1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
|
#pragma once
/* greebo: This file contains the templated class definition of the three-component vector
*
* BasicVector3: A vector with three components of type <T>
*
* The BasicVector3 is equipped with the most important operators like *, *= and so on.
*
* Note: The most commonly used Vector3 is a BasicVector3<float>, this is also defined in this file
*
* Note: that the multiplication of a Vector3 with another one (Vector3*Vector3) does NOT
* result in an inner product but in a component-wise scaling. Use the .dot() method to
* execute an inner product of two vectors.
*/
#include <cmath>
#include <istream>
#include <ostream>
#include <sstream>
#include <float.h>
#include "math/pi.h"
#include "lrint.h"
#include "FloatTools.h"
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127)
#endif
#undef Success // get rid of fuckwit X.h macro
#include <Eigen/Dense>
/// A 3-element vector of type T
template<typename T>
class BasicVector3
{
public:
/// Eigen vector type to store a BasicVector3's data
using Eigen_T = Eigen::Matrix<T, 3, 1>;
// Public typedef to read the type of our elements
using ElementType = T;
private:
// Eigen vector for storage and calculations
Eigen_T _v;
public:
/// Initialise Vector with all zeroes.
BasicVector3(): _v(0, 0, 0)
{}
/// Construct a BasicVector3 with the 3 provided components.
BasicVector3(T x, T y, T z): _v(x, y, z)
{}
/// Construct directly from the underlying Eigen vector type
BasicVector3(const Eigen_T& vec): _v(vec)
{}
/**
* \brief Construct a BasicVector3 from a 3-element array.
*
* The array must be valid as no bounds checking is done.
*/
BasicVector3(const T* array): _v(array[0], array[1], array[2])
{}
/// Construct from another BasicVector3 with a compatible element type
template<typename U> BasicVector3(const BasicVector3<U>& other)
: BasicVector3(static_cast<T>(other.x()), static_cast<T>(other.y()), static_cast<T>(other.z()))
{
}
/**
* Named constructor, returning a vector on the unit sphere for the given spherical coordinates.
*/
static BasicVector3<T> createForSpherical(T theta, T phi)
{
return BasicVector3<T>(
cos(theta) * cos(phi),
sin(theta) * cos(phi),
sin(phi)
);
}
/// Read-only access to the internal Eigen vector
const Eigen_T& eigen() const { return _v; }
/// Mutable access to the internal Eigen vector
Eigen_T& eigen() { return _v; }
/// Set all 3 components to the provided values.
void set(T x, T y, T z)
{
_v = Eigen_T(x, y, z);
}
// Return mutable references to the vector components
T& x() { return _v[0]; }
T& y() { return _v[1]; }
T& z() { return _v[2]; }
// Return vector component values
T x() const { return _v[0]; }
T y() const { return _v[1]; }
T z() const { return _v[2]; }
/// Compare this BasicVector3 against another for equality.
bool operator== (const BasicVector3& other) const {
return (other.x() == x()
&& other.y() == y()
&& other.z() == z());
}
/// Compare this BasicVector3 against another for inequality.
bool operator!= (const BasicVector3& other) const {
return !(*this == other);
}
/// Return the componentwise negation of this vector
BasicVector3<T> operator- () const
{
return BasicVector3<T>(-_v);
}
/// Return the Pythagorean length of this vector.
double getLength() const
{
return _v.norm();
}
/// Return the squared length of this vector.
T getLengthSquared() const
{
return _v.squaredNorm();
}
/**
* \brief Normalise this vector in-place by scaling by the inverse of its
* size.
* \return The length of the vector before normalisation.
*/
double normalise()
{
double length = getLength();
_v.normalize();
return length;
}
/// Return the result of normalising this vector
BasicVector3<T> getNormalised() const
{
return BasicVector3<T>(_v.normalized());
}
/// Return dot product of this and another vector
T dot(const BasicVector3<T>& other) const
{
return _v.dot(other._v);
}
/// Return the angle between <self> and <other>
T angle(const BasicVector3<T>& other) const
{
// Get dot product of normalised vectors, ensuring it lies between -1
// and 1.
T dot = std::clamp(
getNormalised().dot(other.getNormalised()), -1.0, 1.0
);
// Angle is the arccos of the dot product
return acos(dot);
}
/// Return the cross product of this and another vector
BasicVector3<T> cross(const BasicVector3<T>& other) const
{
return BasicVector3<T>(_v.cross(other._v));
}
/** Implicit cast to C-style array. This allows a Vector3 to be
* passed directly to GL functions that expect an array (e.g.
* glFloat3dv()). These functions implicitly provide operator[]
* as well, since the C-style array provides this function.
*/
operator const T* () const {
return _v.data();
}
operator T* () {
return _v.data();
}
/// Returns a "snapped" copy of this Vector, each component rounded to the given precision.
BasicVector3<T> getSnapped(T snap) const
{
return BasicVector3<T>(float_snapped(x(), snap),
float_snapped(y(), snap),
float_snapped(z(), snap));
}
/// Snaps this vector to the given precision in place.
void snap(T snap)
{
*this = getSnapped(snap);
}
};
/// Multiply vector components with a scalar and return the result
template <
typename T, typename S,
typename = typename std::enable_if<std::is_arithmetic<S>::value, S>::type
>
BasicVector3<T> operator*(const BasicVector3<T>& v, S s)
{
return BasicVector3<T>(v.eigen() * s);
}
/// Multiply vector components with a scalar and return the result
template <
typename T, typename S,
typename = typename std::enable_if<std::is_arithmetic<S>::value, S>::type
>
BasicVector3<T> operator*(S s, const BasicVector3<T>& v)
{
return v * s;
}
/// Multiply vector components with a scalar and modify in place
template <typename T, typename S>
BasicVector3<T>& operator*=(BasicVector3<T>& v, S s)
{
v.eigen() *= s;
return v;
}
/// Divide vector by a scalar and return result
template<typename T, typename S>
BasicVector3<T> operator/ (const BasicVector3<T>& v, S s)
{
return BasicVector3<T>(v.x() / s, v.y() / s, v.z() / s);
}
/// Divide vector by a scalar in place
template<typename T, typename S>
BasicVector3<T>& operator/= (BasicVector3<T>& v, S s)
{
v = v / s;
return v;
}
/// Divide a scalar by a vector and return result
template <
typename S, typename T,
typename = typename std::enable_if<std::is_arithmetic<S>::value, S>::type
>
BasicVector3<T> operator/(S s, const BasicVector3<T>& v)
{
return BasicVector3<T>(s / v.x(), s / v.y(), s / v.z());
}
/// Divide a vector componentwise with another vector and return result
template <typename T>
BasicVector3<T> operator/(const BasicVector3<T>& v1, const BasicVector3<T>& v2)
{
return BasicVector3<T>(v1.x() / v2.x(), v1.y() / v2.y(), v1.z() / v2.z());
}
/// Divide a vector componentwise with another vector, in place
template <typename T>
BasicVector3<T>& operator/=(BasicVector3<T>& v1, const BasicVector3<T>& v2)
{
v1 = v1 / v2;
return v1;
}
/// Componentwise addition of two vectors
template <typename T>
BasicVector3<T> operator+(const BasicVector3<T>& v1, const BasicVector3<T>& v2)
{
return BasicVector3<T>(v1.eigen() + v2.eigen());
}
/// Componentwise vector addition in place
template <typename T>
BasicVector3<T>& operator+=(BasicVector3<T>& v1, const BasicVector3<T>& v2)
{
v1.eigen() += v2.eigen();
return v1;
}
/// Componentwise subtraction of two vectors
template <typename T>
BasicVector3<T> operator-(const BasicVector3<T>& v1, const BasicVector3<T>& v2)
{
return BasicVector3<T>(v1.eigen() - v2.eigen());
}
/// Componentwise vector subtraction in place
template<typename T>
BasicVector3<T>& operator-= (BasicVector3<T>& v1, const BasicVector3<T>& v2)
{
v1.eigen() -= v2.eigen();
return v1;
}
/// Componentwise (Hadamard) product of two vectors
template <typename T>
BasicVector3<T> operator*(const BasicVector3<T>& v1, const BasicVector3<T>& v2)
{
return BasicVector3<T>(v1.x() * v2.x(), v1.y() * v2.y(), v1.z() * v2.z());
}
/// Componentwise (Hadamard) product of two vectors, in place
template<typename T>
BasicVector3<T>& operator*= (BasicVector3<T>& v1, const BasicVector3<T>& v2)
{
v1 = v1 * v2;
return v1;
}
/// Stream insertion for BasicVector3
template<typename T>
inline std::ostream& operator<<(std::ostream& st, BasicVector3<T> vec)
{
return st << vec.x() << " " << vec.y() << " " << vec.z();
}
/// Stream extraction for BasicVector3
template<typename T>
inline std::istream& operator>>(std::istream& st, BasicVector3<T>& vec)
{
return st >> std::skipws >> vec.x() >> vec.y() >> vec.z();
}
namespace math
{
/// Epsilon equality test for BasicVector3
template <typename T>
inline bool isNear(const BasicVector3<T>& v1, const BasicVector3<T>& v2, double epsilon)
{
BasicVector3<T> diff = v1 - v2;
return std::abs(diff.x()) < epsilon && std::abs(diff.y()) < epsilon
&& std::abs(diff.z()) < epsilon;
}
/// Test if two vectors are parallel (in similar or opposite directions)
template<typename T>
bool isParallel(const BasicVector3<T>& v1, const BasicVector3<T>& v2)
{
T angle = v1.angle(v2);
return float_equal_epsilon(angle, 0.0, 0.001)
|| float_equal_epsilon(angle, PI, 0.001);
}
/// Return the midpoint of two vectors
template<typename T>
BasicVector3<T> midPoint(const BasicVector3<T>& v1, const BasicVector3<T>& v2)
{
return (v1 + v2) * 0.5;
}
/// Return human readable debug string (pretty print)
template<typename T> std::string pp(const BasicVector3<T>& v)
{
std::stringstream ss;
ss << "[" << v.x() << ", " << v.y() << ", " << v.z() << "]";
return ss.str();
}
}
// ==========================================================================================
// A 3-element vector stored in double-precision floating-point.
typedef BasicVector3<double> Vector3;
// A 3-element vector (single-precision variant)
typedef BasicVector3<float> Vector3f;
// =============== Vector3 Constants ==================================================
const Vector3 g_vector3_identity(0, 0, 0);
const Vector3 g_vector3_axis_x(1, 0, 0);
const Vector3 g_vector3_axis_y(0, 1, 0);
const Vector3 g_vector3_axis_z(0, 0, 1);
const Vector3 g_vector3_axes[3] = { g_vector3_axis_x, g_vector3_axis_y, g_vector3_axis_z };
#ifdef _MSC_VER
#pragma warning(pop)
#endif
|