1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
|
#pragma once
#include "Vector3.h"
#include "Plane3.h"
#include "Matrix4.h"
#include "AABB.h"
class Ray
{
public:
Vector3 origin;
Vector3 direction;
Ray()
{}
Ray(const Vector3& origin_, const Vector3& direction_) :
origin(origin_),
direction(direction_)
{}
static Ray createForPoints(const Vector3& origin, const Vector3& p2)
{
return Ray(origin, (p2 - origin).getNormalised());
}
/* greebo: this calculates the intersection point of two rays
* (copied from Radiant's Intersection code, there may be better ways)
*/
Vector3 getIntersection(Ray& other)
{
Vector3 intersection = origin - other.origin;
Vector3::ElementType dot = direction.dot(other.direction);
Vector3::ElementType d = direction.dot(intersection);
Vector3::ElementType e = other.direction.dot(intersection);
Vector3::ElementType D = 1 - dot*dot; // always >= 0
if (D < 0.000001f)
{
// the lines are almost parallel
return other.origin + other.direction*e;
}
else
{
return other.origin + other.direction*((e - dot*d) / D);
}
}
void transform(const Matrix4& matrix)
{
origin = matrix.transformPoint(origin);
direction = matrix.transformDirection(direction);
}
// closest-point-on-line
Vector3::ElementType getSquaredDistance(const Vector3& point) const
{
return (point - (origin + direction * (point - origin).dot(direction))).getLengthSquared();
}
Vector3::ElementType getDistance(const Plane3& plane) const
{
return -(plane.normal().dot(origin) - plane.dist()) / direction.dot(plane.normal());
}
/**
* Intersect this ray with the given bounding box. If no intersection occurs, this method
* returns FALSE, in case of intersection (even if the ray starts within the AABB volume)
* the method returns TRUE. The coord parameter will contain the intersection point in the
* latter case (which will be the Ray's origin if it starts within the AABB to test).
* Algorithm taken and adjusted from http://tog.acm.org/resources/GraphicsGems/gems/RayBox.c
*/
bool intersectAABB(const AABB& aabb, Vector3& intersection) const
{
if (!aabb.isValid()) return false;
#define QUADRANT_RIGHT 0
#define QUADRANT_LEFT 1
#define QUADRANT_MIDDLE 2
bool inside = true;
char quadrant[3];
Vector3::ElementType candidatePlane[3];
Vector3 aabbMin = aabb.getOrigin() - aabb.getExtents();
Vector3 aabbMax = aabb.getOrigin() + aabb.getExtents();
// Find candidate planes; this loop can be avoided if
// rays cast all from the eye(assume perpsective view)
for (int i = 0; i < 3; i++)
{
if (origin[i] < aabbMin[i])
{
quadrant[i] = QUADRANT_LEFT;
candidatePlane[i] = aabbMin[i];
inside = false;
}
else if (origin[i] > aabbMax[i])
{
quadrant[i] = QUADRANT_RIGHT;
candidatePlane[i] = aabbMax[i];
inside = false;
}
else
{
quadrant[i] = QUADRANT_MIDDLE;
}
}
// Ray origin inside bounding box
if (inside)
{
intersection = origin;
return true;
}
Vector3::ElementType maxT[3];
// Calculate T distances to candidate planes
for (int i = 0; i < 3; i++)
{
if (quadrant[i] != QUADRANT_MIDDLE && direction[i] != 0)
{
maxT[i] = (candidatePlane[i] - origin[i]) / direction[i];
}
else
{
maxT[i] = -1;
}
}
// Get largest of the maxT's for final choice of intersection
int whichPlane = 0;
for (int i = 1; i < 3; i++)
{
if (maxT[whichPlane] < maxT[i])
{
whichPlane = i;
}
}
// Check final candidate actually inside box
if (maxT[whichPlane] < 0) return false;
for (int i = 0; i < 3; i++)
{
if (whichPlane != i)
{
intersection[i] = origin[i] + maxT[whichPlane] * direction[i];
if (intersection[i] < aabbMin[i] || intersection[i] > aabbMax[i])
{
return false;
}
}
else
{
intersection[i] = candidatePlane[i];
}
}
return true; // ray hits box
}
// Return type for intersectTriangle()
enum eTriangleIntersectionType
{
NO_INTERSECTION,
POINT,
COPLANAR,
};
/**
* Intersect this ray with the given triangle as represented by the 3 given points and
* returns the found intersection type. Only in the case of eTriangleIntersectionType::POINT
* the intersection argument will be filled with suitable coordinates, otherwise it's undefined.
*
* Note: degenerate triangles will return NO_INTERSECTION.
* Taken and adjusted from http://geomalgorithms.com/a06-_intersect-2.html
*/
template<typename ElementType>
eTriangleIntersectionType intersectTriangle(const BasicVector3<ElementType>& p1, const BasicVector3<ElementType>& p2,
const BasicVector3<ElementType>& p3, BasicVector3<ElementType>& intersection) const
{
// get triangle edge vectors and plane normal
auto u = p2 - p1;
auto v = p3 - p1;
auto n = u.cross(v);
if (n.getLengthSquared() == 0)
{
return NO_INTERSECTION; // triangle is degenerate
}
auto dir = direction; // ray direction vector
auto w0 = origin - p1;
auto a = -n.dot(w0);
auto b = n.dot(dir);
if (fabs(b) < 0.00001)
{
// ray is parallel to triangle plane
if (a == 0)
{
return COPLANAR; // ray lies in triangle plane
}
else
{
return NO_INTERSECTION; // ray disjoint from plane
}
}
// get intersect point of ray with triangle plane
auto r = a / b;
if (r < 0.0) // ray goes away from triangle
{
return NO_INTERSECTION; // => no intersect
}
// for a segment, also test if (r > 1.0) => no intersect
intersection = origin + direction * r; // // intersect point of ray and plane
// is I inside T?
auto uu = u.dot(u);
auto uv = u.dot(v);
auto vv = v.dot(v);
auto w = intersection - p1;
auto wu = w.dot(u);
auto wv = w.dot(v);
auto D = uv * uv - uu * vv;
// get and test parametric coords
auto s = (uv * wv - vv * wu) / D;
if (s < 0.0 || s > 1.0)
{
return NO_INTERSECTION; // intersection is outside T
}
auto t = (uv * wu - uu * wv) / D;
if (t < 0.0 || (s + t) > 1.0)
{
return NO_INTERSECTION; // intersection is outside T
}
return POINT; // I is in T
}
/**
* Tries to find the intersection point of this Ray with the sphere given by its
* origin and radius. The intersection will be written to the given Vector3.
* Returns false if the Ray misses the sphere, in which case the intersection will
* be returned as the Ray's nearest point to the sphere.
* Taken from GtkRadiant's sphere_intersect_ray() function.
*/
bool intersectSphere(const Vector3& sphereOrigin, double radius, Vector3& intersection) const
{
intersection = sphereOrigin - origin;
const double a = intersection.dot(direction);
const double d = radius * radius - (intersection.dot(intersection) - a * a);
if (d > 0)
{
intersection = origin + direction * (a - sqrt(d));
return true;
}
else
{
intersection = origin + direction*a;
return false;
}
}
};
|