File: Vector2.h

package info (click to toggle)
darkradiant 3.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 41,080 kB
  • sloc: cpp: 264,743; ansic: 10,659; python: 1,852; xml: 1,650; sh: 92; makefile: 21
file content (372 lines) | stat: -rw-r--r-- 10,038 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
#pragma once

/* greebo: This file contains the templated class definition of the two-component vector
 *
 * BasicVector2: A vector with two components of type <Element>
 *
 * The BasicVector2 is equipped with the most important operators like *, *= and so on.
 *
 * Note: The most commonly used Vector2 is a BasicVector2<double>, this is also defined in this file
 *
 * Note: that the multiplication of a Vector2 with another one (Vector2*Vector2) does NOT
 * result in an inner product but in a component-wise scaling. Use the .dot() method to
 * execute an inner product of two vectors.
 */

#include "lrint.h"
#include <sstream>
#include <cmath>
#include <fmt/format.h>

template <typename Element>
class BasicVector2 {

	// This is where the components of the vector are stored.
	Element _v[2];

public:
	// Public typedef to read the type of our elements
	typedef Element ElementType;

	// Constructor with no arguments
  	BasicVector2() {
  		_v[0] = 0;
  		_v[1] = 0;
  	}

  	// Templated copy constructor
	template<typename OtherElement>
	BasicVector2(const BasicVector2<OtherElement>& other) {
		x() = static_cast<Element>(other.x());
		y() = static_cast<Element>(other.y());
	}

  	/** Construct a BasicVector2 with the 2 provided components.
     */
    BasicVector2(const Element& x_, const Element& y_) {
        _v[0] = x_;
        _v[1] = y_;
    }

	/** Construct a BasicVector2 from a 2-element array. The array must be
	 * valid as no bounds checking is done.
	 */
	BasicVector2(const Element* array) {
		for (int i = 0; i < 2; ++i)
			_v[i] = array[i];
	}

    /** Construct a BasicVector2 by parsing the supplied string. The string
     * must contain 2 numeric values separated by whitespace.
     *
     * @param str
     * The string from which component values are extracted.
     */

    BasicVector2(const std::string& str) {
    	// Initialise the vector with 0, in case the string parse fails
    	_v[0] = _v[1] = 0;
    	// Use a stringstream to parse the string
        std::stringstream strm(str);
        strm << std::skipws;
        strm >> x();
        strm >> y();
    }

    /** Construct a BasicVector2 out of 2 elements of type OtherType
     */
    template <typename OtherType>
  	BasicVector2(OtherType x, OtherType y) {
    	_v[0] = static_cast<Element>(x);
    	_v[1] = static_cast<Element>(y);
    }

    // Return NON-CONSTANT references to the vector components
    Element& x() {
    	return _v[0];
    }
    Element& y() {
    	return _v[1];
  	}

  	// Return CONSTANT references to the vector components
  	const Element& x() const {
    	return _v[0];
  	}
  	const Element& y() const {
    	return _v[1];
  	}

	/**
	 * Operator cast to Element*. Also provides operator[] due to the inbuilt
	 * operation on a pointer type.
	 */
	operator Element* () {
		return _v;
	}

	/**
	 * Operator cast to const Element*.
	 */
	operator const Element* () const {
		return _v;
	}

  	Element* data() {
    	return _v;
  	}
  	const Element* data() const {
    	return _v;
  	}

  	/** Compare this BasicVector2 against another for equality.
	 */
	bool operator== (const BasicVector2& other) const {
		return (other.x() == x() && other.y() == y());
	}

	/** Compare this BasicVector2 against another for inequality.
	 */
	bool operator!= (const BasicVector2& other) const {
		return !(*this == other);
	}

	/*	Define the negation operator -
	 *  All the vector's components are negated
	 */
	BasicVector2<Element> operator- () const {
		return BasicVector2<Element>(
			-_v[0],
			-_v[1]
		);
	}

	/*	Define the addition operators + and += with any other BasicVector2 of type OtherElement
	 *  The vectors are added to each other element-wise
	 */
	template<typename OtherElement>
	BasicVector2<Element> operator+ (const BasicVector2<OtherElement>& other) const {
		return BasicVector2<Element>(
			_v[0] + static_cast<Element>(other.x()),
			_v[1] + static_cast<Element>(other.y())
		);
	}

	template<typename OtherElement>
	BasicVector2<Element>& operator+= (const BasicVector2<OtherElement>& other) {
		_v[0] += static_cast<Element>(other.x());
		_v[1] += static_cast<Element>(other.y());
		return *this;
	}

	/*	Define the substraction operators - and -= with any other BasicVector2 of type OtherElement
	 *  The vectors are substracted from each other element-wise
	 */
	template<typename OtherElement>
	BasicVector2<Element> operator- (const BasicVector2<OtherElement>& other) const {
		return BasicVector2<Element>(
			_v[0] - static_cast<Element>(other.x()),
			_v[1] - static_cast<Element>(other.y())
		);
	}

	template<typename OtherElement>
	BasicVector2<Element>& operator-= (const BasicVector2<OtherElement>& other) {
		_v[0] -= static_cast<Element>(other.x());
		_v[1] -= static_cast<Element>(other.y());
		return *this;
	}

	/*	Define the multiplication operators * and *= with another Vector2 of type OtherElement
	 *
	 *  The vectors are multiplied element-wise
	 *
	 *  greebo: This is mathematically kind of senseless, as this is a mixture of
	 *  a dot product and scalar multiplication. It can be used to scale each
	 *  vector component by a different factor, so maybe this comes in handy.
	 */
	template<typename OtherElement>
	BasicVector2<Element> operator* (const BasicVector2<OtherElement>& other) const {
		return BasicVector2<Element>(
			_v[0] * static_cast<Element>(other.x()),
			_v[1] * static_cast<Element>(other.y())
		);
	}

	template<typename OtherElement>
	BasicVector2<Element>& operator*= (const BasicVector2<OtherElement>& other) {
		_v[0] *= static_cast<Element>(other.x());
		_v[1] *= static_cast<Element>(other.y());
		return *this;
	}


	/*	Define the multiplications * and *= with a scalar
	 */
	template<typename OtherElement>
	BasicVector2<Element> operator* (const OtherElement& other) const {
		Element factor = static_cast<Element>(other);
		return BasicVector2<Element>(
			_v[0] * factor,
			_v[1] * factor
		);
	}

	template<typename OtherElement>
	BasicVector2<Element>& operator*= (const OtherElement& other) {
		Element factor = static_cast<Element>(other);
		_v[0] *= factor;
		_v[1] *= factor;
		return *this;
	}

	/*	Define the division operators / and /= with another Vector2 of type OtherElement
	 *  The vectors are divided element-wise
	 */
	template<typename OtherElement>
	BasicVector2<Element> operator/ (const BasicVector2<OtherElement>& other) const {
		return BasicVector2<Element>(
			_v[0] / static_cast<Element>(other.x()),
			_v[1] / static_cast<Element>(other.y())
		);
	}

	template<typename OtherElement>
	BasicVector2<Element>& operator/= (const BasicVector2<OtherElement>& other) {
		_v[0] /= static_cast<Element>(other.x());
		_v[1] /= static_cast<Element>(other.y());
		return *this;
	}

	/*	Define the scalar divisions / and /=
	 */
	template<typename OtherElement>
	BasicVector2<Element> operator/ (const OtherElement& other) const {
		Element divisor = static_cast<Element>(other);
		return BasicVector2<Element>(
			_v[0] / divisor,
			_v[1] / divisor
		);
	}

	template<typename OtherElement>
	BasicVector2<Element>& operator/= (const OtherElement& other) {
		Element divisor = static_cast<Element>(other);
		_v[0] /= divisor;
		_v[1] /= divisor;
		return *this;
	}

	/** Cast to std::string
	 */
	operator std::string() const
	{
		return fmt::format("{0:f} {1:f}", _v[0], _v[1]);
	}

	/** Return the length of this vector.
     *
     * @returns
     * The Pythagorean length of this vector.
     */
	double getLength() const {
		double lenSquared = _v[0]*_v[0] +
							_v[1]*_v[1];
		return sqrt(lenSquared);
	}

	/** Return the squared length of this vector.
     */
	double getLengthSquared() const {
		double lenSquared = _v[0]*_v[0] +
							_v[1]*_v[1];
		return lenSquared;
	}

    /**
     * \brief Normalise this vector in-place by scaling by the inverse of its
     * size.

     * \return The length of the vector before normalisation.
     */
    double normalise()
    {
        auto length = getLength();

        _v[0] /= length;
        _v[1] /= length;

        return length;
    }

    /// Return the result of normalising this vector
    BasicVector2<Element> getNormalised() const
    {
        auto length = getLength();
        return { _v[0] / length, _v[1] / length };
    }

	/* Scalar product this vector with another Vector2,
	 * returning the projection of <self> onto <other>
	 *
	 * @param other
	 * The Vector2 to dot-product with this Vector2.
	 *
	 * @returns
	 * The inner product (a scalar): a[0]*b[0] + a[1]*b[1]
	 */
	template<typename OtherT>
	Element dot(const BasicVector2<OtherT>& other) const {
		return 	Element(_v[0] * other.x() +
						_v[1] * other.y());
	}

	/* Cross-product this vector with another Vector2, returning the scalar result
	 *
	 * @param other
	 * The Vector2 to cross-product with this Vector2.
	 *
	 * @returns
	 * The cross-product of the two vectors, a scalar: a[0]*b[1] - b[0]*a[1]
	 */
	template<typename OtherT>
	Element crossProduct(const BasicVector2<OtherT>& other) const {
		return Element(_v[0] * other.y() - _v[1] * other.x());
	}

	// Returns the mid-point of this vector and the other one
	BasicVector2<Element> mid(const BasicVector2<Element>& other) const
	{
		return (*this + other) * 0.5f;
	}
};

// ==========================================================================================

/// A 2-element vector stored in double-precision floating-point.
using Vector2 = BasicVector2<double>;

// A 2-element vector stored in single-precision floating point format
using Vector2f = BasicVector2<float>;

/// 2-element vector of signed integer
using Vector2i = BasicVector2<int>;

// Stream insertion operator for a BasicVector2
template<typename T>
std::ostream& operator<<(std::ostream& st, BasicVector2<T> vec) {
	st << "<" << vec.x() << ", " << vec.y() << ">";
	return st;
}

namespace math
{

template<typename T>
inline bool isNear(const BasicVector2<T>& v1, const BasicVector2<T>& v2, double epsilon)
{
    BasicVector2<T> diff = v1 - v2;
    return std::abs(diff.x()) < epsilon && std::abs(diff.y()) < epsilon;
}

}