting region (which includes the lit region)
		if (R_CullBoxCustomPlanes(ent->mins, ent->maxs, rtlight->cached_numfrustumplanes, rtlight->cached_frustumplanes))
			continue;
		if (!(model = ent->model))
			continue;
		if (r_refdef.viewcache.entityvisible[i] && model->DrawLight && (ent->flags & RENDER_LIGHT))
		{
			// this entity wants to receive light, is visible, and is
			// inside the light box
			// TODO: check if the surfaces in the model can receive light
			// so now check if it's in a leaf seen by the light
			if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.BoxTouchingLeafPVS && !r_refdef.scene.worldmodel->brush.BoxTouchingLeafPVS(r_refdef.scene.worldmodel, leafpvs, ent->mins, ent->maxs))
				continue;
			if (ent->flags & RENDER_NOSELFSHADOW)
				lightentities_noselfshadow[numlightentities_noselfshadow++] = ent;
			else
				lightentities[numlightentities++] = ent;
			// since it is lit, it probably also casts a shadow...
			// about the VectorDistance2 - light emitting entities should not cast their own shadow
			Matrix4x4_OriginFromMatrix(&ent->matrix, org);
			if ((ent->flags & RENDER_SHADOW) && model->DrawShadowVolume && VectorDistance2(org, rtlight->shadoworigin) > 0.1)
			{
				// note: exterior models without the RENDER_NOSELFSHADOW
				// flag still create a RENDER_NOSELFSHADOW shadow but
				// are lit normally, this means that they are
				// self-shadowing but do not shadow other
				// RENDER_NOSELFSHADOW entities such as the gun
				// (very weird, but keeps the player shadow off the gun)
				if (ent->flags & (RENDER_NOSELFSHADOW | RENDER_EXTERIORMODEL))
					shadowentities_noselfshadow[numshadowentities_noselfshadow++] = ent;
				else
					shadowentities[numshadowentities++] = ent;
			}
		}
		else if (ent->flags & RENDER_SHADOW)
		{
			// this entity is not receiving light, but may still need to
			// cast a shadow...
			// TODO: check if the surfaces in the model can cast shadow
			// now check if it is in a leaf seen by the light
			if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->brush.BoxTouchingLeafPVS && !r_refdef.scene.worldmodel->brush.BoxTouchingLeafPVS(r_refdef.scene.worldmodel, leafpvs, ent->mins, ent->maxs))
				continue;
			// about the VectorDistance2 - light emitting entities should not cast their own shadow
			Matrix4x4_OriginFromMatrix(&ent->matrix, org);
			if ((ent->flags & RENDER_SHADOW) && model->DrawShadowVolume && VectorDistance2(org, rtlight->shadoworigin) > 0.1)
			{
				if (ent->flags & (RENDER_NOSELFSHADOW | RENDER_EXTERIORMODEL))
					shadowentities_noselfshadow[numshadowentities_noselfshadow++] = ent;
				else
					shadowentities[numshadowentities++] = ent;
			}
		}
	}

	// return if there's nothing at all to light
	if (numsurfaces + numlightentities + numlightentities_noselfshadow == 0)
		return;

	// count this light in the r_speeds
	r_refdef.stats[r_stat_lights]++;

	// flag it as worth drawing later
	rtlight->draw = true;

	// if we have shadows disabled, don't count the shadow entities, this way we don't do the R_AnimCache_GetEntity on each one
	castshadows = numsurfaces + numshadowentities + numshadowentities_noselfshadow > 0 && rtlight->shadow && (rtlight->isstatic ? r_refdef.scene.rtworldshadows : r_refdef.scene.rtdlightshadows);
	if (!castshadows)
		numshadowentities = numshadowentities_noselfshadow = 0;
	rtlight->castshadows = castshadows;

	// cache all the animated entities that cast a shadow but are not visible
	for (i = 0; i < numshadowentities; i++)
		R_AnimCache_GetEntity(shadowentities[i], false, false);
	for (i = 0; i < numshadowentities_noselfshadow; i++)
		R_AnimCache_GetEntity(shadowentities_noselfshadow[i], false, false);

	// we can convert noselfshadow to regular if there are no receivers of that type (or we're using r_shadow_deferred which doesn't support noselfshadow anyway)
	if (numshadowentities_noselfshadow > 0 && (numlightentities_noselfshadow == 0 || r_shadow_usingdeferredprepass))
	{
		for (i = 0; i < numshadowentities_noselfshadow; i++)
			shadowentities[numshadowentities++] = shadowentities_noselfshadow[i];
		numshadowentities_noselfshadow = 0;
	}

	// we can convert noselfshadow to regular if there are no casters of that type
	if (numlightentities_noselfshadow > 0 && numshadowentities_noselfshadow == 0)
	{
		for (i = 0; i < numlightentities_noselfshadow; i++)
			lightentities[numlightentities++] = lightentities_noselfshadow[i];
		numlightentities_noselfshadow = 0;
	}

	// allocate some temporary memory for rendering this light later in the frame
	// reusable buffers need to be copied, static data can be used as-is
	rtlight->cached_numlightentities               = numlightentities;
	rtlight->cached_numlightentities_noselfshadow  = numlightentities_noselfshadow;
	rtlight->cached_numshadowentities              = numshadowentities;
	rtlight->cached_numshadowentities_noselfshadow = numshadowentities_noselfshadow;
	rtlight->cached_numsurfaces                    = numsurfaces;
	rtlight->cached_lightentities                  = (entity_render_t**)R_FrameData_Store(numlightentities*sizeof(entity_render_t*), (void*)lightentities);
	rtlight->cached_lightentities_noselfshadow     = (entity_render_t**)R_FrameData_Store(numlightentities_noselfshadow*sizeof(entity_render_t*), (void*)lightentities_noselfshadow);
	rtlight->cached_shadowentities                 = (entity_render_t**)R_FrameData_Store(numshadowentities*sizeof(entity_render_t*), (void*)shadowentities);
	rtlight->cached_shadowentities_noselfshadow    = (entity_render_t**)R_FrameData_Store(numshadowentities_noselfshadow*sizeof(entity_render_t *), (void*)shadowentities_noselfshadow);
	if (shadowtrispvs == r_shadow_buffer_shadowtrispvs)
	{
		int numshadowtrispvsbytes = (((r_refdef.scene.worldmodel->brush.shadowmesh ? r_refdef.scene.worldmodel->brush.shadowmesh->numtriangles : r_refdef.scene.worldmodel->surfmesh.num_triangles) + 7) >> 3);
		int numlighttrispvsbytes = ((r_refdef.scene.worldmodel->surfmesh.num_triangles + 7) >> 3);
		rtlight->cached_shadowtrispvs                  =   (unsigned char *)R_FrameData_Store(numshadowtrispvsbytes, shadowtrispvs);
		rtlight->cached_lighttrispvs                   =   (unsigned char *)R_FrameData_Store(numlighttrispvsbytes, lighttrispvs);
		rtlight->cached_surfacelist                    =              (int*)R_FrameData_Store(numsurfaces*sizeof(int), (void*)surfacelist);
	}
	else
	{
		// compiled light data
		rtlight->cached_shadowtrispvs = shadowtrispvs;
		rtlight->cached_lighttrispvs = lighttrispvs;
		rtlight->cached_surfacelist = surfacelist;
	}

	if (R_Shadow_ShadowMappingEnabled())
	{
		// figure out the shadowmapping parameters for this light
		vec3_t nearestpoint;
		vec_t distance;
		int lodlinear;
		nearestpoint[0] = bound(rtlight->cullmins[0], r_refdef.view.origin[0], rtlight->cullmaxs[0]);
		nearestpoint[1] = bound(rtlight->cullmins[1], r_refdef.view.origin[1], rtlight->cullmaxs[1]);
		nearestpoint[2] = bound(rtlight->cullmins[2], r_refdef.view.origin[2], rtlight->cullmaxs[2]);
		distance = VectorDistance(nearestpoint, r_refdef.view.origin);
		lodlinear = (rtlight->radius * r_shadow_shadowmapping_precision.value) / sqrt(max(1.0f, distance / rtlight->radius));
		//lodlinear = (int)(r_shadow_shadowmapping_lod_bias.value + r_shadow_shadowmapping_lod_scale.value * rtlight->radius / max(1.0f, distance));
		lodlinear = bound(r_shadow_shadowmapping_minsize.integer, lodlinear, r_shadow_shadowmapmaxsize);
		rtlight->shadowmapsidesize = bound(r_shadow_shadowmapborder, lodlinear, r_shadow_shadowmapmaxsize);
		// shadowmapatlas* variables will be set by R_Shadow_PrepareLights()
	}
}

static void R_Shadow_DrawLightShadowMaps(rtlight_t *rtlight)
{
	int i;
	int numsurfaces;
	unsigned char *shadowtrispvs, *lighttrispvs, *surfacesides;
	int numlightentities;
	int numlightentities_noselfshadow;
	int numshadowentities;
	int numshadowentities_noselfshadow;
	entity_render_t **lightentities;
	entity_render_t **lightentities_noselfshadow;
	entity_render_t **shadowentities;
	entity_render_t **shadowentities_noselfshadow;
	int *surfacelist;
	static unsigned char entitysides[MAX_EDICTS];
	static unsigned char entitysides_noselfshadow[MAX_EDICTS];
	float borderbias;
	int side;
	int size;
	int castermask;
	int receivermask;
	matrix4x4_t radiustolight;

	// check if we cached this light this frame (meaning it is worth drawing)
	if (!rtlight->draw || !rtlight->castshadows)
		return;

	// if PrepareLights could not find any space for this shadowmap, we may as well mark it as not casting shadows...
	if (rtlight->shadowmapatlassidesize == 0)
	{
		rtlight->castshadows = false;
		return;
	}

	// set up a scissor rectangle for this light
	if (R_Shadow_ScissorForBBox(rtlight->cached_cullmins, rtlight->cached_cullmaxs))
		return;

	// don't let sound skip if going slow
	if (r_refdef.scene.extraupdate)
		S_ExtraUpdate();

	numlightentities = rtlight->cached_numlightentities;
	numlightentities_noselfshadow = rtlight->cached_numlightentities_noselfshadow;
	numshadowentities = rtlight->cached_numshadowentities;
	numshadowentities_noselfshadow = rtlight->cached_numshadowentities_noselfshadow;
	numsurfaces = rtlight->cached_numsurfaces;
	lightentities = rtlight->cached_lightentities;
	lightentities_noselfshadow = rtlight->cached_lightentities_noselfshadow;
	shadowentities = rtlight->cached_shadowentities;
	shadowentities_noselfshadow = rtlight->cached_shadowentities_noselfshadow;
	shadowtrispvs = rtlight->cached_shadowtrispvs;
	lighttrispvs = rtlight->cached_lighttrispvs;
	surfacelist = rtlight->cached_surfacelist;

	// make this the active rtlight for rendering purposes
	R_Shadow_RenderMode_ActiveLight(rtlight);

	radiustolight = rtlight->matrix_worldtolight;
	Matrix4x4_Abs(&radiustolight);

	size = rtlight->shadowmapatlassidesize;
	borderbias = r_shadow_shadowmapborder / (float)(size - r_shadow_shadowmapborder);

	surfacesides = NULL;
	castermask = 0;
	receivermask = 0;
	if (numsurfaces)
	{
		if (rtlight->compiled && r_shadow_realtime_world_compile.integer && r_shadow_realtime_world_compileshadow.integer)
		{
			castermask = rtlight->static_shadowmap_casters;
			receivermask = rtlight->static_shadowmap_receivers;
		}
		else
		{
			surfacesides = r_shadow_buffer_surfacesides;
			for (i = 0; i < numsurfaces; i++)
			{
				msurface_t *surface = r_refdef.scene.worldmodel->data_surfaces + surfacelist[i];
				surfacesides[i] = R_Shadow_CalcBBoxSideMask(surface->mins, surface->maxs, &rtlight->matrix_worldtolight, &radiustolight, borderbias);
				castermask |= surfacesides[i];
				receivermask |= surfacesides[i];
			}
		}
	}

	for (i = 0; i < numlightentities && receivermask < 0x3F; i++)
		receivermask |= R_Shadow_CalcEntitySideMask(lightentities[i], &rtlight->matrix_worldtolight, &radiustolight, borderbias);
	for (i = 0; i < numlightentities_noselfshadow && receivermask < 0x3F; i++)
		receivermask |= R_Shadow_CalcEntitySideMask(lightentities_noselfshadow[i], &rtlight->matrix_worldtolight, &radiustolight, borderbias);

	receivermask &= R_Shadow_CullFrustumSides(rtlight, size, r_shadow_shadowmapborder);

	if (receivermask)
	{
		for (i = 0; i < numshadowentities; i++)
			castermask |= (entitysides[i] = R_Shadow_CalcEntitySideMask(shadowentities[i], &rtlight->matrix_worldtolight, &radiustolight, borderbias));
		for (i = 0; i < numshadowentities_noselfshadow; i++)
			castermask |= (entitysides_noselfshadow[i] = R_Shadow_CalcEntitySideMask(shadowentities_noselfshadow[i], &rtlight->matrix_worldtolight, &radiustolight, borderbias));
	}

	// there is no need to render shadows for sides that have no receivers...
	castermask &= receivermask;

	//Con_Printf("distance %f lodlinear %i size %i\n", distance, lodlinear, size);

	// render shadow casters into shadowmaps for this light
	for (side = 0; side < 6; side++)
	{
		int bit = 1 << side;
		if (castermask & bit)
		{
			R_Shadow_RenderMode_ShadowMap(side, size, rtlight->shadowmapatlasposition[0], rtlight->shadowmapatlasposition[1]);
			if (numsurfaces)
				R_Shadow_DrawWorldShadow_ShadowMap(numsurfaces, surfacelist, shadowtrispvs, surfacesides);
			for (i = 0; i < numshadowentities; i++)
				if (entitysides[i] & bit)
					R_Shadow_DrawEntityShadow(shadowentities[i]);
			for (i = 0; i < numshadowentities_noselfshadow; i++)
				if (entitysides_noselfshadow[i] & bit)
					R_Shadow_DrawEntityShadow(shadowentities_noselfshadow[i]);
		}
	}
	// additionally if there are any noselfshadow casters we have to render a second set of shadowmaps without those :(
	if (numshadowentities_noselfshadow)
	{
		for (side = 0; side < 6; side++)
		{
			int bit = 1 << side;
			if (castermask & bit)
			{
				R_Shadow_RenderMode_ShadowMap(side, size, rtlight->shadowmapatlasposition[0] + size * 2, rtlight->shadowmapatlasposition[1]);
				if (numsurfaces)
					R_Shadow_DrawWorldShadow_ShadowMap(numsurfaces, surfacelist, shadowtrispvs, surfacesides);
				for (i = 0; i < numshadowentities; i++)
					if (entitysides[i] & bit)
						R_Shadow_DrawEntityShadow(shadowentities[i]);
			}
		}
	}
}

static void R_Shadow_DrawLight(rtlight_t *rtlight)
{
	int i;
	int numsurfaces;
	unsigned char *shadowtrispvs, *lighttrispvs;
	int numlightentities;
	int numlightentities_noselfshadow;
	int numshadowentities;
	int numshadowentities_noselfshadow;
	entity_render_t **lightentities;
	entity_render_t **lightentities_noselfshadow;
	entity_render_t **shadowentities;
	entity_render_t **shadowentities_noselfshadow;
	int *surfacelist;
	qboolean castshadows;

	// check if we cached this light this frame (meaning it is worth drawing)
	if (!rtlight->draw)
		return;

	// set up a scissor rectangle for this light
	if (R_Shadow_ScissorForBBox(rtlight->cached_cullmins, rtlight->cached_cullmaxs))
		return;

	// don't let sound skip if going slow
	if (r_refdef.scene.extraupdate)
		S_ExtraUpdate();

	numlightentities = rtlight->cached_numlightentities;
	numlightentities_noselfshadow = rtlight->cached_numlightentities_noselfshadow;
	numshadowentities = rtlight->cached_numshadowentities;
	numshadowentities_noselfshadow = rtlight->cached_numshadowentities_noselfshadow;
	numsurfaces = rtlight->cached_numsurfaces;
	lightentities = rtlight->cached_lightentities;
	lightentities_noselfshadow = rtlight->cached_lightentities_noselfshadow;
	shadowentities = rtlight->cached_shadowentities;
	shadowentities_noselfshadow = rtlight->cached_shadowentities_noselfshadow;
	shadowtrispvs = rtlight->cached_shadowtrispvs;
	lighttrispvs = rtlight->cached_lighttrispvs;
	surfacelist = rtlight->cached_surfacelist;
	castshadows = rtlight->castshadows;

	// make this the active rtlight for rendering purposes
	R_Shadow_RenderMode_ActiveLight(rtlight);

	if (r_showshadowvolumes.integer && r_refdef.view.showdebug && numsurfaces + numshadowentities + numshadowentities_noselfshadow && rtlight->shadow && (rtlight->isstatic ? r_refdef.scene.rtworldshadows : r_refdef.scene.rtdlightshadows))
	{
		// optionally draw visible shape of the shadow volumes
		// for performance analysis by level designers
		R_Shadow_RenderMode_VisibleShadowVolumes();
		if (numsurfaces)
			R_Shadow_DrawWorldShadow_ShadowVolume(numsurfaces, surfacelist, shadowtrispvs);
		for (i = 0;i < numshadowentities;i++)
			R_Shadow_DrawEntityShadow(shadowentities[i]);
		for (i = 0;i < numshadowentities_noselfshadow;i++)
			R_Shadow_DrawEntityShadow(shadowentities_noselfshadow[i]);
		R_Shadow_RenderMode_VisibleLighting(false, false);
	}

	if (r_showlighting.integer && r_refdef.view.showdebug && numsurfaces + numlightentities + numlightentities_noselfshadow)
	{
		// optionally draw the illuminated areas
		// for performance analysis by level designers
		R_Shadow_RenderMode_VisibleLighting(false, false);
		if (numsurfaces)
			R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
		for (i = 0;i < numlightentities;i++)
			R_Shadow_DrawEntityLight(lightentities[i]);
		for (i = 0;i < numlightentities_noselfshadow;i++)
			R_Shadow_DrawEntityLight(lightentities_noselfshadow[i]);
	}

	if (castshadows && r_shadow_shadowmode == R_SHADOW_SHADOWMODE_SHADOWMAP2D)
	{
		float borderbias;
		int size;
		float shadowmapoffsetnoselfshadow = 0;
		matrix4x4_t radiustolight = rtlight->matrix_worldtolight;
		Matrix4x4_Abs(&radiustolight);

		size = rtlight->shadowmapatlassidesize;
		borderbias = r_shadow_shadowmapborder / (float)(size - r_shadow_shadowmapborder);

		//Con_Printf("distance %f lodlinear %i size %i\n", distance, lodlinear, size);

		if (rtlight->cached_numshadowentities_noselfshadow)
			shadowmapoffsetnoselfshadow = rtlight->shadowmapatlassidesize * 2;

		// render lighting using the depth texture as shadowmap
		// draw lighting in the unmasked areas
		if (numsurfaces + numlightentities)
		{
			R_Shadow_RenderMode_Lighting(false, false, true, false);
			// draw lighting in the unmasked areas
			if (numsurfaces)
				R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
			for (i = 0; i < numlightentities; i++)
				R_Shadow_DrawEntityLight(lightentities[i]);
		}
		// offset to the noselfshadow part of the atlas and draw those too
		if (numlightentities_noselfshadow)
		{
			R_Shadow_RenderMode_Lighting(false, false, true, true);
			for (i = 0; i < numlightentities_noselfshadow; i++)
				R_Shadow_DrawEntityLight(lightentities_noselfshadow[i]);
		}

		// rasterize the box when rendering deferred lighting - the regular surface lighting only applies to transparent surfaces
		if (r_shadow_usingdeferredprepass)
			R_Shadow_RenderMode_DrawDeferredLight(true);
	}
	else if (castshadows && vid.stencil)
	{
		// draw stencil shadow volumes to mask off pixels that are in shadow
		// so that they won't receive lighting
		GL_Scissor(r_shadow_lightscissor[0], r_shadow_lightscissor[1], r_shadow_lightscissor[2], r_shadow_lightscissor[3]);
		R_Shadow_ClearStencil();

		if (numsurfaces)
			R_Shadow_DrawWorldShadow_ShadowVolume(numsurfaces, surfacelist, shadowtrispvs);
		for (i = 0;i < numshadowentities;i++)
			R_Shadow_DrawEntityShadow(shadowentities[i]);

		// draw lighting in the unmasked areas
		R_Shadow_RenderMode_Lighting(true, false, false, false);
		for (i = 0;i < numlightentities_noselfshadow;i++)
			R_Shadow_DrawEntityLight(lightentities_noselfshadow[i]);

		for (i = 0;i < numshadowentities_noselfshadow;i++)
			R_Shadow_DrawEntityShadow(shadowentities_noselfshadow[i]);

		// draw lighting in the unmasked areas
		R_Shadow_RenderMode_Lighting(true, false, false, false);
		if (numsurfaces)
			R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
		for (i = 0;i < numlightentities;i++)
			R_Shadow_DrawEntityLight(lightentities[i]);

		// rasterize the box when rendering deferred lighting - the regular surface lighting only applies to transparent surfaces
		if (r_shadow_usingdeferredprepass)
			R_Shadow_RenderMode_DrawDeferredLight(false);
	}
	else
	{
		// draw lighting in the unmasked areas
		R_Shadow_RenderMode_Lighting(false, false, false, false);
		if (numsurfaces)
			R_Shadow_DrawWorldLight(numsurfaces, surfacelist, lighttrispvs);
		for (i = 0;i < numlightentities;i++)
			R_Shadow_DrawEntityLight(lightentities[i]);
		for (i = 0;i < numlightentities_noselfshadow;i++)
			R_Shadow_DrawEntityLight(lightentities_noselfshadow[i]);

		// rasterize the box when rendering deferred lighting - the regular surface lighting only applies to transparent surfaces
		if (r_shadow_usingdeferredprepass)
			R_Shadow_RenderMode_DrawDeferredLight(false);
	}
}

static void R_Shadow_FreeDeferred(void)
{
	R_Mesh_DestroyFramebufferObject(r_shadow_prepassgeometryfbo);
	r_shadow_prepassgeometryfbo = 0;

	R_Mesh_DestroyFramebufferObject(r_shadow_prepasslightingdiffusespecularfbo);
	r_shadow_prepasslightingdiffusespecularfbo = 0;

	R_Mesh_DestroyFramebufferObject(r_shadow_prepasslightingdiffusefbo);
	r_shadow_prepasslightingdiffusefbo = 0;

	if (r_shadow_prepassgeometrydepthbuffer)
		R_FreeTexture(r_shadow_prepassgeometrydepthbuffer);
	r_shadow_prepassgeometrydepthbuffer = NULL;

	if (r_shadow_prepassgeometrynormalmaptexture)
		R_FreeTexture(r_shadow_prepassgeometrynormalmaptexture);
	r_shadow_prepassgeometrynormalmaptexture = NULL;

	if (r_shadow_prepasslightingdiffusetexture)
		R_FreeTexture(r_shadow_prepasslightingdiffusetexture);
	r_shadow_prepasslightingdiffusetexture = NULL;

	if (r_shadow_prepasslightingspeculartexture)
		R_FreeTexture(r_shadow_prepasslightingspeculartexture);
	r_shadow_prepasslightingspeculartexture = NULL;
}

void R_Shadow_DrawPrepass(void)
{
	int i;
	int lnum;
	entity_render_t *ent;
	float clearcolor[4];

	R_Mesh_ResetTextureState();
	GL_DepthMask(true);
	GL_ColorMask(1,1,1,1);
	GL_BlendFunc(GL_ONE, GL_ZERO);
	GL_Color(1,1,1,1);
	GL_DepthTest(true);
	R_Mesh_SetRenderTargets(r_shadow_prepassgeometryfbo, r_shadow_prepassgeometrydepthbuffer, r_shadow_prepassgeometrynormalmaptexture, NULL, NULL, NULL);
	Vector4Set(clearcolor, 0.5f,0.5f,0.5f,1.0f);
	GL_Clear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT, clearcolor, 1.0f, 0);
	if (r_timereport_active)
		R_TimeReport("prepasscleargeom");

	if (cl.csqc_vidvars.drawworld && r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->DrawPrepass)
		r_refdef.scene.worldmodel->DrawPrepass(r_refdef.scene.worldentity);
	if (r_timereport_active)
		R_TimeReport("prepassworld");

	for (i = 0;i < r_refdef.scene.numentities;i++)
	{
		if (!r_refdef.viewcache.entityvisible[i])
			continue;
		ent = r_refdef.scene.entities[i];
		if (ent->model && ent->model->DrawPrepass != NULL)
			ent->model->DrawPrepass(ent);
	}

	if (r_timereport_active)
		R_TimeReport("prepassmodels");

	GL_DepthMask(false);
	GL_ColorMask(1,1,1,1);
	GL_Color(1,1,1,1);
	GL_DepthTest(true);
	R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusespecularfbo, r_shadow_prepassgeometrydepthbuffer, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
	Vector4Set(clearcolor, 0, 0, 0, 0);
	GL_Clear(GL_COLOR_BUFFER_BIT, clearcolor, 1.0f, 0);
	if (r_timereport_active)
		R_TimeReport("prepassclearlit");

	R_Shadow_RenderMode_Begin();

	for (lnum = 0; lnum < r_shadow_scenenumlights; lnum++)
		R_Shadow_DrawLight(r_shadow_scenelightlist[lnum]);

	R_Shadow_RenderMode_End();

	if (r_timereport_active)
		R_TimeReport("prepasslights");
}

#define MAX_SCENELIGHTS 65536
qboolean R_Shadow_PrepareLights_AddSceneLight(rtlight_t *rtlight)
{
	if (r_shadow_scenemaxlights <= r_shadow_scenenumlights)
	{
		if (r_shadow_scenenumlights >= MAX_SCENELIGHTS)
			return false;
		r_shadow_scenemaxlights *= 2;
		r_shadow_scenemaxlights = bound(1024, r_shadow_scenemaxlights, MAX_SCENELIGHTS);
		r_shadow_scenelightlist = (rtlight_t **)Mem_Realloc(r_main_mempool, r_shadow_scenelightlist, r_shadow_scenemaxlights * sizeof(rtlight_t *));
	}
	r_shadow_scenelightlist[r_shadow_scenenumlights++] = rtlight;
	return true;
}

void R_Shadow_DrawLightSprites(void);
void R_Shadow_PrepareLights(int fbo, rtexture_t *depthtexture, rtexture_t *colortexture)
{
	int flag;
	int lnum;
	size_t lightindex;
	dlight_t *light;
	size_t range;
	float f;

	int shadowmapborder = bound(1, r_shadow_shadowmapping_bordersize.integer, 16);
	int shadowmaptexturesize = bound(256, r_shadow_shadowmapping_texturesize.integer, (int)vid.maxtexturesize_2d);
	int shadowmapmaxsize = bound(shadowmapborder+2, r_shadow_shadowmapping_maxsize.integer, shadowmaptexturesize / 8);

	if (r_shadow_shadowmaptexturesize != shadowmaptexturesize ||
		(r_shadow_shadowmode != R_SHADOW_SHADOWMODE_STENCIL) != (r_shadow_shadowmapping.integer || r_shadow_deferred.integer) ||
		r_shadow_shadowmapvsdct != (r_shadow_shadowmapping_vsdct.integer != 0 && vid.renderpath == RENDERPATH_GL20) ||
		r_shadow_shadowmapfilterquality != r_shadow_shadowmapping_filterquality.integer ||
		r_shadow_shadowmapshadowsampler != (vid.support.arb_shadow && r_shadow_shadowmapping_useshadowsampler.integer) ||
		r_shadow_shadowmapdepthbits != r_shadow_shadowmapping_depthbits.integer ||
		r_shadow_shadowmapborder != shadowmapborder ||
		r_shadow_shadowmapmaxsize != shadowmapmaxsize ||
		r_shadow_shadowmapdepthtexture != r_fb.usedepthtextures)
		R_Shadow_FreeShadowMaps();

	r_shadow_fb_fbo = fbo;
	r_shadow_fb_depthtexture = depthtexture;
	r_shadow_fb_colortexture = colortexture;

	r_shadow_usingshadowmaportho = false;

	switch (vid.renderpath)
	{
	case RENDERPATH_GL20:
	case RENDERPATH_D3D9:
	case RENDERPATH_D3D10:
	case RENDERPATH_D3D11:
	case RENDERPATH_SOFT:
#ifndef USE_GLES2
		if (!r_shadow_deferred.integer || r_shadow_shadowmode == R_SHADOW_SHADOWMODE_STENCIL || !vid.support.ext_framebuffer_object || vid.maxdrawbuffers < 2)
		{
			r_shadow_usingdeferredprepass = false;
			if (r_shadow_prepass_width)
				R_Shadow_FreeDeferred();
			r_shadow_prepass_width = r_shadow_prepass_height = 0;
			break;
		}

		if (r_shadow_prepass_width != vid.width || r_shadow_prepass_height != vid.height)
		{
			R_Shadow_FreeDeferred();

			r_shadow_usingdeferredprepass = true;
			r_shadow_prepass_width = vid.width;
			r_shadow_prepass_height = vid.height;
			r_shadow_prepassgeometrydepthbuffer = R_LoadTextureRenderBuffer(r_shadow_texturepool, "prepassgeometrydepthbuffer", vid.width, vid.height, TEXTYPE_DEPTHBUFFER24);
			r_shadow_prepassgeometrynormalmaptexture = R_LoadTexture2D(r_shadow_texturepool, "prepassgeometrynormalmap", vid.width, vid.height, NULL, TEXTYPE_COLORBUFFER32F, TEXF_RENDERTARGET | TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCENEAREST, -1, NULL);
			r_shadow_prepasslightingdiffusetexture = R_LoadTexture2D(r_shadow_texturepool, "prepasslightingdiffuse", vid.width, vid.height, NULL, TEXTYPE_COLORBUFFER16F, TEXF_RENDERTARGET | TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCENEAREST, -1, NULL);
			r_shadow_prepasslightingspeculartexture = R_LoadTexture2D(r_shadow_texturepool, "prepasslightingspecular", vid.width, vid.height, NULL, TEXTYPE_COLORBUFFER16F, TEXF_RENDERTARGET | TEXF_CLAMP | TEXF_ALPHA | TEXF_FORCENEAREST, -1, NULL);

			// set up the geometry pass fbo (depth + normalmap)
			r_shadow_prepassgeometryfbo = R_Mesh_CreateFramebufferObject(r_shadow_prepassgeometrydepthbuffer, r_shadow_prepassgeometrynormalmaptexture, NULL, NULL, NULL);
			R_Mesh_SetRenderTargets(r_shadow_prepassgeometryfbo, r_shadow_prepassgeometrydepthbuffer, r_shadow_prepassgeometrynormalmaptexture, NULL, NULL, NULL);
			// render depth into a renderbuffer and other important properties into the normalmap texture

			// set up the lighting pass fbo (diffuse + specular)
			r_shadow_prepasslightingdiffusespecularfbo = R_Mesh_CreateFramebufferObject(r_shadow_prepassgeometrydepthbuffer, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
			R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusespecularfbo, r_shadow_prepassgeometrydepthbuffer, r_shadow_prepasslightingdiffusetexture, r_shadow_prepasslightingspeculartexture, NULL, NULL);
			// render diffuse into one texture and specular into another,
			// with depth and normalmap bound as textures,
			// with depth bound as attachment as well

			// set up the lighting pass fbo (diffuse)
			r_shadow_prepasslightingdiffusefbo = R_Mesh_CreateFramebufferObject(r_shadow_prepassgeometrydepthbuffer, r_shadow_prepasslightingdiffusetexture, NULL, NULL, NULL);
			R_Mesh_SetRenderTargets(r_shadow_prepasslightingdiffusefbo, r_shadow_prepassgeometrydepthbuffer, r_shadow_prepasslightingdiffusetexture, NULL, NULL, NULL);
			// render diffuse into one texture,
			// with depth and normalmap bound as textures,
			// with depth bound as attachment as well
		}
#endif
		break;
	case RENDERPATH_GL11:
	case RENDERPATH_GL13:
	case RENDERPATH_GLES1:
	case RENDERPATH_GLES2:
		r_shadow_usingdeferredprepass = false;
		break;
	}

	R_Shadow_EnlargeLeafSurfaceTrisBuffer(r_refdef.scene.worldmodel->brush.num_leafs, r_refdef.scene.worldmodel->num_surfaces, r_refdef.scene.worldmodel->brush.shadowmesh ? r_refdef.scene.worldmodel->brush.shadowmesh->numtriangles : r_refdef.scene.worldmodel->surfmesh.num_triangles, r_refdef.scene.worldmodel->surfmesh.num_triangles);

	r_shadow_scenenumlights = 0;
	flag = r_refdef.scene.rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE;
	range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
	for (lightindex = 0; lightindex < range; lightindex++)
	{
		light = (dlight_t *)Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
		if (light && (light->flags & flag))
		{
			R_Shadow_PrepareLight(&light->rtlight);
			R_Shadow_PrepareLights_AddSceneLight(&light->rtlight);
		}
	}
	if (r_refdef.scene.rtdlight)
	{
		for (lnum = 0; lnum < r_refdef.scene.numlights; lnum++)
		{
			R_Shadow_PrepareLight(r_refdef.scene.lights[lnum]);
			R_Shadow_PrepareLights_AddSceneLight(r_refdef.scene.lights[lnum]);
		}
	}
	else if (gl_flashblend.integer)
	{
		for (lnum = 0; lnum < r_refdef.scene.numlights; lnum++)
		{
			rtlight_t *rtlight = r_refdef.scene.lights[lnum];
			f = ((rtlight->style >= 0 && rtlight->style < MAX_LIGHTSTYLES) ? r_refdef.scene.lightstylevalue[rtlight->style] : 1) * r_shadow_lightintensityscale.value;
			VectorScale(rtlight->color, f, rtlight->currentcolor);
		}
	}

	// when debugging a single light, we still want to run the prepare, so we only replace the light list afterward...
	if (r_shadow_debuglight.integer >= 0)
	{
		r_shadow_scenenumlights = 0;
		lightindex = r_shadow_debuglight.integer;
		light = (dlight_t *)Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
		if (light)
		{
			R_Shadow_PrepareLight(&light->rtlight);
			R_Shadow_PrepareLights_AddSceneLight(&light->rtlight);
		}
	}

	// if we're doing shadowmaps we need to prepare the atlas layout now
	if (R_Shadow_ShadowMappingEnabled())
	{
		int lod;

		// allocate shadowmaps in the atlas now
		// we may have to make multiple attempts to fit the shadowmaps in the limited space of the atlas, this will appear as lod popping of all shadowmaps whenever it changes, but at least we can still cast shadows from all lights...
		for (lod = 0; lod < 16; lod++)
		{
			int packing_success = 0;
			int packing_failure = 0;
			Mod_AllocLightmap_Reset(&r_shadow_shadowmapatlas_state);
			// we actually have to reserve space for the R_DrawModelShadowMaps if that feature is active, it uses 0,0 so this is easy.
			if (r_shadow_shadowmapatlas_modelshadows_size)
				Mod_AllocLightmap_Block(&r_shadow_shadowmapatlas_state, r_shadow_shadowmapatlas_modelshadows_size, r_shadow_shadowmapatlas_modelshadows_size, &r_shadow_shadowmapatlas_modelshadows_x, &r_shadow_shadowmapatlas_modelshadows_y);
			for (lnum = 0; lnum < r_shadow_scenenumlights; lnum++)
			{
				rtlight_t *rtlight = r_shadow_scenelightlist[lnum];
				int size = rtlight->shadowmapsidesize >> lod;
				int width, height;
				if (!rtlight->castshadows)
					continue;
				size = bound(r_shadow_shadowmapborder, size, r_shadow_shadowmaptexturesize);
				width = size * 2;
				height = size * 3;
				// when there are noselfshadow entities in the light bounds, we have to render two separate sets of shadowmaps :(
				if (rtlight->cached_numshadowentities_noselfshadow)
					width *= 2;
				if (Mod_AllocLightmap_Block(&r_shadow_shadowmapatlas_state, width, height, &rtlight->shadowmapatlasposition[0], &rtlight->shadowmapatlasposition[1]))
				{
					rtlight->shadowmapatlassidesize = size;
					packing_success++;
				}
				else
				{
					// note down that we failed to pack this one, it will have to disable shadows
					rtlight->shadowmapatlassidesize = 0;
					packing_failure++;
				}
			}
			// generally everything fits and we stop here on the first iteration
			if (packing_failure == 0)
				break;
		}
	}

	if (r_editlights.integer)
		R_Shadow_DrawLightSprites();
}

void R_Shadow_DrawShadowMaps(void)
{
	R_Shadow_RenderMode_Begin();
	R_Shadow_RenderMode_ActiveLight(NULL);

	// now that we have a layout of shadowmaps in the atlas, we can render the shadowmaps
	R_Shadow_ClearShadowMapTexture();

	// render model shadowmaps (r_shadows 2) if desired which will be sampled in the forward pass
	if (r_shadow_shadowmapatlas_modelshadows_size)
	{
		R_Shadow_DrawModelShadowMaps();
		// don't let sound skip if going slow
		if (r_refdef.scene.extraupdate)
			S_ExtraUpdate();
	}

	if (R_Shadow_ShadowMappingEnabled())
	{
		int lnum;
		for (lnum = 0; lnum < r_shadow_scenenumlights; lnum++)
			R_Shadow_DrawLightShadowMaps(r_shadow_scenelightlist[lnum]);
	}

	R_Shadow_RenderMode_End();
}

void R_Shadow_DrawLights(void)
{
	int lnum;

	R_Shadow_RenderMode_Begin();

	for (lnum = 0; lnum < r_shadow_scenenumlights; lnum++)
		R_Shadow_DrawLight(r_shadow_scenelightlist[lnum]);

	R_Shadow_RenderMode_End();
}

#define MAX_MODELSHADOWS 1024
static int r_shadow_nummodelshadows;
static entity_render_t *r_shadow_modelshadows[MAX_MODELSHADOWS];

void R_Shadow_PrepareModelShadows(void)
{
	int i;
	float scale, size, radius, dot1, dot2;
	prvm_vec3_t prvmshadowdir, prvmshadowfocus;
	vec3_t shadowdir, shadowforward, shadowright, shadoworigin, shadowfocus, shadowmins, shadowmaxs;
	entity_render_t *ent;

	r_shadow_nummodelshadows = 0;
	r_shadow_shadowmapatlas_modelshadows_size = 0;

	if (!r_refdef.scene.numentities || r_refdef.scene.lightmapintensity <= 0.0f || r_shadows.integer <= 0)
		return;

	switch (r_shadow_shadowmode)
	{
	case R_SHADOW_SHADOWMODE_SHADOWMAP2D:
		if (r_shadows.integer >= 2)
			break;
		// fall through
	case R_SHADOW_SHADOWMODE_STENCIL:
		if (!vid.stencil)
			return;
		for (i = 0; i < r_refdef.scene.numentities; i++)
		{
			ent = r_refdef.scene.entities[i];
			if (ent->model && ent->model->DrawShadowVolume != NULL && (!ent->model->brush.submodel || r_shadows_castfrombmodels.integer) && (ent->flags & RENDER_SHADOW))
			{
				if (r_shadow_nummodelshadows >= MAX_MODELSHADOWS)
					break;
				r_shadow_modelshadows[r_shadow_nummodelshadows++] = ent;
				R_AnimCache_GetEntity(ent, false, false);
			}
		}
		return;
	default:
		return;
	}

	size = r_shadow_shadowmaptexturesize / 4;
	scale = r_shadow_shadowmapping_precision.value * r_shadows_shadowmapscale.value;
	radius = 0.5f * size / scale;

	Math_atov(r_shadows_throwdirection.string, prvmshadowdir);
	VectorCopy(prvmshadowdir, shadowdir);
	VectorNormalize(shadowdir);
	dot1 = DotProduct(r_refdef.view.forward, shadowdir);
	dot2 = DotProduct(r_refdef.view.up, shadowdir);
	if (fabs(dot1) <= fabs(dot2))
		VectorMA(r_refdef.view.forward, -dot1, shadowdir, shadowforward);
	else
		VectorMA(r_refdef.view.up, -dot2, shadowdir, shadowforward);
	VectorNormalize(shadowforward);
	CrossProduct(shadowdir, shadowforward, shadowright);
	Math_atov(r_shadows_focus.string, prvmshadowfocus);
	VectorCopy(prvmshadowfocus, shadowfocus);
	VectorM(shadowfocus[0], r_refdef.view.right, shadoworigin);
	VectorMA(shadoworigin, shadowfocus[1], r_refdef.view.up, shadoworigin);
	VectorMA(shadoworigin, -shadowfocus[2], r_refdef.view.forward, shadoworigin);
	VectorAdd(shadoworigin, r_refdef.view.origin, shadoworigin);
	if (shadowfocus[0] || shadowfocus[1] || shadowfocus[2])
		dot1 = 1;
	VectorMA(shadoworigin, (1.0f - fabs(dot1)) * radius, shadowforward, shadoworigin);

	shadowmins[0] = shadoworigin[0] - r_shadows_throwdistance.value * fabs(shadowdir[0]) - radius * (fabs(shadowforward[0]) + fabs(shadowright[0]));
	shadowmins[1] = shadoworigin[1] - r_shadows_throwdistance.value * fabs(shadowdir[1]) - radius * (fabs(shadowforward[1]) + fabs(shadowright[1]));
	shadowmins[2] = shadoworigin[2] - r_shadows_throwdistance.value * fabs(shadowdir[2]) - radius * (fabs(shadowforward[2]) + fabs(shadowright[2]));
	shadowmaxs[0] = shadoworigin[0] + r_shadows_throwdistance.value * fabs(shadowdir[0]) + radius * (fabs(shadowforward[0]) + fabs(shadowright[0]));
	shadowmaxs[1] = shadoworigin[1] + r_shadows_throwdistance.value * fabs(shadowdir[1]) + radius * (fabs(shadowforward[1]) + fabs(shadowright[1]));
	shadowmaxs[2] = shadoworigin[2] + r_shadows_throwdistance.value * fabs(shadowdir[2]) + radius * (fabs(shadowforward[2]) + fabs(shadowright[2]));

	for (i = 0; i < r_refdef.scene.numentities; i++)
	{
		ent = r_refdef.scene.entities[i];
		if (!BoxesOverlap(ent->mins, ent->maxs, shadowmins, shadowmaxs))
			continue;
		// cast shadows from anything of the map (submodels are optional)
		if (ent->model && ent->model->DrawShadowMap != NULL && (!ent->model->brush.submodel || r_shadows_castfrombmodels.integer) && (ent->flags & RENDER_SHADOW))
		{
			if (r_shadow_nummodelshadows >= MAX_MODELSHADOWS)
				break;
			r_shadow_modelshadows[r_shadow_nummodelshadows++] = ent;
			R_AnimCache_GetEntity(ent, false, false);
		}
	}

	if (r_shadow_nummodelshadows)
	{
		r_shadow_shadowmapatlas_modelshadows_x = 0;
		r_shadow_shadowmapatlas_modelshadows_y = 0;
		r_shadow_shadowmapatlas_modelshadows_size = size;
	}
}

static void R_Shadow_DrawModelShadowMaps(void)
{
	int i;
	float relativethrowdistance, scale, size, radius, nearclip, farclip, bias, dot1, dot2;
	entity_render_t *ent;
	vec3_t relativelightorigin;
	vec3_t relativelightdirection, relativeforward, relativeright;
	vec3_t relativeshadowmins, relativeshadowmaxs;
	vec3_t shadowdir, shadowforward, shadowright, shadoworigin, shadowfocus;
	prvm_vec3_t prvmshadowdir, prvmshadowfocus;
	float m[12];
	matrix4x4_t shadowmatrix, cameramatrix, mvpmatrix, invmvpmatrix, scalematrix, texmatrix;
	r_viewport_t viewport;

	size = r_shadow_shadowmapatlas_modelshadows_size;
	scale = (r_shadow_shadowmapping_precision.value * r_shadows_shadowmapscale.value) / size;
	radius = 0.5f / scale;
	nearclip = -r_shadows_throwdistance.value;
	farclip = r_shadows_throwdistance.value;
	bias = (r_shadows_shadowmapbias.value < 0) ? r_shadow_shadowmapping_bias.value : r_shadows_shadowmapbias.value * r_shadow_shadowmapping_nearclip.value / (2 * r_shadows_throwdistance.value) * (1024.0f / size);

	// set the parameters that will be used on the regular model renders using these shadows we're about to produce
	r_shadow_modelshadowmap_parameters[0] = size;
	r_shadow_modelshadowmap_parameters[1] = size;
	r_shadow_modelshadowmap_parameters[2] = 1.0;
	r_shadow_modelshadowmap_parameters[3] = bound(0.0f, 1.0f - r_shadows_darken.value, 1.0f);
	r_shadow_modelshadowmap_texturescale[0] = 1.0f / r_shadow_shadowmaptexturesize;
	r_shadow_modelshadowmap_texturescale[1] = 1.0f / r_shadow_shadowmaptexturesize;
	r_shadow_modelshadowmap_texturescale[2] = r_shadow_shadowmapatlas_modelshadows_x;
	r_shadow_modelshadowmap_texturescale[3] = r_shadow_shadowmapatlas_modelshadows_y;
	r_shadow_usingshadowmaportho = true;

	Math_atov(r_shadows_throwdirection.string, prvmshadowdir);
	VectorCopy(prvmshadowdir, shadowdir);
	VectorNormalize(shadowdir);
	Math_atov(r_shadows_focus.string, prvmshadowfocus);
	VectorCopy(prvmshadowfocus, shadowfocus);
	VectorM(shadowfocus[0], r_refdef.view.right, shadoworigin);
	VectorMA(shadoworigin, shadowfocus[1], r_refdef.view.up, shadoworigin);
	VectorMA(shadoworigin, -shadowfocus[2], r_refdef.view.forward, shadoworigin);
	VectorAdd(shadoworigin, r_refdef.view.origin, shadoworigin);
	dot1 = DotProduct(r_refdef.view.forward, shadowdir);
	dot2 = DotProduct(r_refdef.view.up, shadowdir);
	if (fabs(dot1) <= fabs(dot2))
		VectorMA(r_refdef.view.forward, -dot1, shadowdir, shadowforward);
	else
		VectorMA(r_refdef.view.up, -dot2, shadowdir, shadowforward);
	VectorNormalize(shadowforward);
	VectorM(scale, shadowforward, &m[0]);
	if (shadowfocus[0] || shadowfocus[1] || shadowfocus[2])
		dot1 = 1;
	m[3] = fabs(dot1) * 0.5f - DotProduct(shadoworigin, &m[0]);
	CrossProduct(shadowdir, shadowforward, shadowright);
	VectorM(scale, shadowright, &m[4]);
	m[7] = 0.5f - DotProduct(shadoworigin, &m[4]);
	VectorM(1.0f / (farclip - nearclip), shadowdir, &m[8]);
	m[11] = 0.5f - DotProduct(shadoworigin, &m[8]);
	Matrix4x4_FromArray12FloatD3D(&shadowmatrix, m);
	Matrix4x4_Invert_Full(&cameramatrix, &shadowmatrix);
	R_Viewport_InitOrtho(&viewport, &cameramatrix, r_shadow_shadowmapatlas_modelshadows_x, r_shadow_shadowmapatlas_modelshadows_y, r_shadow_shadowmapatlas_modelshadows_size, r_shadow_shadowmapatlas_modelshadows_size, 0, 0, 1, 1, 0, -1, NULL);
	R_SetViewport(&viewport);

	VectorMA(shadoworigin, (1.0f - fabs(dot1)) * radius, shadowforward, shadoworigin);

	// render into a slightly restricted region so that the borders of the
	// shadowmap area fade away, rather than streaking across everything
	// outside the usable area
	GL_Scissor(viewport.x + r_shadow_shadowmapborder, viewport.y + r_shadow_shadowmapborder, viewport.width - 2*r_shadow_shadowmapborder, viewport.height - 2*r_shadow_shadowmapborder);

	for (i = 0;i < r_shadow_nummodelshadows;i++)
	{
		ent = r_shadow_modelshadows[i];
		relativethrowdistance = r_shadows_throwdistance.value * Matrix4x4_ScaleFromMatrix(&ent->inversematrix);
		Matrix4x4_Transform(&ent->inversematrix, shadoworigin, relativelightorigin);
		Matrix4x4_Transform3x3(&ent->inversematrix, shadowdir, relativelightdirection);
		Matrix4x4_Transform3x3(&ent->inversematrix, shadowforward, relativeforward);
		Matrix4x4_Transform3x3(&ent->inversematrix, shadowright, relativeright);
		relativeshadowmins[0] = relativelightorigin[0] - r_shadows_throwdistance.value * fabs(relativelightdirection[0]) - radius * (fabs(relativeforward[0]) + fabs(relativeright[0]));
		relativeshadowmins[1] = relativelightorigin[1] - r_shadows_throwdistance.value * fabs(relativelightdirection[1]) - radius * (fabs(relativeforward[1]) + fabs(relativeright[1]));
		relativeshadowmins[2] = relativelightorigin[2] - r_shadows_throwdistance.value * fabs(relativelightdirection[2]) - radius * (fabs(relativeforward[2]) + fabs(relativeright[2]));
		relativeshadowmaxs[0] = relativelightorigin[0] + r_shadows_throwdistance.value * fabs(relativelightdirection[0]) + radius * (fabs(relativeforward[0]) + fabs(relativeright[0]));
		relativeshadowmaxs[1] = relativelightorigin[1] + r_shadows_throwdistance.value * fabs(relativelightdirection[1]) + radius * (fabs(relativeforward[1]) + fabs(relativeright[1]));
		relativeshadowmaxs[2] = relativelightorigin[2] + r_shadows_throwdistance.value * fabs(relativelightdirection[2]) + radius * (fabs(relativeforward[2]) + fabs(relativeright[2]));
		RSurf_ActiveModelEntity(ent, false, false, false);
		ent->model->DrawShadowMap(0, ent, relativelightorigin, relativelightdirection, relativethrowdistance, ent->model->nummodelsurfaces, ent->model->sortedmodelsurfaces, NULL, relativeshadowmins, relativeshadowmaxs);
		rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
	}

#if 0
	if (r_test.integer)
	{
		unsigned char *rawpixels = Z_Malloc(viewport.width*viewport.height*4);
		CHECKGLERROR
		qglReadPixels(viewport.x, viewport.y, viewport.width, viewport.height, GL_DEPTH_COMPONENT, GL_UNSIGNED_INT, rawpixels);
		CHECKGLERROR
		Image_WriteTGABGRA("r_shadows_2.tga", viewport.width, viewport.height, rawpixels);
		Cvar_SetValueQuick(&r_test, 0);
		Z_Free(rawpixels);
	}
#endif

	Matrix4x4_Concat(&mvpmatrix, &r_refdef.view.viewport.projectmatrix, &r_refdef.view.viewport.viewmatrix);
	Matrix4x4_Invert_Full(&invmvpmatrix, &mvpmatrix);
	Matrix4x4_CreateScale3(&scalematrix, size, -size, 1);
	Matrix4x4_AdjustOrigin(&scalematrix, 0, size, -0.5f * bias);
	Matrix4x4_Concat(&texmatrix, &scalematrix, &shadowmatrix);
	Matrix4x4_Concat(&r_shadow_shadowmapmatrix, &texmatrix, &invmvpmatrix);

	switch (vid.renderpath)
	{
	case RENDERPATH_GL11:
	case RENDERPATH_GL13:
	case RENDERPATH_GL20:
	case RENDERPATH_SOFT:
	case RENDERPATH_GLES1:
	case RENDERPATH_GLES2:
		break;
	case RENDERPATH_D3D9:
	case RENDERPATH_D3D10:
	case RENDERPATH_D3D11:
#ifdef MATRIX4x4_OPENGLORIENTATION
		r_shadow_shadowmapmatrix.m[0][0]	*= -1.0f;
		r_shadow_shadowmapmatrix.m[0][1]	*= -1.0f;
		r_shadow_shadowmapmatrix.m[0][2]	*= -1.0f;
		r_shadow_shadowmapmatrix.m[0][3]	*= -1.0f;
#else
		r_shadow_shadowmapmatrix.m[0][0]	*= -1.0f;
		r_shadow_shadowmapmatrix.m[1][0]	*= -1.0f;
		r_shadow_shadowmapmatrix.m[2][0]	*= -1.0f;
		r_shadow_shadowmapmatrix.m[3][0]	*= -1.0f;
#endif
		break;
	}
}

void R_Shadow_DrawModelShadows(void)
{
	int i;
	float relativethrowdistance;
	entity_render_t *ent;
	vec3_t relativelightorigin;
	vec3_t relativelightdirection;
	vec3_t relativeshadowmins, relativeshadowmaxs;
	vec3_t tmp, shadowdir;
	prvm_vec3_t prvmshadowdir;

	if (!r_shadow_nummodelshadows || (r_shadow_shadowmode != R_SHADOW_SHADOWMODE_STENCIL && r_shadows.integer != 1))
		return;

	R_ResetViewRendering3D(r_shadow_fb_fbo, r_shadow_fb_depthtexture, r_shadow_fb_colortexture);
	//GL_Scissor(r_refdef.view.viewport.x, r_refdef.view.viewport.y, r_refdef.view.viewport.width, r_refdef.view.viewport.height);
	//GL_Scissor(r_refdef.view.x, vid.height - r_refdef.view.height - r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
	R_Shadow_RenderMode_Begin();
	R_Shadow_RenderMode_ActiveLight(NULL);
	r_shadow_lightscissor[0] = r_refdef.view.x;
	r_shadow_lightscissor[1] = vid.height - r_refdef.view.y - r_refdef.view.height;
	r_shadow_lightscissor[2] = r_refdef.view.width;
	r_shadow_lightscissor[3] = r_refdef.view.height;
	R_Shadow_RenderMode_StencilShadowVolumes(false);

	// get shadow dir
	if (r_shadows.integer == 2)
	{
		Math_atov(r_shadows_throwdirection.string, prvmshadowdir);
		VectorCopy(prvmshadowdir, shadowdir);
		VectorNormalize(shadowdir);
	}

	R_Shadow_ClearStencil();

	for (i = 0;i < r_shadow_nummodelshadows;i++)
	{
		ent = r_shadow_modelshadows[i];

		// cast shadows from anything of the map (submodels are optional)
		relativethrowdistance = r_shadows_throwdistance.value * Matrix4x4_ScaleFromMatrix(&ent->inversematrix);
		VectorSet(relativeshadowmins, -relativethrowdistance, -relativethrowdistance, -relativethrowdistance);
		VectorSet(relativeshadowmaxs, relativethrowdistance, relativethrowdistance, relativethrowdistance);
		if (r_shadows.integer == 2) // 2: simpler mode, throw shadows always in same direction
			Matrix4x4_Transform3x3(&ent->inversematrix, shadowdir, relativelightdirection);
		else
		{
			VectorNegate(ent->render_modellight_lightdir, tmp);
			Matrix4x4_Transform3x3(&ent->inversematrix, tmp, relativelightdirection);
		}

		VectorScale(relativelightdirection, -relativethrowdistance, relativelightorigin);
		RSurf_ActiveModelEntity(ent, false, false, false);
		ent->model->DrawShadowVolume(ent, relativelightorigin, relativelightdirection, relativethrowdistance, ent->model->nummodelsurfaces, ent->model->sortedmodelsurfaces, relativeshadowmins, relativeshadowmaxs);
		rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveModelEntity
	}

	// not really the right mode, but this will disable any silly stencil features
	R_Shadow_RenderMode_End();

	// set up ortho view for rendering this pass
	//GL_Scissor(r_refdef.view.x, vid.height - r_refdef.view.height - r_refdef.view.y, r_refdef.view.width, r_refdef.view.height);
	//GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
	//GL_ScissorTest(true);
	//R_EntityMatrix(&identitymatrix);
	//R_Mesh_ResetTextureState();
	R_ResetViewRendering2D(r_shadow_fb_fbo, r_shadow_fb_depthtexture, r_shadow_fb_colortexture);

	// set up a darkening blend on shadowed areas
	GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
	//GL_DepthRange(0, 1);
	//GL_DepthTest(false);
	//GL_DepthMask(false);
	//GL_PolygonOffset(0, 0);CHECKGLERROR
	GL_Color(0, 0, 0, r_shadows_darken.value);
	//GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
	//GL_DepthFunc(GL_ALWAYS);
	R_SetStencil(true, 255, GL_KEEP, GL_KEEP, GL_KEEP, GL_NOTEQUAL, 128, 255);

	// apply the blend to the shadowed areas
	R_Mesh_PrepareVertices_Generic_Arrays(4, r_screenvertex3f, NULL, NULL);
	R_SetupShader_Generic_NoTexture(false, true);
	R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);

	// restore the viewport
	R_SetViewport(&r_refdef.view.viewport);

	// restore other state to normal
	//R_Shadow_RenderMode_End();
}

static void R_BeginCoronaQuery(rtlight_t *rtlight, float scale, qboolean usequery)
{
	float zdist;
	vec3_t centerorigin;
#if defined(GL_SAMPLES_PASSED_ARB) && !defined(USE_GLES2)
	float vertex3f[12];
#endif
	// if it's too close, skip it
	if (VectorLength(rtlight->currentcolor) < (1.0f / 256.0f))
		return;
	zdist = (DotProduct(rtlight->shadoworigin, r_refdef.view.forward) - DotProduct(r_refdef.view.origin, r_refdef.view.forward));
	if (zdist < 32)
 		return;
	if (usequery && r_numqueries + 2 <= r_maxqueries)
	{
		rtlight->corona_queryindex_allpixels = r_queries[r_numqueries++];
		rtlight->corona_queryindex_visiblepixels = r_queries[r_numqueries++];
		// we count potential samples in the middle of the screen, we count actual samples at the light location, this allows counting potential samples of off-screen lights
		VectorMA(r_refdef.view.origin, zdist, r_refdef.view.forward, centerorigin);

		switch(vid.renderpath)
		{
		case RENDERPATH_GL11:
		case RENDERPATH_GL13:
		case RENDERPATH_GL20:
		case RENDERPATH_GLES1:
		case RENDERPATH_GLES2:
#if defined(GL_SAMPLES_PASSED_ARB) && !defined(USE_GLES2)
			CHECKGLERROR
			// NOTE: GL_DEPTH_TEST must be enabled or ATI won't count samples, so use GL_DepthFunc instead
			qglBeginQueryARB(GL_SAMPLES_PASSED_ARB, rtlight->corona_queryindex_allpixels);
			GL_DepthFunc(GL_ALWAYS);
			R_CalcSprite_Vertex3f(vertex3f, centerorigin, r_refdef.view.right, r_refdef.view.up, scale, -scale, -scale, scale);
			R_Mesh_PrepareVertices_Vertex3f(4, vertex3f, NULL, 0);
			R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
			qglEndQueryARB(GL_SAMPLES_PASSED_ARB);
			GL_DepthFunc(GL_LEQUAL);
			qglBeginQueryARB(GL_SAMPLES_PASSED_ARB, rtlight->corona_queryindex_visiblepixels);
			R_CalcSprite_Vertex3f(vertex3f, rtlight->shadoworigin, r_refdef.view.right, r_refdef.view.up, scale, -scale, -scale, scale);
			R_Mesh_PrepareVertices_Vertex3f(4, vertex3f, NULL, 0);
			R_Mesh_Draw(0, 4, 0, 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
			qglEndQueryARB(GL_SAMPLES_PASSED_ARB);
			CHECKGLERROR
#endif
			break;
		case RENDERPATH_D3D9:
			Con_DPrintf("FIXME D3D9 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
			break;
		case RENDERPATH_D3D10:
			Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
			break;
		case RENDERPATH_D3D11:
			Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
			break;
		case RENDERPATH_SOFT:
			//Con_DPrintf("FIXME SOFT %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
			break;
		}
	}
	rtlight->corona_visibility = bound(0, (zdist - 32) / 32, 1);
}

static float spritetexcoord2f[4*2] = {0, 1, 0, 0, 1, 0, 1, 1};

static void R_DrawCorona(rtlight_t *rtlight, float cscale, float scale)
{
	vec3_t color;
	unsigned int occlude = 0;
	GLint allpixels = 0, visiblepixels = 0;

	// now we have to check the query result
	if (rtlight->corona_queryindex_visiblepixels)
	{
		switch(vid.renderpath)
		{
		case RENDERPATH_GL20:
		case RENDERPATH_GLES1:
		case RENDERPATH_GLES2:
#if defined(GL_SAMPLES_PASSED_ARB) && !defined(USE_GLES2)
			// See if we can use the GPU-side method to prevent implicit sync
			if (vid.support.arb_query_buffer_object) {
#define BUFFER_OFFSET(i)    ((GLint *)((unsigned char*)NULL + (i)))
				if (!r_shadow_occlusion_buf) {
					qglGenBuffersARB(1, &r_shadow_occlusion_buf);
					qglBindBufferARB(GL_QUERY_BUFFER_ARB, r_shadow_occlusion_buf);
					qglBufferDataARB(GL_QUERY_BUFFER_ARB, 8, NULL, GL_DYNAMIC_COPY);
				} else {
					qglBindBufferARB(GL_QUERY_BUFFER_ARB, r_shadow_occlusion_buf);
				}
				qglGetQueryObjectivARB(rtlight->corona_queryindex_visiblepixels, GL_QUERY_RESULT_ARB, BUFFER_OFFSET(0));
				qglGetQueryObjectivARB(rtlight->corona_queryindex_allpixels, GL_QUERY_RESULT_ARB, BUFFER_OFFSET(4));
				qglBindBufferBase(GL_UNIFORM_BUFFER, 0, r_shadow_occlusion_buf);
				occlude = MATERIALFLAG_OCCLUDE;
				cscale *= rtlight->corona_visibility;
				CHECKGLERROR
				break;
			}
			// fallthrough
#else
			return;
#endif
		case RENDERPATH_GL11:
		case RENDERPATH_GL13:
#if defined(GL_SAMPLES_PASSED_ARB) && !defined(USE_GLES2)
			CHECKGLERROR
			qglGetQueryObjectivARB(rtlight->corona_queryindex_visiblepixels, GL_QUERY_RESULT_ARB, &visiblepixels);
			qglGetQueryObjectivARB(rtlight->corona_queryindex_allpixels, GL_QUERY_RESULT_ARB, &allpixels);
			if (visiblepixels < 1 || allpixels < 1)
				return;
			rtlight->corona_visibility *= bound(0, (float)visiblepixels / (float)allpixels, 1);
			cscale *= rtlight->corona_visibility;
			CHECKGLERROR
			break;
#else
			return;
#endif
		case RENDERPATH_D3D9:
			Con_DPrintf("FIXME D3D9 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
			return;
		case RENDERPATH_D3D10:
			Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
			return;
		case RENDERPATH_D3D11:
			Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
			return;
		case RENDERPATH_SOFT:
			//Con_DPrintf("FIXME SOFT %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
			return;
		default:
			return;
		}
	}
	else
	{
		if (CL_Cache_TraceLineSurfaces(r_refdef.view.origin, rtlight->shadoworigin, MOVE_NORMAL, SUPERCONTENTS_SOLID, 0, MATERIALFLAGMASK_TRANSLUCENT).fraction < 1)
			return;
	}
	VectorScale(rtlight->currentcolor, cscale, color);
	if (VectorLength(color) > (1.0f / 256.0f))
	{
		float vertex3f[12];
		qboolean negated = (color[0] + color[1] + color[2] < 0) && vid.support.ext_blend_subtract;
		if(negated)
		{
			VectorNegate(color, color);
			GL_BlendEquationSubtract(true);
		}
		R_CalcSprite_Vertex3f(vertex3f, rtlight->shadoworigin, r_refdef.view.right, r_refdef.view.up, scale, -scale, -scale, scale);
		RSurf_ActiveCustomEntity(&identitymatrix, &identitymatrix, RENDER_NODEPTHTEST, 0, color[0], color[1], color[2], 1, 4, vertex3f, spritetexcoord2f, NULL, NULL, NULL, NULL, 2, polygonelement3i, polygonelement3s, false, false);
		R_DrawCustomSurface(r_shadow_lightcorona, &identitymatrix, MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_FULLBRIGHT | MATERIALFLAG_NOCULLFACE | MATERIALFLAG_NODEPTHTEST | occlude, 0, 4, 0, 2, false, false);
		if(negated)
			GL_BlendEquationSubtract(false);
	}
}

void R_Shadow_DrawCoronas(void)
{
	int i, flag;
	qboolean usequery = false;
	size_t lightindex;
	dlight_t *light;
	rtlight_t *rtlight;
	size_t range;
	if (r_coronas.value < (1.0f / 256.0f) && !gl_flashblend.integer)
		return;
	if (r_fb.water.renderingscene)
		return;
	flag = r_refdef.scene.rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE;
	R_EntityMatrix(&identitymatrix);

	range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked

	// check occlusion of coronas
	// use GL_ARB_occlusion_query if available
	// otherwise use raytraces
	r_numqueries = 0;
	switch (vid.renderpath)
	{
	case RENDERPATH_GL11:
	case RENDERPATH_GL13:
	case RENDERPATH_GL20:
	case RENDERPATH_GLES1:
	case RENDERPATH_GLES2:
		usequery = vid.support.arb_occlusion_query && r_coronas_occlusionquery.integer;
#if defined(GL_SAMPLES_PASSED_ARB) && !defined(USE_GLES2)
		if (usequery)
		{
			GL_ColorMask(0,0,0,0);
			if (r_maxqueries < ((unsigned int)range + r_refdef.scene.numlights) * 2)
			if (r_maxqueries < MAX_OCCLUSION_QUERIES)
			{
				i = r_maxqueries;
				r_maxqueries = ((unsigned int)range + r_refdef.scene.numlights) * 4;
				r_maxqueries = min(r_maxqueries, MAX_OCCLUSION_QUERIES);
				CHECKGLERROR
				qglGenQueriesARB(r_maxqueries - i, r_queries + i);
				CHECKGLERROR
			}
			RSurf_ActiveModelEntity(r_refdef.scene.worldentity, false, false, false);
			GL_BlendFunc(GL_ONE, GL_ZERO);
			GL_CullFace(GL_NONE);
			GL_DepthMask(false);
			GL_DepthRange(0, 1);
			GL_PolygonOffset(0, 0);
			GL_DepthTest(true);
			R_Mesh_ResetTextureState();
			R_SetupShader_Generic_NoTexture(false, false);
		}
#endif
		break;
	case RENDERPATH_D3D9:
		usequery = false;
		//Con_DPrintf("FIXME D3D9 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
		break;
	case RENDERPATH_D3D10:
		Con_DPrintf("FIXME D3D10 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
		break;
	case RENDERPATH_D3D11:
		Con_DPrintf("FIXME D3D11 %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
		break;
	case RENDERPATH_SOFT:
		usequery = false;
		//Con_DPrintf("FIXME SOFT %s:%i %s\n", __FILE__, __LINE__, __FUNCTION__);
		break;
	}
	for (lightindex = 0;lightindex < range;lightindex++)
	{
		light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
		if (!light)
			continue;
		rtlight = &light->rtlight;
		rtlight->corona_visibility = 0;
		rtlight->corona_queryindex_visiblepixels = 0;
		rtlight->corona_queryindex_allpixels = 0;
		if (!(rtlight->flags & flag))
			continue;
		if (rtlight->corona <= 0)
			continue;
		if (r_shadow_debuglight.integer >= 0 && r_shadow_debuglight.integer != (int)lightindex)
			continue;
		R_BeginCoronaQuery(rtlight, rtlight->radius * rtlight->coronasizescale * r_coronas_occlusionsizescale.value, usequery);
	}
	for (i = 0;i < r_refdef.scene.numlights;i++)
	{
		rtlight = r_refdef.scene.lights[i];
		rtlight->corona_visibility = 0;
		rtlight->corona_queryindex_visiblepixels = 0;
		rtlight->corona_queryindex_allpixels = 0;
		if (!(rtlight->flags & flag))
			continue;
		if (rtlight->corona <= 0)
			continue;
		R_BeginCoronaQuery(rtlight, rtlight->radius * rtlight->coronasizescale * r_coronas_occlusionsizescale.value, usequery);
	}
	if (usequery)
		GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);

	// now draw the coronas using the query data for intensity info
	for (lightindex = 0;lightindex < range;lightindex++)
	{
		light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
		if (!light)
			continue;
		rtlight = &light->rtlight;
		if (rtlight->corona_visibility <= 0)
			continue;
		R_DrawCorona(rtlight, rtlight->corona * r_coronas.value * 0.25f, rtlight->radius * rtlight->coronasizescale);
	}
	for (i = 0;i < r_refdef.scene.numlights;i++)
	{
		rtlight = r_refdef.scene.lights[i];
		if (rtlight->corona_visibility <= 0)
			continue;
		if (gl_flashblend.integer)
			R_DrawCorona(rtlight, rtlight->corona, rtlight->radius * rtlight->coronasizescale * 2.0f);
		else
			R_DrawCorona(rtlight, rtlight->corona * r_coronas.value * 0.25f, rtlight->radius * rtlight->coronasizescale);
	}
}



static dlight_t *R_Shadow_NewWorldLight(void)
{
	return (dlight_t *)Mem_ExpandableArray_AllocRecord(&r_shadow_worldlightsarray);
}

static void R_Shadow_UpdateWorldLight(dlight_t *light, vec3_t origin, vec3_t angles, vec3_t color, vec_t radius, vec_t corona, int style, int shadowenable, const char *cubemapname, vec_t coronasizescale, vec_t ambientscale, vec_t diffusescale, vec_t specularscale, int flags)
{
	matrix4x4_t matrix;

	// note that style is no longer validated here, -1 is used for unstyled lights and >= MAX_LIGHTSTYLES is accepted for sake of editing rtlights files that might be out of bounds but perfectly formatted

	// validate parameters
	if (!cubemapname)
		cubemapname = "";

	// copy to light properties
	VectorCopy(origin, light->origin);
	light->angles[0] = angles[0] - 360 * floor(angles[0] / 360);
	light->angles[1] = angles[1] - 360 * floor(angles[1] / 360);
	light->angles[2] = angles[2] - 360 * floor(angles[2] / 360);
	/*
	light->color[0] = max(color[0], 0);
	light->color[1] = max(color[1], 0);
	light->color[2] = max(color[2], 0);
	*/
	light->color[0] = color[0];
	light->color[1] = color[1];
	light->color[2] = color[2];
	light->radius = max(radius, 0);
	light->style = style;
	light->shadow = shadowenable;
	light->corona = corona;
	strlcpy(light->cubemapname, cubemapname, sizeof(light->cubemapname));
	light->coronasizescale = coronasizescale;
	light->ambientscale = ambientscale;
	light->diffusescale = diffusescale;
	light->specularscale = specularscale;
	light->flags = flags;

	// update renderable light data
	Matrix4x4_CreateFromQuakeEntity(&matrix, light->origin[0], light->origin[1], light->origin[2], light->angles[0], light->angles[1], light->angles[2], light->radius);
	R_RTLight_Update(&light->rtlight, true, &matrix, light->color, light->style, light->cubemapname[0] ? light->cubemapname : NULL, light->shadow, light->corona, light->coronasizescale, light->ambientscale, light->diffusescale, light->specularscale, light->flags);
}

static void R_Shadow_FreeWorldLight(dlight_t *light)
{
	if (r_shadow_selectedlight == light)
		r_shadow_selectedlight = NULL;
	R_RTLight_Uncompile(&light->rtlight);
	Mem_ExpandableArray_FreeRecord(&r_shadow_worldlightsarray, light);
}

void R_Shadow_ClearWorldLights(void)
{
	size_t lightindex;
	dlight_t *light;
	size_t range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
	for (lightindex = 0;lightindex < range;lightindex++)
	{
		light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
		if (light)
			R_Shadow_FreeWorldLight(light);
	}
	r_shadow_selectedlight = NULL;
}

static void R_Shadow_SelectLight(dlight_t *light)
{
	if (r_shadow_selectedlight)
		r_shadow_selectedlight->selected = false;
	r_shadow_selectedlight = light;
	if (r_shadow_selectedlight)
		r_shadow_selectedlight->selected = true;
}

static void R_Shadow_DrawCursor_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
{
	// this is never batched (there can be only one)
	float vertex3f[12];
	R_CalcSprite_Vertex3f(vertex3f, r_editlights_cursorlocation, r_refdef.view.right, r_refdef.view.up, EDLIGHTSPRSIZE, -EDLIGHTSPRSIZE, -EDLIGHTSPRSIZE, EDLIGHTSPRSIZE);
	RSurf_ActiveCustomEntity(&identitymatrix, &identitymatrix, 0, 0, 1, 1, 1, 1, 4, vertex3f, spritetexcoord2f, NULL, NULL, NULL, NULL, 2, polygonelement3i, polygonelement3s, false, false);
	R_DrawCustomSurface(r_editlights_sprcursor, &identitymatrix, MATERIALFLAG_NODEPTHTEST | MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_FULLBRIGHT | MATERIALFLAG_NOCULLFACE, 0, 4, 0, 2, false, false);
}

static void R_Shadow_DrawLightSprite_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
{
	float intensity;
	float s;
	vec3_t spritecolor;
	skinframe_t *skinframe;
	float vertex3f[12];

	// this is never batched (due to the ent parameter changing every time)
	// so numsurfaces == 1 and surfacelist[0] == lightnumber
	const dlight_t *light = (dlight_t *)ent;
	s = EDLIGHTSPRSIZE;

	R_CalcSprite_Vertex3f(vertex3f, light->origin, r_refdef.view.right, r_refdef.view.up, s, -s, -s, s);

	intensity = 0.5f;
	VectorScale(light->color, intensity, spritecolor);
	if (VectorLength(spritecolor) < 0.1732f)
		VectorSet(spritecolor, 0.1f, 0.1f, 0.1f);
	if (VectorLength(spritecolor) > 1.0f)
		VectorNormalize(spritecolor);

	// draw light sprite
	if (light->cubemapname[0] && !light->shadow)
		skinframe = r_editlights_sprcubemapnoshadowlight;
	else if (light->cubemapname[0])
		skinframe = r_editlights_sprcubemaplight;
	else if (!light->shadow)
		skinframe = r_editlights_sprnoshadowlight;
	else
		skinframe = r_editlights_sprlight;

	RSurf_ActiveCustomEntity(&identitymatrix, &identitymatrix, 0, 0, spritecolor[0], spritecolor[1], spritecolor[2], 1, 4, vertex3f, spritetexcoord2f, NULL, NULL, NULL, NULL, 2, polygonelement3i, polygonelement3s, false, false);
	R_DrawCustomSurface(skinframe, &identitymatrix, MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_FULLBRIGHT | MATERIALFLAG_NOCULLFACE, 0, 4, 0, 2, false, false);

	// draw selection sprite if light is selected
	if (light->selected)
	{
		RSurf_ActiveCustomEntity(&identitymatrix, &identitymatrix, 0, 0, 1, 1, 1, 1, 4, vertex3f, spritetexcoord2f, NULL, NULL, NULL, NULL, 2, polygonelement3i, polygonelement3s, false, false);
		R_DrawCustomSurface(r_editlights_sprselection, &identitymatrix, MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_FULLBRIGHT | MATERIALFLAG_NOCULLFACE, 0, 4, 0, 2, false, false);
		// VorteX todo: add normalmode/realtime mode light overlay sprites?
	}
}

void R_Shadow_DrawLightSprites(void)
{
	size_t lightindex;
	dlight_t *light;
	size_t range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
	for (lightindex = 0;lightindex < range;lightindex++)
	{
		light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
		if (light)
			R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, light->origin, R_Shadow_DrawLightSprite_TransparentCallback, (entity_render_t *)light, 5, &light->rtlight);
	}
	if (!r_editlights_lockcursor)
		R_MeshQueue_AddTransparent(TRANSPARENTSORT_DISTANCE, r_editlights_cursorlocation, R_Shadow_DrawCursor_TransparentCallback, NULL, 0, NULL);
}

int R_Shadow_GetRTLightInfo(unsigned int lightindex, float *origin, float *radius, float *color)
{
	unsigned int range;
	dlight_t *light;
	rtlight_t *rtlight;
	range = (unsigned int)Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray);
	if (lightindex >= range)
		return -1;
	light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
	if (!light)
		return 0;
	rtlight = &light->rtlight;
	//if (!(rtlight->flags & flag))
	//	return 0;
	VectorCopy(rtlight->shadoworigin, origin);
	*radius = rtlight->radius;
	VectorCopy(rtlight->color, color);
	return 1;
}

static void R_Shadow_SelectLightInView(void)
{
	float bestrating, rating, temp[3];
	dlight_t *best;
	size_t lightindex;
	dlight_t *light;
	size_t range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
	best = NULL;
	bestrating = 0;

	if (r_editlights_lockcursor)
		return;
	for (lightindex = 0;lightindex < range;lightindex++)
	{
		light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
		if (!light)
			continue;
		VectorSubtract(light->origin, r_refdef.view.origin, temp);
		rating = (DotProduct(temp, r_refdef.view.forward) / sqrt(DotProduct(temp, temp)));
		if (rating >= 0.95)
		{
			rating /= (1 + 0.0625f * sqrt(DotProduct(temp, temp)));
			if (bestrating < rating && CL_TraceLine(light->origin, r_refdef.view.origin, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID, 0, MATERIALFLAGMASK_TRANSLUCENT, collision_extendmovelength.value, true, false, NULL, false, true).fraction == 1.0f)
			{
				bestrating = rating;
				best = light;
			}
		}
	}
	R_Shadow_SelectLight(best);
}

void R_Shadow_LoadWorldLights(void)
{
	int n, a, style, shadow, flags;
	char tempchar, *lightsstring, *s, *t, name[MAX_QPATH], cubemapname[MAX_QPATH];
	float origin[3], radius, color[3], angles[3], corona, coronasizescale, ambientscale, diffusescale, specularscale;
	if (cl.worldmodel == NULL)
	{
		Con_Print("No map loaded.\n");
		return;
	}
	dpsnprintf(name, sizeof(name), "%s.rtlights", cl.worldnamenoextension);
	lightsstring = (char *)FS_LoadFile(name, tempmempool, false, NULL);
	if (lightsstring)
	{
		s = lightsstring;
		n = 0;
		while (*s)
		{
			/*
			t = s;
			shadow = true;
			for (;COM_Parse(t, true) && strcmp(
			if (COM_Parse(t, true))
			{
				if (com_token[0] == '!')
				{
					shadow = false;
					origin[0] = atof(com_token+1);
				}
				else
					origin[0] = atof(com_token);
				if (Com_Parse(t
			}
			*/
			t = s;
			while (*s && *s != '\n' && *s != '\r')
				s++;
			if (!*s)
				break;
			tempchar = *s;
			shadow = true;
			// check for modifier flags
			if (*t == '!')
			{
				shadow = false;
				t++;
			}
			*s = 0;
#if _MSC_VER >= 1400
#define sscanf sscanf_s
#endif
			cubemapname[sizeof(cubemapname)-1] = 0;
#if MAX_QPATH != 128
#error update this code if MAX_QPATH changes
#endif
			a = sscanf(t, "%f %f %f %f %f %f %f %d %127s %f %f %f %f %f %f %f %f %i", &origin[0], &origin[1], &origin[2], &radius, &color[0], &color[1], &color[2], &style, cubemapname
#if _MSC_VER >= 1400
, sizeof(cubemapname)
#endif
, &corona, &angles[0], &angles[1], &angles[2], &coronasizescale, &ambientscale, &diffusescale, &specularscale, &flags);
			*s = tempchar;
			if (a < 18)
				flags = LIGHTFLAG_REALTIMEMODE;
			if (a < 17)
				specularscale = 1;
			if (a < 16)
				diffusescale = 1;
			if (a < 15)
				ambientscale = 0;
			if (a < 14)
				coronasizescale = 0.25f;
			if (a < 13)
				VectorClear(angles);
			if (a < 10)
				corona = 0;
			if (a < 9 || !strcmp(cubemapname, "\"\""))
				cubemapname[0] = 0;
			// remove quotes on cubemapname
			if (cubemapname[0] == '"' && cubemapname[strlen(cubemapname) - 1] == '"')
			{
				size_t namelen;
				namelen = strlen(cubemapname) - 2;
				memmove(cubemapname, cubemapname + 1, namelen);
				cubemapname[namelen] = '\0';
			}
			if (a < 8)
			{
				Con_Printf("found %d parameters on line %i, should be 8 or more parameters (origin[0] origin[1] origin[2] radius color[0] color[1] color[2] style \"cubemapname\" corona angles[0] angles[1] angles[2] coronasizescale ambientscale diffusescale specularscale flags)\n", a, n + 1);
				break;
			}
			R_Shadow_UpdateWorldLight(R_Shadow_NewWorldLight(), origin, angles, color, radius, corona, style, shadow, cubemapname, coronasizescale, ambientscale, diffusescale, specularscale, flags);
			if (*s == '\r')
				s++;
			if (*s == '\n')
				s++;
			n++;
		}
		if (*s)
			Con_Printf("invalid rtlights file \"%s\"\n", name);
		Mem_Free(lightsstring);
	}
}

void R_Shadow_SaveWorldLights(void)
{
	size_t lightindex;
	dlight_t *light;
	size_t bufchars, bufmaxchars;
	char *buf, *oldbuf;
	char name[MAX_QPATH];
	char line[MAX_INPUTLINE];
	size_t range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked, assuming the dpsnprintf mess doesn't screw it up...
	// I hate lines which are 3 times my screen size :( --blub
	if (!range)
		return;
	if (cl.worldmodel == NULL)
	{
		Con_Print("No map loaded.\n");
		return;
	}
	dpsnprintf(name, sizeof(name), "%s.rtlights", cl.worldnamenoextension);
	bufchars = bufmaxchars = 0;
	buf = NULL;
	for (lightindex = 0;lightindex < range;lightindex++)
	{
		light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
		if (!light)
			continue;
		if (light->coronasizescale != 0.25f || light->ambientscale != 0 || light->diffusescale != 1 || light->specularscale != 1 || light->flags != LIGHTFLAG_REALTIMEMODE)
			dpsnprintf(line, sizeof(line), "%s%f %f %f %f %f %f %f %d \"%s\" %f %f %f %f %f %f %f %f %i\n", light->shadow ? "" : "!", light->origin[0], light->origin[1], light->origin[2], light->radius, light->color[0], light->color[1], light->color[2], light->style, light->cubemapname, light->corona, light->angles[0], light->angles[1], light->angles[2], light->coronasizescale, light->ambientscale, light->diffusescale, light->specularscale, light->flags);
		else if (light->cubemapname[0] || light->corona || light->angles[0] || light->angles[1] || light->angles[2])
			dpsnprintf(line, sizeof(line), "%s%f %f %f %f %f %f %f %d \"%s\" %f %f %f %f\n", light->shadow ? "" : "!", light->origin[0], light->origin[1], light->origin[2], light->radius, light->color[0], light->color[1], light->color[2], light->style, light->cubemapname, light->corona, light->angles[0], light->angles[1], light->angles[2]);
		else
			dpsnprintf(line, sizeof(line), "%s%f %f %f %f %f %f %f %d\n", light->shadow ? "" : "!", light->origin[0], light->origin[1], light->origin[2], light->radius, light->color[0], light->color[1], light->color[2], light->style);
		if (bufchars + strlen(line) > bufmaxchars)
		{
			bufmaxchars = bufchars + strlen(line) + 2048;
			oldbuf = buf;
			buf = (char *)Mem_Alloc(tempmempool, bufmaxchars);
			if (oldbuf)
			{
				if (bufchars)
					memcpy(buf, oldbuf, bufchars);
				Mem_Free(oldbuf);
			}
		}
		if (strlen(line))
		{
			memcpy(buf + bufchars, line, strlen(line));
			bufchars += strlen(line);
		}
	}
	if (bufchars)
		FS_WriteFile(name, buf, (fs_offset_t)bufchars);
	if (buf)
		Mem_Free(buf);
}

void R_Shadow_LoadLightsFile(void)
{
	int n, a, style;
	char tempchar, *lightsstring, *s, *t, name[MAX_QPATH];
	float origin[3], radius, color[3], subtract, spotdir[3], spotcone, falloff, distbias;
	if (cl.worldmodel == NULL)
	{
		Con_Print("No map loaded.\n");
		return;
	}
	dpsnprintf(name, sizeof(name), "%s.lights", cl.worldnamenoextension);
	lightsstring = (char *)FS_LoadFile(name, tempmempool, false, NULL);
	if (lightsstring)
	{
		s = lightsstring;
		n = 0;
		while (*s)
		{
			t = s;
			while (*s && *s != '\n' && *s != '\r')
				s++;
			if (!*s)
				break;
			tempchar = *s;
			*s = 0;
			a = sscanf(t, "%f %f %f %f %f %f %f %f %f %f %f %f %f %d", &origin[0], &origin[1], &origin[2], &falloff, &color[0], &color[1], &color[2], &subtract, &spotdir[0], &spotdir[1], &spotdir[2], &spotcone, &distbias, &style);
			*s = tempchar;
			if (a < 14)
			{
				Con_Printf("invalid lights file, found %d parameters on line %i, should be 14 parameters (origin[0] origin[1] origin[2] falloff light[0] light[1] light[2] subtract spotdir[0] spotdir[1] spotdir[2] spotcone distancebias style)\n", a, n + 1);
				break;
			}
			radius = sqrt(DotProduct(color, color) / (falloff * falloff * 8192.0f * 8192.0f));
			radius = bound(15, radius, 4096);
			VectorScale(color, (2.0f / (8388608.0f)), color);
			R_Shadow_UpdateWorldLight(R_Shadow_NewWorldLight(), origin, vec3_origin, color, radius, 0, style, true, NULL, 0.25, 0, 1, 1, LIGHTFLAG_REALTIMEMODE);
			if (*s == '\r')
				s++;
			if (*s == '\n')
				s++;
			n++;
		}
		if (*s)
			Con_Printf("invalid lights file \"%s\"\n", name);
		Mem_Free(lightsstring);
	}
}

// tyrlite/hmap2 light types in the delay field
typedef enum lighttype_e {LIGHTTYPE_MINUSX, LIGHTTYPE_RECIPX, LIGHTTYPE_RECIPXX, LIGHTTYPE_NONE, LIGHTTYPE_SUN, LIGHTTYPE_MINUSXX} lighttype_t;

void R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite(void)
{
	int entnum;
	int style;
	int islight;
	int skin;
	int pflags;
	//int effects;
	int type;
	int n;
	char *entfiledata;
	const char *data;
	float origin[3], angles[3], radius, color[3], light[4], fadescale, lightscale, originhack[3], overridecolor[3], vec[4];
	char key[256], value[MAX_INPUTLINE];
	char vabuf[1024];

	if (cl.worldmodel == NULL)
	{
		Con_Print("No map loaded.\n");
		return;
	}
	// try to load a .ent file first
	dpsnprintf(key, sizeof(key), "%s.ent", cl.worldnamenoextension);
	data = entfiledata = (char *)FS_LoadFile(key, tempmempool, true, NULL);
	// and if that is not found, fall back to the bsp file entity string
	if (!data)
		data = cl.worldmodel->brush.entities;
	if (!data)
		return;
	for (entnum = 0;COM_ParseToken_Simple(&data, false, false, true) && com_token[0] == '{';entnum++)
	{
		type = LIGHTTYPE_MINUSX;
		origin[0] = origin[1] = origin[2] = 0;
		originhack[0] = originhack[1] = originhack[2] = 0;
		angles[0] = angles[1] = angles[2] = 0;
		color[0] = color[1] = color[2] = 1;
		light[0] = light[1] = light[2] = 1;light[3] = 300;
		overridecolor[0] = overridecolor[1] = overridecolor[2] = 1;
		fadescale = 1;
		lightscale = 1;
		style = 0;
		skin = 0;
		pflags = 0;
		//effects = 0;
		islight = false;
		while (1)
		{
			if (!COM_ParseToken_Simple(&data, false, false, true))
				break; // error
			if (com_token[0] == '}')
				break; // end of entity
			if (com_token[0] == '_')
				strlcpy(key, com_token + 1, sizeof(key));
			else
				strlcpy(key, com_token, sizeof(key));
			while (key[strlen(key)-1] == ' ') // remove trailing spaces
				key[strlen(key)-1] = 0;
			if (!COM_ParseToken_Simple(&data, false, false, true))
				break; // error
			strlcpy(value, com_token, sizeof(value));

			// now that we have the key pair worked out...
			if (!strcmp("light", key))
			{
				n = sscanf(value, "%f %f %f %f", &vec[0], &vec[1], &vec[2], &vec[3]);
				if (n == 1)
				{
					// quake
					light[0] = vec[0] * (1.0f / 256.0f);
					light[1] = vec[0] * (1.0f / 256.0f);
					light[2] = vec[0] * (1.0f / 256.0f);
					light[3] = vec[0];
				}
				else if (n == 4)
				{
					// halflife
					light[0] = vec[0] * (1.0f / 255.0f);
					light[1] = vec[1] * (1.0f / 255.0f);
					light[2] = vec[2] * (1.0f / 255.0f);
					light[3] = vec[3];
				}
			}
			else if (!strcmp("delay", key))
				type = atoi(value);
			else if (!strcmp("origin", key))
				sscanf(value, "%f %f %f", &origin[0], &origin[1], &origin[2]);
			else if (!strcmp("angle", key))
				angles[0] = 0, angles[1] = atof(value), angles[2] = 0;
			else if (!strcmp("angles", key))
				sscanf(value, "%f %f %f", &angles[0], &angles[1], &angles[2]);
			else if (!strcmp("color", key))
				sscanf(value, "%f %f %f", &color[0], &color[1], &color[2]);
			else if (!strcmp("wait", key))
				fadescale = atof(value);
			else if (!strcmp("classname", key))
			{
				if (!strncmp(value, "light", 5))
				{
					islight = true;
					if (!strcmp(value, "light_fluoro"))
					{
						originhack[0] = 0;
						originhack[1] = 0;
						originhack[2] = 0;
						overridecolor[0] = 1;
						overridecolor[1] = 1;
						overridecolor[2] = 1;
					}
					if (!strcmp(value, "light_fluorospark"))
					{
						originhack[0] = 0;
						originhack[1] = 0;
						originhack[2] = 0;
						overridecolor[0] = 1;
						overridecolor[1] = 1;
						overridecolor[2] = 1;
					}
					if (!strcmp(value, "light_globe"))
					{
						originhack[0] = 0;
						originhack[1] = 0;
						originhack[2] = 0;
						overridecolor[0] = 1;
						overridecolor[1] = 0.8;
						overridecolor[2] = 0.4;
					}
					if (!strcmp(value, "light_flame_large_yellow"))
					{
						originhack[0] = 0;
						originhack[1] = 0;
						originhack[2] = 0;
						overridecolor[0] = 1;
						overridecolor[1] = 0.5;
						overridecolor[2] = 0.1;
					}
					if (!strcmp(value, "light_flame_small_yellow"))
					{
						originhack[0] = 0;
						originhack[1] = 0;
						originhack[2] = 0;
						overridecolor[0] = 1;
						overridecolor[1] = 0.5;
						overridecolor[2] = 0.1;
					}
					if (!strcmp(value, "light_torch_small_white"))
					{
						originhack[0] = 0;
						originhack[1] = 0;
						originhack[2] = 0;
						overridecolor[0] = 1;
						overridecolor[1] = 0.5;
						overridecolor[2] = 0.1;
					}
					if (!strcmp(value, "light_torch_small_walltorch"))
					{
						originhack[0] = 0;
						originhack[1] = 0;
						originhack[2] = 0;
						overridecolor[0] = 1;
						overridecolor[1] = 0.5;
						overridecolor[2] = 0.1;
					}
				}
			}
			else if (!strcmp("style", key))
				style = atoi(value);
			else if (!strcmp("skin", key))
				skin = (int)atof(value);
			else if (!strcmp("pflags", key))
				pflags = (int)atof(value);
			//else if (!strcmp("effects", key))
			//	effects = (int)atof(value);
			else if (cl.worldmodel->type == mod_brushq3)
			{
				if (!strcmp("scale", key))
					lightscale = atof(value);
				if (!strcmp("fade", key))
					fadescale = atof(value);
			}
		}
		if (!islight)
			continue;
		if (lightscale <= 0)
			lightscale = 1;
		if (fadescale <= 0)
			fadescale = 1;
		if (color[0] == color[1] && color[0] == color[2])
		{
			color[0] *= overridecolor[0];
			color[1] *= overridecolor[1];
			color[2] *= overridecolor[2];
		}
		radius = light[3] * r_editlights_quakelightsizescale.value * lightscale / fadescale;
		color[0] = color[0] * light[0];
		color[1] = color[1] * light[1];
		color[2] = color[2] * light[2];
		switch (type)
		{
		case LIGHTTYPE_MINUSX:
			break;
		case LIGHTTYPE_RECIPX:
			radius *= 2;
			VectorScale(color, (1.0f / 16.0f), color);
			break;
		case LIGHTTYPE_RECIPXX:
			radius *= 2;
			VectorScale(color, (1.0f / 16.0f), color);
			break;
		default:
		case LIGHTTYPE_NONE:
			break;
		case LIGHTTYPE_SUN:
			break;
		case LIGHTTYPE_MINUSXX:
			break;
		}
		VectorAdd(origin, originhack, origin);
		if (radius >= 1)
			R_Shadow_UpdateWorldLight(R_Shadow_NewWorldLight(), origin, angles, color, radius, (pflags & PFLAGS_CORONA) != 0, style, (pflags & PFLAGS_NOSHADOW) == 0, skin >= 16 ? va(vabuf, sizeof(vabuf), "cubemaps/%i", skin) : NULL, 0.25, 0, 1, 1, LIGHTFLAG_REALTIMEMODE);
	}
	if (entfiledata)
		Mem_Free(entfiledata);
}


static void R_Shadow_SetCursorLocationForView(void)
{
	vec_t dist, push;
	vec3_t dest, endpos;
	trace_t trace;
	VectorMA(r_refdef.view.origin, r_editlights_cursordistance.value, r_refdef.view.forward, dest);
	trace = CL_TraceLine(r_refdef.view.origin, dest, MOVE_NORMAL, NULL, SUPERCONTENTS_SOLID, 0, MATERIALFLAGMASK_TRANSLUCENT, collision_extendmovelength.value, true, false, NULL, false, true);
	if (trace.fraction < 1)
	{
		dist = trace.fraction * r_editlights_cursordistance.value;
		push = r_editlights_cursorpushback.value;
		if (push > dist)
			push = dist;
		push = -push;
		VectorMA(trace.endpos, push, r_refdef.view.forward, endpos);
		VectorMA(endpos, r_editlights_cursorpushoff.value, trace.plane.normal, endpos);
	}
	else
	{
		VectorClear( endpos );
	}
	r_editlights_cursorlocation[0] = floor(endpos[0] / r_editlights_cursorgrid.value + 0.5f) * r_editlights_cursorgrid.value;
	r_editlights_cursorlocation[1] = floor(endpos[1] / r_editlights_cursorgrid.value + 0.5f) * r_editlights_cursorgrid.value;
	r_editlights_cursorlocation[2] = floor(endpos[2] / r_editlights_cursorgrid.value + 0.5f) * r_editlights_cursorgrid.value;
}

void R_Shadow_UpdateWorldLightSelection(void)
{
	if (r_editlights.integer)
	{
		R_Shadow_SetCursorLocationForView();
		R_Shadow_SelectLightInView();
	}
	else
		R_Shadow_SelectLight(NULL);
}

static void R_Shadow_EditLights_Clear_f(void)
{
	R_Shadow_ClearWorldLights();
}

void R_Shadow_EditLights_Reload_f(void)
{
	if (!cl.worldmodel)
		return;
	strlcpy(r_shadow_mapname, cl.worldname, sizeof(r_shadow_mapname));
	R_Shadow_ClearWorldLights();
	if (r_shadow_realtime_world_importlightentitiesfrommap.integer <= 1)
	{
		R_Shadow_LoadWorldLights();
		if (!Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray))
			R_Shadow_LoadLightsFile();
	}
	if (r_shadow_realtime_world_importlightentitiesfrommap.integer >= 1)
	{
		if (!Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray))
			R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite();
	}
}

static void R_Shadow_EditLights_Save_f(void)
{
	if (!cl.worldmodel)
		return;
	R_Shadow_SaveWorldLights();
}

static void R_Shadow_EditLights_ImportLightEntitiesFromMap_f(void)
{
	R_Shadow_ClearWorldLights();
	R_Shadow_LoadWorldLightsFromMap_LightArghliteTyrlite();
}

static void R_Shadow_EditLights_ImportLightsFile_f(void)
{
	R_Shadow_ClearWorldLights();
	R_Shadow_LoadLightsFile();
}

static void R_Shadow_EditLights_Spawn_f(void)
{
	vec3_t color;
	if (!r_editlights.integer)
	{
		Con_Print("Cannot spawn light when not in editing mode.  Set r_editlights to 1.\n");
		return;
	}
	if (Cmd_Argc() != 1)
	{
		Con_Print("r_editlights_spawn does not take parameters\n");
		return;
	}
	color[0] = color[1] = color[2] = 1;
	R_Shadow_UpdateWorldLight(R_Shadow_NewWorldLight(), r_editlights_cursorlocation, vec3_origin, color, 200, 0, 0, true, NULL, 0.25, 0, 1, 1, LIGHTFLAG_REALTIMEMODE);
}

static void R_Shadow_EditLights_Edit_f(void)
{
	vec3_t origin, angles, color;
	vec_t radius, corona, coronasizescale, ambientscale, diffusescale, specularscale;
	int style, shadows, flags, normalmode, realtimemode;
	char cubemapname[MAX_INPUTLINE];
	if (!r_editlights.integer)
	{
		Con_Print("Cannot spawn light when not in editing mode.  Set r_editlights to 1.\n");
		return;
	}
	if (!r_shadow_selectedlight)
	{
		Con_Print("No selected light.\n");
		return;
	}
	VectorCopy(r_shadow_selectedlight->origin, origin);
	VectorCopy(r_shadow_selectedlight->angles, angles);
	VectorCopy(r_shadow_selectedlight->color, color);
	radius = r_shadow_selectedlight->radius;
	style = r_shadow_selectedlight->style;
	if (r_shadow_selectedlight->cubemapname)
		strlcpy(cubemapname, r_shadow_selectedlight->cubemapname, sizeof(cubemapname));
	else
		cubemapname[0] = 0;
	shadows = r_shadow_selectedlight->shadow;
	corona = r_shadow_selectedlight->corona;
	coronasizescale = r_shadow_selectedlight->coronasizescale;
	ambientscale = r_shadow_selectedlight->ambientscale;
	diffusescale = r_shadow_selectedlight->diffusescale;
	specularscale = r_shadow_selectedlight->specularscale;
	flags = r_shadow_selectedlight->flags;
	normalmode = (flags & LIGHTFLAG_NORMALMODE) != 0;
	realtimemode = (flags & LIGHTFLAG_REALTIMEMODE) != 0;
	if (!strcmp(Cmd_Argv(1), "origin"))
	{
		if (Cmd_Argc() != 5)
		{
			Con_Printf("usage: r_editlights_edit %s x y z\n", Cmd_Argv(1));
			return;
		}
		origin[0] = atof(Cmd_Argv(2));
		origin[1] = atof(Cmd_Argv(3));
		origin[2] = atof(Cmd_Argv(4));
	}
	else if (!strcmp(Cmd_Argv(1), "originscale"))
	{
		if (Cmd_Argc() != 5)
		{
			Con_Printf("usage: r_editlights_edit %s x y z\n", Cmd_Argv(1));
			return;
		}
		origin[0] *= atof(Cmd_Argv(2));
		origin[1] *= atof(Cmd_Argv(3));
		origin[2] *= atof(Cmd_Argv(4));
	}
	else if (!strcmp(Cmd_Argv(1), "originx"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		origin[0] = atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "originy"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		origin[1] = atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "originz"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		origin[2] = atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "move"))
	{
		if (Cmd_Argc() != 5)
		{
			Con_Printf("usage: r_editlights_edit %s x y z\n", Cmd_Argv(1));
			return;
		}
		origin[0] += atof(Cmd_Argv(2));
		origin[1] += atof(Cmd_Argv(3));
		origin[2] += atof(Cmd_Argv(4));
	}
	else if (!strcmp(Cmd_Argv(1), "movex"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		origin[0] += atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "movey"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		origin[1] += atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "movez"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		origin[2] += atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "angles"))
	{
		if (Cmd_Argc() != 5)
		{
			Con_Printf("usage: r_editlights_edit %s x y z\n", Cmd_Argv(1));
			return;
		}
		angles[0] = atof(Cmd_Argv(2));
		angles[1] = atof(Cmd_Argv(3));
		angles[2] = atof(Cmd_Argv(4));
	}
	else if (!strcmp(Cmd_Argv(1), "anglesx"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		angles[0] = atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "anglesy"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		angles[1] = atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "anglesz"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		angles[2] = atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "color"))
	{
		if (Cmd_Argc() != 5)
		{
			Con_Printf("usage: r_editlights_edit %s red green blue\n", Cmd_Argv(1));
			return;
		}
		color[0] = atof(Cmd_Argv(2));
		color[1] = atof(Cmd_Argv(3));
		color[2] = atof(Cmd_Argv(4));
	}
	else if (!strcmp(Cmd_Argv(1), "radius"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		radius = atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "colorscale"))
	{
		if (Cmd_Argc() == 3)
		{
			double scale = atof(Cmd_Argv(2));
			color[0] *= scale;
			color[1] *= scale;
			color[2] *= scale;
		}
		else
		{
			if (Cmd_Argc() != 5)
			{
				Con_Printf("usage: r_editlights_edit %s red green blue  (OR grey instead of red green blue)\n", Cmd_Argv(1));
				return;
			}
			color[0] *= atof(Cmd_Argv(2));
			color[1] *= atof(Cmd_Argv(3));
			color[2] *= atof(Cmd_Argv(4));
		}
	}
	else if (!strcmp(Cmd_Argv(1), "radiusscale") || !strcmp(Cmd_Argv(1), "sizescale"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		radius *= atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "style"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		style = atoi(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "cubemap"))
	{
		if (Cmd_Argc() > 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		if (Cmd_Argc() == 3)
			strlcpy(cubemapname, Cmd_Argv(2), sizeof(cubemapname));
		else
			cubemapname[0] = 0;
	}
	else if (!strcmp(Cmd_Argv(1), "shadows"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		shadows = Cmd_Argv(2)[0] == 'y' || Cmd_Argv(2)[0] == 'Y' || Cmd_Argv(2)[0] == 't' || atoi(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "corona"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		corona = atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "coronasize"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		coronasizescale = atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "ambient"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		ambientscale = atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "diffuse"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		diffusescale = atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "specular"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		specularscale = atof(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "normalmode"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		normalmode = Cmd_Argv(2)[0] == 'y' || Cmd_Argv(2)[0] == 'Y' || Cmd_Argv(2)[0] == 't' || atoi(Cmd_Argv(2));
	}
	else if (!strcmp(Cmd_Argv(1), "realtimemode"))
	{
		if (Cmd_Argc() != 3)
		{
			Con_Printf("usage: r_editlights_edit %s value\n", Cmd_Argv(1));
			return;
		}
		realtimemode = Cmd_Argv(2)[0] == 'y' || Cmd_Argv(2)[0] == 'Y' || Cmd_Argv(2)[0] == 't' || atoi(Cmd_Argv(2));
	}
	else
	{
		Con_Print("usage: r_editlights_edit [property] [value]\n");
		Con_Print("Selected light's properties:\n");
		Con_Printf("Origin       : %f %f %f\n", r_shadow_selectedlight->origin[0], r_shadow_selectedlight->origin[1], r_shadow_selectedlight->origin[2]);
		Con_Printf("Angles       : %f %f %f\n", r_shadow_selectedlight->angles[0], r_shadow_selectedlight->angles[1], r_shadow_selectedlight->angles[2]);
		Con_Printf("Color        : %f %f %f\n", r_shadow_selectedlight->color[0], r_shadow_selectedlight->color[1], r_shadow_selectedlight->color[2]);
		Con_Printf("Radius       : %f\n", r_shadow_selectedlight->radius);
		Con_Printf("Corona       : %f\n", r_shadow_selectedlight->corona);
		Con_Printf("Style        : %i\n", r_shadow_selectedlight->style);
		Con_Printf("Shadows      : %s\n", r_shadow_selectedlight->shadow ? "yes" : "no");
		Con_Printf("Cubemap      : %s\n", r_shadow_selectedlight->cubemapname);
		Con_Printf("CoronaSize   : %f\n", r_shadow_selectedlight->coronasizescale);
		Con_Printf("Ambient      : %f\n", r_shadow_selectedlight->ambientscale);
		Con_Printf("Diffuse      : %f\n", r_shadow_selectedlight->diffusescale);
		Con_Printf("Specular     : %f\n", r_shadow_selectedlight->specularscale);
		Con_Printf("NormalMode   : %s\n", (r_shadow_selectedlight->flags & LIGHTFLAG_NORMALMODE) ? "yes" : "no");
		Con_Printf("RealTimeMode : %s\n", (r_shadow_selectedlight->flags & LIGHTFLAG_REALTIMEMODE) ? "yes" : "no");
		return;
	}
	flags = (normalmode ? LIGHTFLAG_NORMALMODE : 0) | (realtimemode ? LIGHTFLAG_REALTIMEMODE : 0);
	R_Shadow_UpdateWorldLight(r_shadow_selectedlight, origin, angles, color, radius, corona, style, shadows, cubemapname, coronasizescale, ambientscale, diffusescale, specularscale, flags);
}

static void R_Shadow_EditLights_EditAll_f(void)
{
	size_t lightindex;
	dlight_t *light, *oldselected;
	size_t range;

	if (!r_editlights.integer)
	{
		Con_Print("Cannot edit lights when not in editing mode. Set r_editlights to 1.\n");
		return;
	}

	oldselected = r_shadow_selectedlight;
	// EditLights doesn't seem to have a "remove" command or something so:
	range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
	for (lightindex = 0;lightindex < range;lightindex++)
	{
		light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
		if (!light)
			continue;
		R_Shadow_SelectLight(light);
		R_Shadow_EditLights_Edit_f();
	}
	// return to old selected (to not mess editing once selection is locked)
	R_Shadow_SelectLight(oldselected);
}

void R_Shadow_EditLights_DrawSelectedLightProperties(void)
{
	int lightnumber, lightcount;
	size_t lightindex, range;
	dlight_t *light;
	char temp[256];
	float x, y;

	if (!r_editlights.integer)
		return;

	// update cvars so QC can query them
	if (r_shadow_selectedlight)
	{
		dpsnprintf(temp, sizeof(temp), "%f %f %f", r_shadow_selectedlight->origin[0], r_shadow_selectedlight->origin[1], r_shadow_selectedlight->origin[2]);
		Cvar_SetQuick(&r_editlights_current_origin, temp);
		dpsnprintf(temp, sizeof(temp), "%f %f %f", r_shadow_selectedlight->angles[0], r_shadow_selectedlight->angles[1], r_shadow_selectedlight->angles[2]);
		Cvar_SetQuick(&r_editlights_current_angles, temp);
		dpsnprintf(temp, sizeof(temp), "%f %f %f", r_shadow_selectedlight->color[0], r_shadow_selectedlight->color[1], r_shadow_selectedlight->color[2]);
		Cvar_SetQuick(&r_editlights_current_color, temp);
		Cvar_SetValueQuick(&r_editlights_current_radius, r_shadow_selectedlight->radius);
		Cvar_SetValueQuick(&r_editlights_current_corona, r_shadow_selectedlight->corona);
		Cvar_SetValueQuick(&r_editlights_current_coronasize, r_shadow_selectedlight->coronasizescale);
		Cvar_SetValueQuick(&r_editlights_current_style, r_shadow_selectedlight->style);
		Cvar_SetValueQuick(&r_editlights_current_shadows, r_shadow_selectedlight->shadow);
		Cvar_SetQuick(&r_editlights_current_cubemap, r_shadow_selectedlight->cubemapname);
		Cvar_SetValueQuick(&r_editlights_current_ambient, r_shadow_selectedlight->ambientscale);
		Cvar_SetValueQuick(&r_editlights_current_diffuse, r_shadow_selectedlight->diffusescale);
		Cvar_SetValueQuick(&r_editlights_current_specular, r_shadow_selectedlight->specularscale);
		Cvar_SetValueQuick(&r_editlights_current_normalmode, (r_shadow_selectedlight->flags & LIGHTFLAG_NORMALMODE) ? 1 : 0);
		Cvar_SetValueQuick(&r_editlights_current_realtimemode, (r_shadow_selectedlight->flags & LIGHTFLAG_REALTIMEMODE) ? 1 : 0);
	}

	// draw properties on screen
	if (!r_editlights_drawproperties.integer)
		return;
	x = vid_conwidth.value - 320;
	y = 5;
	DrawQ_Pic(x-5, y-5, NULL, 250, 243, 0, 0, 0, 0.75, 0);
	lightnumber = -1;
	lightcount = 0;
	range = Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray); // checked
	for (lightindex = 0;lightindex < range;lightindex++)
	{
		light = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, lightindex);
		if (!light)
			continue;
		if (light == r_shadow_selectedlight)
			lightnumber = (int)lightindex;
		lightcount++;
	}
	dpsnprintf(temp, sizeof(temp), "Cursor origin: %.0f %.0f %.0f", r_editlights_cursorlocation[0], r_editlights_cursorlocation[1], r_editlights_cursorlocation[2]); DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, false, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "Total lights : %i active (%i total)", lightcount, (int)Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray)); DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, false, FONT_DEFAULT);y += 8;
	y += 8;
	if (r_shadow_selectedlight == NULL)
		return;
	dpsnprintf(temp, sizeof(temp), "Light #%i properties:", lightnumber);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "Origin       : %.0f %.0f %.0f\n", r_shadow_selectedlight->origin[0], r_shadow_selectedlight->origin[1], r_shadow_selectedlight->origin[2]);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "Angles       : %.0f %.0f %.0f\n", r_shadow_selectedlight->angles[0], r_shadow_selectedlight->angles[1], r_shadow_selectedlight->angles[2]);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "Color        : %.2f %.2f %.2f\n", r_shadow_selectedlight->color[0], r_shadow_selectedlight->color[1], r_shadow_selectedlight->color[2]);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "Radius       : %.0f\n", r_shadow_selectedlight->radius);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "Corona       : %.0f\n", r_shadow_selectedlight->corona);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "Style        : %i\n", r_shadow_selectedlight->style);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "Shadows      : %s\n", r_shadow_selectedlight->shadow ? "yes" : "no");DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "Cubemap      : %s\n", r_shadow_selectedlight->cubemapname);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "CoronaSize   : %.2f\n", r_shadow_selectedlight->coronasizescale);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "Ambient      : %.2f\n", r_shadow_selectedlight->ambientscale);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "Diffuse      : %.2f\n", r_shadow_selectedlight->diffusescale);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "Specular     : %.2f\n", r_shadow_selectedlight->specularscale);DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "NormalMode   : %s\n", (r_shadow_selectedlight->flags & LIGHTFLAG_NORMALMODE) ? "yes" : "no");DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	dpsnprintf(temp, sizeof(temp), "RealTimeMode : %s\n", (r_shadow_selectedlight->flags & LIGHTFLAG_REALTIMEMODE) ? "yes" : "no");DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT);y += 8;
	y += 8;
	dpsnprintf(temp, sizeof(temp), "Render stats\n"); DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT); y += 8;
	dpsnprintf(temp, sizeof(temp), "Current color: %.3f %.3f %.3f\n", r_shadow_selectedlight->rtlight.currentcolor[0], r_shadow_selectedlight->rtlight.currentcolor[1], r_shadow_selectedlight->rtlight.currentcolor[2]); DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT); y += 8;
	dpsnprintf(temp, sizeof(temp), "Shadow size  : %ix%ix6\n", r_shadow_selectedlight->rtlight.shadowmapatlassidesize, r_shadow_selectedlight->rtlight.shadowmapatlassidesize); DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT); y += 8;
	dpsnprintf(temp, sizeof(temp), "World surfs  : %i\n", r_shadow_selectedlight->rtlight.cached_numsurfaces); DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT); y += 8;
	dpsnprintf(temp, sizeof(temp), "Shadow ents  : %i + %i noself\n", r_shadow_selectedlight->rtlight.cached_numshadowentities, r_shadow_selectedlight->rtlight.cached_numshadowentities_noselfshadow); DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT); y += 8;
	dpsnprintf(temp, sizeof(temp), "Lit ents     : %i + %i noself\n", r_shadow_selectedlight->rtlight.cached_numlightentities, r_shadow_selectedlight->rtlight.cached_numlightentities_noselfshadow); DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT); y += 8;
	dpsnprintf(temp, sizeof(temp), "BG photons   : %.3f\n", r_shadow_selectedlight->rtlight.bouncegrid_photons); DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT); y += 8;
	dpsnprintf(temp, sizeof(temp), "BG radius    : %.0f\n", r_shadow_selectedlight->rtlight.bouncegrid_effectiveradius); DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT); y += 8;
	dpsnprintf(temp, sizeof(temp), "BG color     : %.3f %.3f %.3f\n", r_shadow_selectedlight->rtlight.bouncegrid_photoncolor[0], r_shadow_selectedlight->rtlight.bouncegrid_photoncolor[1], r_shadow_selectedlight->rtlight.bouncegrid_photoncolor[2]); DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT); y += 8;
	dpsnprintf(temp, sizeof(temp), "BG stats     : %i traces %i hits\n", r_shadow_selectedlight->rtlight.bouncegrid_traces, r_shadow_selectedlight->rtlight.bouncegrid_hits); DrawQ_String(x, y, temp, 0, 8, 8, 1, 1, 1, 1, 0, NULL, true, FONT_DEFAULT); y += 8;
}

static void R_Shadow_EditLights_ToggleShadow_f(void)
{
	if (!r_editlights.integer)
	{
		Con_Print("Cannot spawn light when not in editing mode.  Set r_editlights to 1.\n");
		return;
	}
	if (!r_shadow_selectedlight)
	{
		Con_Print("No selected light.\n");
		return;
	}
	R_Shadow_UpdateWorldLight(r_shadow_selectedlight, r_shadow_selectedlight->origin, r_shadow_selectedlight->angles, r_shadow_selectedlight->color, r_shadow_selectedlight->radius, r_shadow_selectedlight->corona, r_shadow_selectedlight->style, !r_shadow_selectedlight->shadow, r_shadow_selectedlight->cubemapname, r_shadow_selectedlight->coronasizescale, r_shadow_selectedlight->ambientscale, r_shadow_selectedlight->diffusescale, r_shadow_selectedlight->specularscale, r_shadow_selectedlight->flags);
}

static void R_Shadow_EditLights_ToggleCorona_f(void)
{
	if (!r_editlights.integer)
	{
		Con_Print("Cannot spawn light when not in editing mode.  Set r_editlights to 1.\n");
		return;
	}
	if (!r_shadow_selectedlight)
	{
		Con_Print("No selected light.\n");
		return;
	}
	R_Shadow_UpdateWorldLight(r_shadow_selectedlight, r_shadow_selectedlight->origin, r_shadow_selectedlight->angles, r_shadow_selectedlight->color, r_shadow_selectedlight->radius, !r_shadow_selectedlight->corona, r_shadow_selectedlight->style, r_shadow_selectedlight->shadow, r_shadow_selectedlight->cubemapname, r_shadow_selectedlight->coronasizescale, r_shadow_selectedlight->ambientscale, r_shadow_selectedlight->diffusescale, r_shadow_selectedlight->specularscale, r_shadow_selectedlight->flags);
}

static void R_Shadow_EditLights_Remove_f(void)
{
	if (!r_editlights.integer)
	{
		Con_Print("Cannot remove light when not in editing mode.  Set r_editlights to 1.\n");
		return;
	}
	if (!r_shadow_selectedlight)
	{
		Con_Print("No selected light.\n");
		return;
	}
	R_Shadow_FreeWorldLight(r_shadow_selectedlight);
	r_shadow_selectedlight = NULL;
}

static void R_Shadow_EditLights_Help_f(void)
{
	Con_Print(
"Documentation on r_editlights system:\n"
"Settings:\n"
"r_editlights : enable/disable editing mode\n"
"r_editlights_cursordistance : maximum distance of cursor from eye\n"
"r_editlights_cursorpushback : push back cursor this far from surface\n"
"r_editlights_cursorpushoff : push cursor off surface this far\n"
"r_editlights_cursorgrid : snap cursor to grid of this size\n"
"r_editlights_quakelightsizescale : imported quake light entity size scaling\n"
"Commands:\n"
"r_editlights_help : this help\n"
"r_editlights_clear : remove all lights\n"
"r_editlights_reload : reload .rtlights, .lights file, or entities\n"
"r_editlights_lock : lock selection to current light, if already locked - unlock\n"
"r_editlights_save : save to .rtlights file\n"
"r_editlights_spawn : create a light with default settings\n"
"r_editlights_edit command : edit selected light - more documentation below\n"
"r_editlights_remove : remove selected light\n"
"r_editlights_toggleshadow : toggles on/off selected light's shadow property\n"
"r_editlights_importlightentitiesfrommap : reload light entities\n"
"r_editlights_importlightsfile : reload .light file (produced by hlight)\n"
"Edit commands:\n"
"origin x y z : set light location\n"
"originx x: set x component of light location\n"
"originy y: set y component of light location\n"
"originz z: set z component of light location\n"
"move x y z : adjust light location\n"
"movex x: adjust x component of light location\n"
"movey y: adjust y component of light location\n"
"movez z: adjust z component of light location\n"
"angles x y z : set light angles\n"
"anglesx x: set x component of light angles\n"
"anglesy y: set y component of light angles\n"
"anglesz z: set z component of light angles\n"
"color r g b : set color of light (can be brighter than 1 1 1)\n"
"radius radius : set radius (size) of light\n"
"colorscale grey : multiply color of light (1 does nothing)\n"
"colorscale r g b : multiply color of light (1 1 1 does nothing)\n"
"radiusscale scale : multiply radius (size) of light (1 does nothing)\n"
"sizescale scale : multiply radius (size) of light (1 does nothing)\n"
"originscale x y z : multiply origin of light (1 1 1 does nothing)\n"
"style style : set lightstyle of light (flickering patterns, switches, etc)\n"
"cubemap basename : set filter cubemap of light\n"
"shadows 1/0 : turn on/off shadows\n"
"corona n : set corona intensity\n"
"coronasize n : set corona size (0-1)\n"
"ambient n : set ambient intensity (0-1)\n"
"diffuse n : set diffuse intensity (0-1)\n"
"specular n : set specular intensity (0-1)\n"
"normalmode 1/0 : turn on/off rendering of this light in rtworld 0 mode\n"
"realtimemode 1/0 : turn on/off rendering of this light in rtworld 1 mode\n"
"<nothing> : print light properties to console\n"
	);
}

static void R_Shadow_EditLights_CopyInfo_f(void)
{
	if (!r_editlights.integer)
	{
		Con_Print("Cannot copy light info when not in editing mode.  Set r_editlights to 1.\n");
		return;
	}
	if (!r_shadow_selectedlight)
	{
		Con_Print("No selected light.\n");
		return;
	}
	VectorCopy(r_shadow_selectedlight->angles, r_shadow_bufferlight.angles);
	VectorCopy(r_shadow_selectedlight->color, r_shadow_bufferlight.color);
	r_shadow_bufferlight.radius = r_shadow_selectedlight->radius;
	r_shadow_bufferlight.style = r_shadow_selectedlight->style;
	if (r_shadow_selectedlight->cubemapname)
		strlcpy(r_shadow_bufferlight.cubemapname, r_shadow_selectedlight->cubemapname, sizeof(r_shadow_bufferlight.cubemapname));
	else
		r_shadow_bufferlight.cubemapname[0] = 0;
	r_shadow_bufferlight.shadow = r_shadow_selectedlight->shadow;
	r_shadow_bufferlight.corona = r_shadow_selectedlight->corona;
	r_shadow_bufferlight.coronasizescale = r_shadow_selectedlight->coronasizescale;
	r_shadow_bufferlight.ambientscale = r_shadow_selectedlight->ambientscale;
	r_shadow_bufferlight.diffusescale = r_shadow_selectedlight->diffusescale;
	r_shadow_bufferlight.specularscale = r_shadow_selectedlight->specularscale;
	r_shadow_bufferlight.flags = r_shadow_selectedlight->flags;
}

static void R_Shadow_EditLights_PasteInfo_f(void)
{
	if (!r_editlights.integer)
	{
		Con_Print("Cannot paste light info when not in editing mode.  Set r_editlights to 1.\n");
		return;
	}
	if (!r_shadow_selectedlight)
	{
		Con_Print("No selected light.\n");
		return;
	}
	R_Shadow_UpdateWorldLight(r_shadow_selectedlight, r_shadow_selectedlight->origin, r_shadow_bufferlight.angles, r_shadow_bufferlight.color, r_shadow_bufferlight.radius, r_shadow_bufferlight.corona, r_shadow_bufferlight.style, r_shadow_bufferlight.shadow, r_shadow_bufferlight.cubemapname, r_shadow_bufferlight.coronasizescale, r_shadow_bufferlight.ambientscale, r_shadow_bufferlight.diffusescale, r_shadow_bufferlight.specularscale, r_shadow_bufferlight.flags);
}

static void R_Shadow_EditLights_Lock_f(void)
{
	if (!r_editlights.integer)
	{
		Con_Print("Cannot lock on light when not in editing mode.  Set r_editlights to 1.\n");
		return;
	}
	if (r_editlights_lockcursor)
	{
		r_editlights_lockcursor = false;
		return;
	}
	if (!r_shadow_selectedlight)
	{
		Con_Print("No selected light to lock on.\n");
		return;
	}
	r_editlights_lockcursor = true;
}

static void R_Shadow_EditLights_Init(void)
{
	Cvar_RegisterVariable(&r_editlights);
	Cvar_RegisterVariable(&r_editlights_cursordistance);
	Cvar_RegisterVariable(&r_editlights_cursorpushback);
	Cvar_RegisterVariable(&r_editlights_cursorpushoff);
	Cvar_RegisterVariable(&r_editlights_cursorgrid);
	Cvar_RegisterVariable(&r_editlights_quakelightsizescale);
	Cvar_RegisterVariable(&r_editlights_drawproperties);
	Cvar_RegisterVariable(&r_editlights_current_origin);
	Cvar_RegisterVariable(&r_editlights_current_angles);
	Cvar_RegisterVariable(&r_editlights_current_color);
	Cvar_RegisterVariable(&r_editlights_current_radius);
	Cvar_RegisterVariable(&r_editlights_current_corona);
	Cvar_RegisterVariable(&r_editlights_current_coronasize);
	Cvar_RegisterVariable(&r_editlights_current_style);
	Cvar_RegisterVariable(&r_editlights_current_shadows);
	Cvar_RegisterVariable(&r_editlights_current_cubemap);
	Cvar_RegisterVariable(&r_editlights_current_ambient);
	Cvar_RegisterVariable(&r_editlights_current_diffuse);
	Cvar_RegisterVariable(&r_editlights_current_specular);
	Cvar_RegisterVariable(&r_editlights_current_normalmode);
	Cvar_RegisterVariable(&r_editlights_current_realtimemode);
	Cmd_AddCommand("r_editlights_help", R_Shadow_EditLights_Help_f, "prints documentation on console commands and variables in rtlight editing system");
	Cmd_AddCommand("r_editlights_clear", R_Shadow_EditLights_Clear_f, "removes all world lights (let there be darkness!)");
	Cmd_AddCommand("r_editlights_reload", R_Shadow_EditLights_Reload_f, "reloads rtlights file (or imports from .lights file or .ent file or the map itself)");
	Cmd_AddCommand("r_editlights_save", R_Shadow_EditLights_Save_f, "save .rtlights file for current level");
	Cmd_AddCommand("r_editlights_spawn", R_Shadow_EditLights_Spawn_f, "creates a light with default properties (let there be light!)");
	Cmd_AddCommand("r_editlights_edit", R_Shadow_EditLights_Edit_f, "changes a property on the selected light");
	Cmd_AddCommand("r_editlights_editall", R_Shadow_EditLights_EditAll_f, "changes a property on ALL lights at once (tip: use radiusscale and colorscale to alter these properties)");
	Cmd_AddCommand("r_editlights_remove", R_Shadow_EditLights_Remove_f, "remove selected light");
	Cmd_AddCommand("r_editlights_toggleshadow", R_Shadow_EditLights_ToggleShadow_f, "toggle on/off the shadow option on the selected light");
	Cmd_AddCommand("r_editlights_togglecorona", R_Shadow_EditLights_ToggleCorona_f, "toggle on/off the corona option on the selected light");
	Cmd_AddCommand("r_editlights_importlightentitiesfrommap", R_Shadow_EditLights_ImportLightEntitiesFromMap_f, "load lights from .ent file or map entities (ignoring .rtlights or .lights file)");
	Cmd_AddCommand("r_editlights_importlightsfile", R_Shadow_EditLights_ImportLightsFile_f, "load lights from .lights file (ignoring .rtlights or .ent files and map entities)");
	Cmd_AddCommand("r_editlights_copyinfo", R_Shadow_EditLights_CopyInfo_f, "store a copy of all properties (except origin) of the selected light");
	Cmd_AddCommand("r_editlights_pasteinfo", R_Shadow_EditLights_PasteInfo_f, "apply the stored properties onto the selected light (making it exactly identical except for origin)");
	Cmd_AddCommand("r_editlights_lock", R_Shadow_EditLights_Lock_f, "lock selection to current light, if already locked - unlock");
}



/*
=============================================================================

LIGHT SAMPLING

=============================================================================
*/

void R_CompleteLightPoint(float *ambient, float *diffuse, float *lightdir, const vec3_t p, const int flags, float lightmapintensity, float ambientintensity)
{
	int i, numlights, flag, q;
	rtlight_t *light;
	dlight_t *dlight;
	float relativepoint[3];
	float color[3];
	float dist;
	float dist2;
	float intensity;
	float sa[3], sx[3], sy[3], sz[3], sd[3];
	float lightradius2;

	// use first order spherical harmonics to combine directional lights
	for (q = 0; q < 3; q++)
		sa[q] = sx[q] = sy[q] = sz[q] = sd[q] = 0;

	if (flags & LP_LIGHTMAP)
	{
		if (r_refdef.scene.worldmodel && r_refdef.scene.worldmodel->lit && r_refdef.scene.worldmodel->brush.LightPoint)
		{
			float tempambient[3];
			for (q = 0; q < 3; q++)
				tempambient[q] = color[q] = relativepoint[q] = 0;
			r_refdef.scene.worldmodel->brush.LightPoint(r_refdef.scene.worldmodel, p, tempambient, color, relativepoint);
			// calculate a weighted average light direction as well
			intensity = VectorLength(color);
			for (q = 0; q < 3; q++)
			{
				sa[q] += (0.5f * color[q] + tempambient[q]) * lightmapintensity;
				sx[q] += (relativepoint[0] * color[q]) * lightmapintensity;
				sy[q] += (relativepoint[1] * color[q]) * lightmapintensity;
				sz[q] += (relativepoint[2] * color[q]) * lightmapintensity;
				sd[q] += (intensity * relativepoint[q]) * lightmapintensity;
			}
		}
		else
		{
			// unlit map - fullbright but scaled by lightmapintensity
			for (q = 0; q < 3; q++)
				sa[q] += lightmapintensity;
		}
	}

	if (flags & LP_RTWORLD)
	{
		flag = r_refdef.scene.rtworld ? LIGHTFLAG_REALTIMEMODE : LIGHTFLAG_NORMALMODE;
		numlights = (int)Mem_ExpandableArray_IndexRange(&r_shadow_worldlightsarray);
		for (i = 0; i < numlights; i++)
		{
			dlight = (dlight_t *) Mem_ExpandableArray_RecordAtIndex(&r_shadow_worldlightsarray, i);
			if (!dlight)
				continue;
			light = &dlight->rtlight;
			if (!(light->flags & flag))
				continue;
			// sample
			lightradius2 = light->radius * light->radius;
			VectorSubtract(light->shadoworigin, p, relativepoint);
			dist2 = VectorLength2(relativepoint);
			if (dist2 >= lightradius2)
				continue;
			dist = sqrt(dist2) / light->radius;
			intensity = min(1.0f, (1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist)) * r_shadow_lightintensityscale.value;
			if (intensity <= 0.0f)
				continue;
			if (light->shadow && CL_TraceLine(p, light->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, 0, MATERIALFLAGMASK_TRANSLUCENT, collision_extendmovelength.value, true, false, NULL, false, true).fraction < 1)
				continue;
			for (q = 0; q < 3; q++)
				color[q] = light->currentcolor[q] * intensity;
			intensity = VectorLength(color);
			VectorNormalize(relativepoint);
			for (q = 0; q < 3; q++)
			{
				sa[q] += 0.5f * color[q];
				sx[q] += relativepoint[0] * color[q];
				sy[q] += relativepoint[1] * color[q];
				sz[q] += relativepoint[2] * color[q];
				sd[q] += intensity * relativepoint[q];
			}
		}
		// FIXME: sample bouncegrid too!
	}

	if (flags & LP_DYNLIGHT)
	{
		// sample dlights
		for (i = 0;i < r_refdef.scene.numlights;i++)
		{
			light = r_refdef.scene.lights[i];
			// sample
			lightradius2 = light->radius * light->radius;
			VectorSubtract(light->shadoworigin, p, relativepoint);
			dist2 = VectorLength2(relativepoint);
			if (dist2 >= lightradius2)
				continue;
			dist = sqrt(dist2) / light->radius;
			intensity = (1.0f - dist) * r_shadow_lightattenuationlinearscale.value / (r_shadow_lightattenuationdividebias.value + dist*dist) * r_shadow_lightintensityscale.value;
			if (intensity <= 0.0f)
				continue;
			if (light->shadow && CL_TraceLine(p, light->shadoworigin, MOVE_NOMONSTERS, NULL, SUPERCONTENTS_SOLID, 0, MATERIALFLAGMASK_TRANSLUCENT, collision_extendmovelength.value, true, false, NULL, false, true).fraction < 1)
				continue;
			for (q = 0; q < 3; q++)
				color[q] = light->currentcolor[q] * intensity;
			intensity = VectorLength(color);
			VectorNormalize(relativepoint);
			for (q = 0; q < 3; q++)
			{
				sa[q] += 0.5f * color[q];
				sx[q] += relativepoint[0] * color[q];
				sy[q] += relativepoint[1] * color[q];
				sz[q] += relativepoint[2] * color[q];
				sd[q] += intensity * relativepoint[q];
			}
		}
	}

	// calculate the weighted-average light direction (bentnormal)
	for (q = 0; q < 3; q++)
		lightdir[q] = sd[q];
	VectorNormalize(lightdir);
	for (q = 0; q < 3; q++)
	{
		// extract the diffuse color along the chosen direction and scale it
		diffuse[q] = (lightdir[0] * sx[q] + lightdir[1] * sy[q] + lightdir[2] * sz[q]);
		// subtract some of diffuse from ambient
		ambient[q] = sa[q] + -0.333f * diffuse[q] + ambientintensity;
	}
}