File: pivot.h

package info (click to toggle)
darkradiant 3.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 41,080 kB
  • sloc: cpp: 264,743; ansic: 10,659; python: 1,852; xml: 1,650; sh: 92; makefile: 21
file content (128 lines) | stat: -rw-r--r-- 5,172 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#pragma once

#include "ivolumetest.h"
#include "math/Matrix4.h"
#include "irenderable.h"

inline void billboard_viewplaneOriented(Matrix4& rotation,
                                        const Matrix4& world2screen)
{
    rotation = Matrix4::getIdentity();
    Vector3 x(world2screen.xCol3().getNormalised());
    Vector3 y(world2screen.yCol3().getNormalised());
    Vector3 z(world2screen.zCol3().getNormalised());

    Vector3 yCol{x.y(), y.y(), z.y()};
    Vector3 zCol{-x.z(), -y.z(), -z.z()};
    rotation.setXCol(yCol.cross(zCol).getNormalised());
    rotation.setYCol(zCol.cross(rotation.xCol3()));
}

inline void billboard_viewpointOriented(Matrix4& rotation, const Matrix4& world2screen)
{
  Matrix4 screen2world(world2screen.getFullInverse());

  rotation = Matrix4::getIdentity();
  rotation.setYCol(screen2world.yCol3().getNormalised());
  rotation.setZCol(-screen2world.zCol3().getNormalised());
  rotation.setXCol(rotation.yCol3().cross(rotation.zCol3()).getNormalised());
  rotation.setYCol(rotation.zCol3().cross(rotation.xCol3()));
}

/**
 * greebo: Returns a single matrix which transforms object coordinates to screen coordinates,
 * which is basically the same pipeline a vertex is sent through by openGL.
 * The 4 input matrices are just concatenated by multiplication, like this:
 * object2screen = device2screen * view2device * world2view * object2world
 */
inline Matrix4 constructObject2Screen(const Matrix4& object2world, const Matrix4& world2view, const Matrix4& view2device, const Matrix4& device2screen)
{
	return object2world.getPremultipliedBy(world2view).getPremultipliedBy(view2device).getPremultipliedBy(device2screen);
}

/**
 * greebo: Returns a matrix that transforming object coordinates to device coordinates [-1..+1].
 * The three input matrices are concatenated like this:
 * object2device = view2device * world2view * object2world
 */
inline Matrix4 constructObject2Device(const Matrix4& object2world, const Matrix4& world2view, const Matrix4& view2device)
{
	return object2world.getPremultipliedBy(world2view).getPremultipliedBy(view2device);
}

/**
 * Returns the full inverse of the object2device matrix, which transforms device coords
 * into object coordinates.
 */
inline Matrix4 constructDevice2Object(const Matrix4& object2world, const Matrix4& world2view, const Matrix4& view2device)
{
	return constructObject2Device(object2world, world2view, view2device).getFullInverse();
}

/**
 * greebo: The old code here was set up to calculate the scale out of the
 * pivot2screen (== object2screen) matrix and invert it like this:
 *
 //! S =  ( Inverse(Object2Screen *post ScaleOf(Object2Screen) ) *post Object2Screen
 *
 * Since the matrices are square and invertible, the above equation is equal to
 *
 * S = Inverse(Scaleof(Object2Screen)) *post Inverse(Object2Screen) *post Object2Screen
 *
 * the right two matrices cancel each other out to the identity transform, so all that remains is
 *
 * S = Inverse(ScaleOf(Object2Screen))
 *
 * The scale of the object2screen matrix can be extracted easily, and the inverse of a pure scale
 * matrix is basically inverting its diagonals, so the above can be equally constructed without
 * inverting the whole 4x4 matrix.
 **/
inline Matrix4 getInverseScale(const Matrix4& transform)
{
	return Matrix4::getScale(1.0 / transform.getScale());
}

// scale by (inverse) W
inline Matrix4 getPerspectiveScale(const Matrix4& pivot2screen)
{
	double tw = pivot2screen.tw();
	return Matrix4::getScale(Vector3(tw, tw, tw));
}

/**
 * greebo: Replacement for the above constructDevice2Manip. This produces a matrix
 * that is converting pivot space coordinates into normalised device coords.
 * The tz value of this matrix and its inverse can be used to convert mouse click coords
 * back into pivot space.
 */
inline Matrix4 constructPivot2Device(const Matrix4& pivot2world, const VolumeTest& view)
{
	// First, apply the modelview on top of the pivot matrix [pivot => world => view]
	Matrix4 pivot2view = pivot2world.getPremultipliedBy(view.GetModelview());

	// Apply the projection matrix to get into clip space
	// The combined matrix is now performing this: [pivot => world => view => clip]
	Matrix4 pivot2clip = pivot2view.getPremultipliedBy(view.GetProjection());

	// Once we're into clip space, we can normalise coords by dividing by w.
	// This operation can be seen as some sort of perspective correction,
	// this does nothing in orthographic projections where w == 1
	double inverseW = 1 / pivot2clip.tw();

	// Produce a matrix that is doing the 1/w division for us.
	// We need to divide the w component of the vectors too, so put inverseW in all 4 diagonals
	Matrix4 clip2device = Matrix4::getScale(Vector3(inverseW, inverseW, inverseW));
	clip2device.tw() = inverseW;

	// Apply this perspective division to clip space and we're done here
	return pivot2clip.getPremultipliedBy(clip2device);
}

/**
 * greebo: Generates a transformation that can be used to convert device coordinates back
 * into object space.
 */
inline Matrix4 constructDevice2Pivot(const Matrix4& pivot2world, const VolumeTest& view)
{
	return constructPivot2Device(pivot2world, view).getFullInverse();
}