File: CompactWindingVertexBuffer.h

package info (click to toggle)
darkradiant 3.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 41,080 kB
  • sloc: cpp: 264,743; ansic: 10,659; python: 1,852; xml: 1,650; sh: 92; makefile: 21
file content (229 lines) | stat: -rw-r--r-- 7,858 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#pragma once

#include <vector>
#include <stdexcept>

namespace render
{

// Winding index provider. Generates render indices for a single winding suitable for rendering triangles.
// Indices are generated in CCW order.
class WindingIndexer_Triangles
{
public:
    constexpr static std::size_t GetNumberOfIndicesPerWinding(const std::size_t windingSize)
    {
        return 3 * (windingSize - 2);
    }

    // Generate indices for a single winding of the given size, insert it in the target container using the given output iterator
    // each index is shifted by the given offset
    static void GenerateAndAssignIndices(std::back_insert_iterator<std::vector<unsigned int>> outputIt, 
        std::size_t windingSize, const unsigned int offset)
    {
        for (auto n = static_cast<unsigned int>(windingSize) - 1; n - 1 > 0; --n)
        {
            outputIt = offset + 0;
            outputIt = offset + n - 1;
            outputIt = offset + n;
        }
    }
};

// Winding index provider. Generates render indices for a single winding suitable for rendering lines.
class WindingIndexer_Lines
{
public:
    constexpr static std::size_t GetNumberOfIndicesPerWinding(const std::size_t windingSize)
    {
        return windingSize * 2; // 2 indices per winding
    }

    // Generate indices for a single winding of the given size, insert it in the target container using the given output iterator
    // each index is shifted by the given offset
    static void GenerateAndAssignIndices(std::back_insert_iterator<std::vector<unsigned int>> outputIt,
        std::size_t windingSize, const unsigned int offset)
    {
        for (unsigned int n = 0; n < windingSize - 1; ++n)
        {
            outputIt = offset + n + 0;
            outputIt = offset + n + 1;
        }

        outputIt = offset + static_cast<unsigned int>(windingSize) - 1;
        outputIt = offset; // the last index points at the first vertex
    }
};

// Winding index provider. Generates render indices for a single winding suitable for drawing a single polygon.
class WindingIndexer_Polygon
{
public:
    constexpr static std::size_t GetNumberOfIndicesPerWinding(const std::size_t windingSize)
    {
        return windingSize;
    }

    // Generate indices for a single winding of the given size, insert it in the target container using the given output iterator
    // each index is shifted by the given offset
    static void GenerateAndAssignIndices(std::back_insert_iterator<std::vector<unsigned int>> outputIt,
        std::size_t windingSize, const unsigned int offset)
    {
        for (unsigned int n = 0; n < windingSize; ++n)
        {
            outputIt = offset + n;
        }
    }
};

template<typename VertexT, class WindingIndexerT = WindingIndexer_Triangles>
class CompactWindingVertexBuffer
{
private:
    std::size_t _size;

    std::vector<VertexT> _vertices;

    // The indices suitable for rendering triangles
    std::vector<unsigned int> _indices;

public:
    using Slot = std::uint32_t;

    explicit CompactWindingVertexBuffer(std::size_t size) :
        _size(size)
    {}

    CompactWindingVertexBuffer(const CompactWindingVertexBuffer& other) = delete;
    CompactWindingVertexBuffer& operator=(const CompactWindingVertexBuffer& other) = delete;

    // Move ctor
    CompactWindingVertexBuffer(CompactWindingVertexBuffer&& other) noexcept :
        _size(other._size),
        _vertices(std::move(other._vertices)),
        _indices(std::move(other._indices))
    {}

    std::size_t getWindingSize() const
    {
        return _size;
    }

    std::size_t getNumIndicesPerWinding() const
    {
        return WindingIndexerT::GetNumberOfIndicesPerWinding(_size);
    }

    std::size_t getNumberOfStoredWindings() const
    {
        return _vertices.size() / _size;
    }

    const std::vector<VertexT>& getVertices() const
    {
        return _vertices;
    }

    const std::vector<unsigned int>& getIndices() const
    {
        return _indices;
    }

    // Appends the given winding data to the end of the buffer, returns the position in the array
    Slot pushWinding(const std::vector<VertexT>& winding)
    {
        assert(winding.size() == _size);

        const auto currentSize = _vertices.size();
        
        std::copy(winding.begin(), winding.end(), std::back_inserter(_vertices));

        WindingIndexerT::GenerateAndAssignIndices(std::back_inserter(_indices), _size, static_cast<unsigned int>(currentSize));

        auto position = currentSize / _size;
        return static_cast<Slot>(position);
    }

    // Replaces the winding in the given slot with the given data
    void replaceWinding(Slot slot, const std::vector<VertexT>& winding)
    {
        assert(winding.size() == _size);

        // Copy the incoming data to the target slot
        std::copy(winding.begin(), winding.end(), _vertices.begin() + (slot * _size));

        // Indices remain unchanged
    }

    // Removes the winding from the given slot. All slots greater than the given one
    // will be shifted towards the left, their values are shifted by -1
    // Invalid slot indices will result in a std::logic_error
    void removeWinding(Slot slot)
    {
        const auto currentSize = _vertices.size();

        if (slot >= currentSize / _size) throw std::logic_error("Slot index out of bounds");

        // Remove _size elements at the given position
        auto firstVertexToRemove = _vertices.begin() + (slot * _size);
        _vertices.erase(firstVertexToRemove, firstVertexToRemove + _size);

        // Since all the windings have the same structure, the index array will always look the same
        // after shifting the index values of the remaining windings. 
        // So just cut off one winding from the end of the index array
        _indices.resize(_indices.size() - getNumIndicesPerWinding());
    }

    // Removes multiple slots from this buffer in one sweep. The given array of slots must be sorted in ascending order
    void removeWindings(const std::vector<Slot>& slotsToRemove)
    {
        if (slotsToRemove.empty()) return;

        auto highestPossibleSlotNumber = static_cast<Slot>(_vertices.size() / _size);

        auto s = slotsToRemove.begin();
        auto gapStart = *s; // points at the first position that can be overwritten

        while (s != slotsToRemove.end())
        {
            auto slotToRemove = *s;

            if (slotToRemove >= highestPossibleSlotNumber) throw std::logic_error("Slot index out of bounds");

            // Move forward until we hit the next unremoved slot
            auto firstSlotToKeep = slotToRemove + 1;
            ++s;

            while (s != slotsToRemove.end() && *s == firstSlotToKeep)
            {
                ++firstSlotToKeep;
                ++s;
            }

            auto lastSlotToKeep = s == slotsToRemove.end() ? highestPossibleSlotNumber - 1 : *s - 1;
            auto numSlotsToMove = lastSlotToKeep + 1 - firstSlotToKeep;

            if (numSlotsToMove == 0) break;

            // We move all vertices to the gap
            auto target = _vertices.begin() + (gapStart * _size);

            auto sourceStart = _vertices.begin() + (firstSlotToKeep * _size);
            auto sourceEnd = sourceStart + (numSlotsToMove * _size);

            std::move(sourceStart, sourceEnd, target);

            gapStart += numSlotsToMove;
        }

        // Cut off the now unused range at the end
        _vertices.resize(_vertices.size() - slotsToRemove.size() * _size);

        // Since all the windings have the same structure, the index array will always look the same
        // after shifting the index values of the remaining windings. 
        // So just cut off one winding from the end of the index array
        _indices.resize(_indices.size() - slotsToRemove.size() * getNumIndicesPerWinding());
    }
};

}