1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
/*
this code written by Forest Hale, on 2004-10-17, and placed into public domain
this implements Quadratic BSpline surfaces as seen in Quake3 by id Software
a small rant on misuse of the name 'bezier': many people seem to think that
bezier is a generic term for splines, but it is not, it is a term for a
specific type of bspline (4 control points, cubic bspline), bsplines are the
generalization of the bezier spline to support dimensions other than cubic.
example equations for 1-5 control point bsplines being sampled as t=0...1
1: flat (0th dimension)
o = a
2: linear (1st dimension)
o = a * (1 - t) + b * t
3: quadratic bspline (2nd dimension)
o = a * (1 - t) * (1 - t) + 2 * b * (1 - t) * t + c * t * t
4: cubic (bezier) bspline (3rd dimension)
o = a * (1 - t) * (1 - t) * (1 - t) + 3 * b * (1 - t) * (1 - t) * t + 3 * c * (1 - t) * t * t + d * t * t * t
5: quartic bspline (4th dimension)
o = a * (1 - t) * (1 - t) * (1 - t) * (1 - t) + 4 * b * (1 - t) * (1 - t) * (1 - t) * t + 6 * c * (1 - t) * (1 - t) * t * t + 4 * d * (1 - t) * t * t * t + e * t * t * t * t
arbitrary dimension bspline
double factorial(int n)
{
int i;
double f;
f = 1;
for (i = 1;i < n;i++)
f = f * i;
return f;
}
double bsplinesample(int dimensions, double t, double *param)
{
double o = 0;
for (i = 0;i < dimensions + 1;i++)
o += param[i] * factorial(dimensions)/(factorial(i)*factorial(dimensions-i)) * pow(t, i) * pow(1 - t, dimensions - i);
return o;
}
*/
#include "quakedef.h"
#include "mathlib.h"
#include <math.h>
#include "curves.h"
// Calculate number of resulting vertex rows/columns by given patch size and tesselation factor
// tess=0 means that we reduce detalization of base 3x3 patches by removing middle row and column of vertices
// "DimForTess" is "DIMension FOR TESSelation factor"
// NB: tess=0 actually means that tess must be 0.5, but obviously it can't because it is of int type. (so "a*tess"-like code is replaced by "a/2" if tess=0)
int Q3PatchDimForTess(int size, int tess)
{
if (tess > 0)
return (size - 1) * tess + 1;
else if (tess == 0)
return (size - 1) / 2 + 1;
else
return 0; // Maybe warn about wrong tess here?
}
// usage:
// to expand a 5x5 patch to 21x21 vertices (4x4 tesselation), one might use this call:
// Q3PatchSubdivideFloat(3, sizeof(float[3]), outvertices, 5, 5, sizeof(float[3]), patchvertices, 4, 4);
void Q3PatchTesselateFloat(int numcomponents, int outputstride, float *outputvertices, int patchwidth, int patchheight, int inputstride, float *patchvertices, int tesselationwidth, int tesselationheight)
{
int k, l, x, y, component, outputwidth = Q3PatchDimForTess(patchwidth, tesselationwidth);
float px, py, *v, a, b, c, *cp[3][3], temp[3][64];
int xmax = max(1, 2*tesselationwidth);
int ymax = max(1, 2*tesselationheight);
// iterate over the individual 3x3 quadratic spline surfaces one at a time
// expanding them to fill the output array (with some overlap to ensure
// the edges are filled)
for (k = 0;k < patchheight-1;k += 2)
{
for (l = 0;l < patchwidth-1;l += 2)
{
// set up control point pointers for quicker lookup later
for (y = 0;y < 3;y++)
for (x = 0;x < 3;x++)
cp[y][x] = (float *)((unsigned char *)patchvertices + ((k+y)*patchwidth+(l+x)) * inputstride);
// for each row...
for (y = 0;y <= ymax;y++)
{
// calculate control points for this row by collapsing the 3
// rows of control points to one row using py
py = (float)y / (float)ymax;
// calculate quadratic spline weights for py
a = ((1.0f - py) * (1.0f - py));
b = ((1.0f - py) * (2.0f * py));
c = (( py) * ( py));
for (component = 0;component < numcomponents;component++)
{
temp[0][component] = cp[0][0][component] * a + cp[1][0][component] * b + cp[2][0][component] * c;
temp[1][component] = cp[0][1][component] * a + cp[1][1][component] * b + cp[2][1][component] * c;
temp[2][component] = cp[0][2][component] * a + cp[1][2][component] * b + cp[2][2][component] * c;
}
// fetch a pointer to the beginning of the output vertex row
v = (float *)((unsigned char *)outputvertices + ((k * ymax / 2 + y) * outputwidth + l * xmax / 2) * outputstride);
// for each column of the row...
for (x = 0;x <= xmax;x++)
{
// calculate point based on the row control points
px = (float)x / (float)xmax;
// calculate quadratic spline weights for px
// (could be precalculated)
a = ((1.0f - px) * (1.0f - px));
b = ((1.0f - px) * (2.0f * px));
c = (( px) * ( px));
for (component = 0;component < numcomponents;component++)
v[component] = temp[0][component] * a + temp[1][component] * b + temp[2][component] * c;
// advance to next output vertex using outputstride
// (the next vertex may not be directly following this
// one, as this may be part of a larger structure)
v = (float *)((unsigned char *)v + outputstride);
}
}
}
}
#if 0
// enable this if you want results printed out
printf("vertices[%i][%i] =\n{\n", (patchheight-1)*tesselationheight+1, (patchwidth-1)*tesselationwidth+1);
for (y = 0;y < (patchheight-1)*tesselationheight+1;y++)
{
for (x = 0;x < (patchwidth-1)*tesselationwidth+1;x++)
{
printf("(");
for (component = 0;component < numcomponents;component++)
printf("%f ", outputvertices[(y*((patchwidth-1)*tesselationwidth+1)+x)*numcomponents+component]);
printf(") ");
}
printf("\n");
}
printf("}\n");
#endif
}
static int Q3PatchTesselation(float largestsquared3xcurvearea, float tolerance)
{
float f;
// f is actually a squared 2x curve area... so the formula had to be adjusted to give roughly the same subdivisions
f = pow(largestsquared3xcurvearea / 64.0f, 0.25f) / tolerance;
//if(f < 0.25) // VERY flat patches
if(f < 0.0001) // TOTALLY flat patches
return 0;
else if(f < 2)
return 1;
else
return (int) floor(log(f) / log(2.0f)) + 1;
// this is always at least 2
// maps [0.25..0.5[ to -1 (actually, 1 is returned)
// maps [0.5..1[ to 0 (actually, 1 is returned)
// maps [1..2[ to 1
// maps [2..4[ to 2
// maps [4..8[ to 4
}
static float Squared3xCurveArea(const float *a, const float *control, const float *b, int components)
{
#if 0
// mimicking the old behaviour with the new code...
float deviation;
float quartercurvearea = 0;
int c;
for (c = 0;c < components;c++)
{
deviation = control[c] * 0.5f - a[c] * 0.25f - b[c] * 0.25f;
quartercurvearea += deviation*deviation;
}
// But as the new code now works on the squared 2x curve area, let's scale the value
return quartercurvearea * quartercurvearea * 64.0;
#else
// ideally, we'd like the area between the spline a->control->b and the line a->b.
// but as this is hard to calculate, let's calculate an upper bound of it:
// the area of the triangle a->control->b->a.
//
// one can prove that the area of a quadratic spline = 2/3 * the area of
// the triangle of its control points!
// to do it, first prove it for the spline through (0,0), (1,1), (2,0)
// (which is a parabola) and then note that moving the control point
// left/right is just shearing and keeps the area of both the spline and
// the triangle invariant.
//
// why are we going for the spline area anyway?
// we know that:
//
// the area between the spline and the line a->b is a measure of the
// error of approximation of the spline by the line.
//
// also, on circle-like or parabola-like curves, you easily get that the
// double amount of line approximation segments reduces the error to its quarter
// (also, easy to prove for splines by doing it for one specific one, and using
// affine transforms to get all other splines)
//
// so...
//
// let's calculate the area! but we have to avoid the cross product, as
// components is not necessarily 3
//
// the area of a triangle spanned by vectors a and b is
//
// 0.5 * |a| |b| sin gamma
//
// now, cos gamma is
//
// a.b / (|a| |b|)
//
// so the area is
//
// 0.5 * sqrt(|a|^2 |b|^2 - (a.b)^2)
int c;
float aa = 0, bb = 0, ab = 0;
for (c = 0;c < components;c++)
{
float xa = a[c] - control[c];
float xb = b[c] - control[c];
aa += xa * xa;
ab += xa * xb;
bb += xb * xb;
}
// area is 0.5 * sqrt(aa*bb - ab*ab)
// 2x TRIANGLE area is sqrt(aa*bb - ab*ab)
// 3x CURVE area is sqrt(aa*bb - ab*ab)
return aa * bb - ab * ab;
#endif
}
// returns how much tesselation of each segment is needed to remain under tolerance
int Q3PatchTesselationOnX(int patchwidth, int patchheight, int components, const float *in, float tolerance)
{
int x, y;
const float *patch;
float squared3xcurvearea, largestsquared3xcurvearea;
largestsquared3xcurvearea = 0;
for (y = 0;y < patchheight;y++)
{
for (x = 0;x < patchwidth-1;x += 2)
{
patch = in + ((y * patchwidth) + x) * components;
squared3xcurvearea = Squared3xCurveArea(&patch[0], &patch[components], &patch[2*components], components);
if (largestsquared3xcurvearea < squared3xcurvearea)
largestsquared3xcurvearea = squared3xcurvearea;
}
}
return Q3PatchTesselation(largestsquared3xcurvearea, tolerance);
}
// returns how much tesselation of each segment is needed to remain under tolerance
int Q3PatchTesselationOnY(int patchwidth, int patchheight, int components, const float *in, float tolerance)
{
int x, y;
const float *patch;
float squared3xcurvearea, largestsquared3xcurvearea;
largestsquared3xcurvearea = 0;
for (y = 0;y < patchheight-1;y += 2)
{
for (x = 0;x < patchwidth;x++)
{
patch = in + ((y * patchwidth) + x) * components;
squared3xcurvearea = Squared3xCurveArea(&patch[0], &patch[patchwidth*components], &patch[2*patchwidth*components], components);
if (largestsquared3xcurvearea < squared3xcurvearea)
largestsquared3xcurvearea = squared3xcurvearea;
}
}
return Q3PatchTesselation(largestsquared3xcurvearea, tolerance);
}
// Find an equal vertex in array. Check only vertices with odd X and Y
static int FindEqualOddVertexInArray(int numcomponents, float *vertex, float *vertices, int width, int height)
{
int x, y, j;
for (y=0; y<height; y+=2)
{
for (x=0; x<width; x+=2)
{
qboolean found = true;
for (j=0; j<numcomponents; j++)
if (fabs(*(vertex+j) - *(vertices+j)) > 0.05)
// div0: this is notably smaller than the smallest radiant grid
// but large enough so we don't need to get scared of roundoff
// errors
{
found = false;
break;
}
if(found)
return y*width+x;
vertices += numcomponents*2;
}
vertices += numcomponents*(width-1);
}
return -1;
}
#define SIDE_INVALID -1
#define SIDE_X 0
#define SIDE_Y 1
static int GetSide(int p1, int p2, int width, int height, int *pointdist)
{
int x1 = p1 % width, y1 = p1 / width;
int x2 = p2 % width, y2 = p2 / width;
if (p1 < 0 || p2 < 0)
return SIDE_INVALID;
if (x1 == x2)
{
if (y1 != y2)
{
*pointdist = abs(y2 - y1);
return SIDE_Y;
}
else
return SIDE_INVALID;
}
else if (y1 == y2)
{
*pointdist = abs(x2 - x1);
return SIDE_X;
}
else
return SIDE_INVALID;
}
// Increase tesselation of one of two touching patches to make a seamless connection between them
// Returns 0 in case if patches were not modified, otherwise 1
int Q3PatchAdjustTesselation(int numcomponents, patchinfo_t *patch1, float *patchvertices1, patchinfo_t *patch2, float *patchvertices2)
{
// what we are doing here is:
// we take for each corner of one patch
// and check if the other patch contains that corner
// once we have a pair of such matches
struct {int id1,id2;} commonverts[8];
int i, j, k, side1, side2, *tess1, *tess2;
int dist1 = 0, dist2 = 0;
qboolean modified = false;
// Potential paired vertices (corners of the first patch)
commonverts[0].id1 = 0;
commonverts[1].id1 = patch1->xsize-1;
commonverts[2].id1 = patch1->xsize*(patch1->ysize-1);
commonverts[3].id1 = patch1->xsize*patch1->ysize-1;
for (i=0;i<4;++i)
commonverts[i].id2 = FindEqualOddVertexInArray(numcomponents, patchvertices1+numcomponents*commonverts[i].id1, patchvertices2, patch2->xsize, patch2->ysize);
// Corners of the second patch
commonverts[4].id2 = 0;
commonverts[5].id2 = patch2->xsize-1;
commonverts[6].id2 = patch2->xsize*(patch2->ysize-1);
commonverts[7].id2 = patch2->xsize*patch2->ysize-1;
for (i=4;i<8;++i)
commonverts[i].id1 = FindEqualOddVertexInArray(numcomponents, patchvertices2+numcomponents*commonverts[i].id2, patchvertices1, patch1->xsize, patch1->ysize);
for (i=0;i<8;++i)
for (j=i+1;j<8;++j)
{
side1 = GetSide(commonverts[i].id1,commonverts[j].id1,patch1->xsize,patch1->ysize,&dist1);
side2 = GetSide(commonverts[i].id2,commonverts[j].id2,patch2->xsize,patch2->ysize,&dist2);
if (side1 == SIDE_INVALID || side2 == SIDE_INVALID)
continue;
if(dist1 != dist2)
{
// no patch welding if the resolutions mismatch
continue;
}
// Update every lod level
for (k=0;k<PATCH_LODS_NUM;++k)
{
tess1 = side1 == SIDE_X ? &patch1->lods[k].xtess : &patch1->lods[k].ytess;
tess2 = side2 == SIDE_X ? &patch2->lods[k].xtess : &patch2->lods[k].ytess;
if (*tess1 != *tess2)
{
if (*tess1 < *tess2)
*tess1 = *tess2;
else
*tess2 = *tess1;
modified = true;
}
}
}
return modified;
}
#undef SIDE_INVALID
#undef SIDE_X
#undef SIDE_Y
// calculates elements for a grid of vertices
// (such as those produced by Q3PatchTesselate)
// (note: width and height are the actual vertex size, this produces
// (width-1)*(height-1)*2 triangles, 3 elements each)
void Q3PatchTriangleElements(int *elements, int width, int height, int firstvertex)
{
int x, y, row0, row1;
for (y = 0;y < height - 1;y++)
{
if(y % 2)
{
// swap the triangle order in odd rows as optimization for collision stride
row0 = firstvertex + (y + 0) * width + width - 2;
row1 = firstvertex + (y + 1) * width + width - 2;
for (x = 0;x < width - 1;x++)
{
*elements++ = row1;
*elements++ = row1 + 1;
*elements++ = row0 + 1;
*elements++ = row0;
*elements++ = row1;
*elements++ = row0 + 1;
row0--;
row1--;
}
}
else
{
row0 = firstvertex + (y + 0) * width;
row1 = firstvertex + (y + 1) * width;
for (x = 0;x < width - 1;x++)
{
*elements++ = row0;
*elements++ = row1;
*elements++ = row0 + 1;
*elements++ = row1;
*elements++ = row1 + 1;
*elements++ = row0 + 1;
row0++;
row1++;
}
}
}
}
|