1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
#pragma once
#include <cstdint>
#include <stack>
#include <limits>
#include <vector>
#include "igeometrystore.h"
#include "itextstream.h"
namespace render
{
namespace detail
{
struct BufferTransaction
{
IGeometryStore::Slot slot;
std::size_t offset;
std::size_t numChangedElements;
};
}
/**
* Buffer object managing allocations within a continuous block of memory.
*
* While the memory location itself might change when the buffer is growing,
* the whole data is always stored in a single continuous memory block.
*
* Use the allocate/deallocate methods to acquire or release a chunk of
* a certain size. The chunk size is fixed and cannot be changed.
*/
template<typename ElementType>
class ContinuousBuffer
{
public:
static constexpr std::size_t DefaultInitialSize = 65536;
using Handle = std::uint32_t;
private:
static constexpr std::size_t GrowthRate = 1; // 100% growth each time
std::vector<ElementType> _buffer;
struct SlotInfo
{
bool Occupied; // whether this slot is free
std::size_t Offset; // The index to the first element within the buffer
std::size_t Size; // Number of allocated elements
std::size_t Used; // Number of used elements
SlotInfo() :
Occupied(false),
Offset(0),
Size(0),
Used(0)
{}
SlotInfo(std::size_t offset, std::size_t size, bool occupied) :
Occupied(occupied),
Offset(offset),
Size(size),
Used(0)
{}
};
std::vector<SlotInfo> _slots;
// A stack of slots that can be re-used instead
std::stack<Handle> _emptySlots;
// Last data size that was synced to the buffer object
std::size_t _lastSyncedBufferSize;
struct ModifiedMemoryChunk
{
Handle handle;
std::size_t offset;
std::size_t numElements;
};
// The slots that have been modified in between syncs
std::vector<ModifiedMemoryChunk> _unsyncedModifications;
std::size_t _allocatedElements;
public:
ContinuousBuffer(std::size_t initialSize = DefaultInitialSize) :
_lastSyncedBufferSize(0),
_allocatedElements(0)
{
// Pre-allocate some memory, but don't go all the way down to zero
_buffer.resize(initialSize == 0 ? 16 : initialSize);
// The initial slot info which is going to be cut into pieces
createSlotInfo(0, _buffer.size());
}
ContinuousBuffer(const ContinuousBuffer& other)
{
*this = other;
}
// Custom assignment operator
ContinuousBuffer<ElementType>& operator=(const ContinuousBuffer<ElementType>& other)
{
_buffer.resize(other._buffer.size());
memcpy(_buffer.data(), other._buffer.data(), other._buffer.size() * sizeof(ElementType));
_slots.resize(other._slots.size());
memcpy(_slots.data(), other._slots.data(), other._slots.size() * sizeof(SlotInfo));
_emptySlots = other._emptySlots;
_unsyncedModifications = other._unsyncedModifications;
_allocatedElements = other._allocatedElements;
return *this;
}
Handle allocate(std::size_t requiredSize)
{
auto handle = getNextFreeSlotForSize(requiredSize);
_allocatedElements += requiredSize;
return handle;
}
ElementType* getBufferStart()
{
return _buffer.data();
}
const ElementType* getBufferStart() const
{
return _buffer.data();
}
std::size_t getSize(Handle handle) const
{
return _slots[handle].Size;
}
std::size_t getNumUsedElements(Handle handle) const
{
return _slots[handle].Used;
}
std::size_t getOffset(Handle handle) const
{
return _slots[handle].Offset;
}
std::size_t getNumAllocatedElements() const
{
return _allocatedElements;
}
// The amount of memory used by this instance, in bytes
std::size_t getBufferSizeInBytes() const
{
std::size_t total = 0;
total += _buffer.capacity() * sizeof(ElementType);
total += _slots.capacity() * sizeof(SlotInfo);
total += _emptySlots.size() * sizeof(Handle);
total += _unsyncedModifications.capacity() * sizeof(ModifiedMemoryChunk);
total += sizeof(ContinuousBuffer<ElementType>);
return total;
}
void setData(Handle handle, const std::vector<ElementType>& elements)
{
auto& slot = _slots[handle];
auto numElements = elements.size();
if (numElements > slot.Size)
{
throw std::logic_error("Cannot store more data than allocated in GeometryStore::Buffer::setData");
}
std::copy(elements.begin(), elements.end(), _buffer.begin() + slot.Offset);
slot.Used = numElements;
_unsyncedModifications.emplace_back(ModifiedMemoryChunk{ handle, 0, numElements });
}
void setSubData(Handle handle, std::size_t elementOffset, const std::vector<ElementType>& elements)
{
auto& slot = _slots[handle];
auto numElements = elements.size();
if (elementOffset + numElements > slot.Size)
{
throw std::logic_error("Cannot store more data than allocated in GeometryStore::Buffer::setSubData");
}
std::copy(elements.begin(), elements.end(), _buffer.begin() + slot.Offset + elementOffset);
slot.Used = std::max(slot.Used, elementOffset + numElements);
_unsyncedModifications.emplace_back(ModifiedMemoryChunk{ handle, elementOffset, numElements });
}
// Returns true if the size of this slot actually changed
bool resizeData(Handle handle, std::size_t elementCount)
{
auto& slot = _slots[handle];
if (elementCount > slot.Size)
{
throw std::logic_error("Cannot resize to a larger amount than allocated in GeometryStore::Buffer::resizeData");
}
if (slot.Used == elementCount) return false; // no size change
slot.Used = elementCount;
_unsyncedModifications.emplace_back(ModifiedMemoryChunk{ handle, 0, elementCount });
return true;
}
void deallocate(Handle handle)
{
auto& releasedSlot = _slots[handle];
releasedSlot.Occupied = false;
releasedSlot.Used = 0;
_allocatedElements -= releasedSlot.Size;
// Check if the slot can merge with an adjacent one
Handle slotIndexToMerge = std::numeric_limits<Handle>::max();
if (findLeftFreeSlot(releasedSlot, slotIndexToMerge))
{
auto& slotToMerge = _slots[slotIndexToMerge];
releasedSlot.Offset = slotToMerge.Offset;
releasedSlot.Size += slotToMerge.Size;
// The merged handle goes to recycling, block it against future use
slotToMerge.Size = 0;
slotToMerge.Used = 0;
slotToMerge.Occupied = true;
_emptySlots.push(slotIndexToMerge);
}
// Try to find an adjacent free slot to the right
if (findRightFreeSlot(releasedSlot, slotIndexToMerge))
{
auto& slotToMerge = _slots[slotIndexToMerge];
releasedSlot.Size += slotToMerge.Size;
// The merged handle goes to recycling, block it against future use
slotToMerge.Size = 0;
slotToMerge.Used = 0;
slotToMerge.Occupied = true;
_emptySlots.push(slotIndexToMerge);
}
}
void applyTransactions(const std::vector<detail::BufferTransaction>& transactions, const ContinuousBuffer<ElementType>& other,
const std::function<std::uint32_t(IGeometryStore::Slot)>& getHandle)
{
// We might reach this point in single-buffer mode, trying to sync with ourselves
// in which case we can take the shortcut to just mark the transactions that need to be GPU-synced
if (&other == this)
{
for (const auto& transaction : transactions)
{
_unsyncedModifications.emplace_back(ModifiedMemoryChunk{
getHandle(transaction.slot), transaction.offset, transaction.numChangedElements });
}
return;
}
// Ensure the buffer is at least the same size
auto otherSize = other._buffer.size();
if (otherSize > _buffer.size())
{
_buffer.resize(otherSize);
}
for (const auto& transaction : transactions)
{
auto handle = getHandle(transaction.slot);
auto& otherSlot = other._slots[handle];
memcpy(_buffer.data() + otherSlot.Offset + transaction.offset,
other._buffer.data() + otherSlot.Offset + transaction.offset,
transaction.numChangedElements * sizeof(ElementType));
// Remember this slot to be synced to the GPU
_unsyncedModifications.emplace_back(ModifiedMemoryChunk{
handle, transaction.offset, transaction.numChangedElements });
}
// Replicate the slot allocation data
_slots.resize(other._slots.size());
memcpy(_slots.data(), other._slots.data(), other._slots.size() * sizeof(SlotInfo));
_allocatedElements = other._allocatedElements;
_emptySlots = other._emptySlots;
}
// Copies the updated memory to the given buffer object
void syncModificationsToBufferObject(const IBufferObject::Ptr& buffer)
{
auto currentBufferSize = _buffer.size() * sizeof(ElementType);
// On size change we upload everything
if (_lastSyncedBufferSize != currentBufferSize)
{
// Resize the memory in the buffer object
buffer->resize(currentBufferSize);
_lastSyncedBufferSize = currentBufferSize;
// Re-upload everything
buffer->bind();
buffer->setData(0, reinterpret_cast<unsigned char*>(_buffer.data()),
_buffer.size() * sizeof(ElementType));
buffer->unbind();
}
else
{
std::size_t minimumOffset = std::numeric_limits<std::size_t>::max();
std::size_t maximumOffset = 0;
std::size_t elementsToCopy = 0;
// Size is the same, apply the updates to the GPU buffer
// Determine the modified memory range
for (auto& modifiedChunk : _unsyncedModifications)
{
auto& slot = _slots[modifiedChunk.handle];
// Prevent the slot from exceeding its boundaries
// It's possible that this is chunk has been modified before it has been freed
if (modifiedChunk.numElements > slot.Size)
{
modifiedChunk.numElements = slot.Size;
}
minimumOffset = std::min(slot.Offset + modifiedChunk.offset, minimumOffset);
maximumOffset = std::max(slot.Offset + modifiedChunk.offset + modifiedChunk.numElements, maximumOffset);
elementsToCopy += modifiedChunk.numElements;
}
// Restrict the maximum offset to the buffer size just to be safe
maximumOffset = std::min(maximumOffset, _buffer.size());
// Copy the data in one single operation or in multiple, depending on the effort
if (elementsToCopy > 0)
{
buffer->bind();
// Less than a couple of operations will be copied piece by piece
if (_unsyncedModifications.size() < 100)
{
for (auto modifiedChunk : _unsyncedModifications)
{
auto& slot = _slots[modifiedChunk.handle];
buffer->setData((slot.Offset + modifiedChunk.offset) * sizeof(ElementType),
reinterpret_cast<unsigned char*>(_buffer.data() + slot.Offset + modifiedChunk.offset),
modifiedChunk.numElements * sizeof(ElementType));
}
}
else // copy everything in between minimum and maximum in one operation
{
buffer->setData(minimumOffset * sizeof(ElementType),
reinterpret_cast<unsigned char*>(_buffer.data() + minimumOffset),
(maximumOffset - minimumOffset) * sizeof(ElementType));
}
buffer->unbind();
}
}
_unsyncedModifications.clear();
}
private:
bool findLeftFreeSlot(const SlotInfo& slotToTouch, Handle& found)
{
auto numSlots = _slots.size();
for (Handle slotIndex = 0; slotIndex < numSlots; ++slotIndex)
{
const auto& candidate = _slots[slotIndex];
if (candidate.Offset + candidate.Size == slotToTouch.Offset)
{
// The slot coordinates match, return true if this block is free
found = slotIndex;
return !candidate.Occupied;
}
}
return false;
}
bool findRightFreeSlot(const SlotInfo& slotToTouch, Handle& found)
{
auto numSlots = _slots.size();
auto offsetToMatch = slotToTouch.Offset + slotToTouch.Size;
for (Handle slotIndex = 0; slotIndex < numSlots; ++slotIndex)
{
const auto& candidate = _slots[slotIndex];
if (candidate.Offset == offsetToMatch)
{
// The slot coordinates match, return true if this block is free
found = slotIndex;
return !candidate.Occupied;
}
}
return false;
}
Handle getNextFreeSlotForSize(std::size_t requiredSize)
{
auto numSlots = _slots.size();
Handle rightmostFreeSlotIndex = static_cast<Handle>(numSlots);
std::size_t rightmostFreeOffset = 0;
std::size_t rightmostFreeSize = 0;
for (Handle slotIndex = 0; slotIndex < numSlots; ++slotIndex)
{
auto& slot = _slots[slotIndex];
if (slot.Occupied) continue;
// Keep track of the highest slot, we need that when re-allocating
if (slot.Offset > rightmostFreeOffset)
{
rightmostFreeOffset = slot.Offset;
rightmostFreeSize = slot.Size;
rightmostFreeSlotIndex = slotIndex;
}
if (slot.Size < requiredSize) continue; // this slot is no use for us
// Calculate the remaining size before assignment
auto remainingSize = slot.Size - requiredSize;
slot.Size = requiredSize;
slot.Occupied = true;
if (remainingSize > 0)
{
// Allocate a new free slot with the remaining space
createSlotInfo(slot.Offset + requiredSize, remainingSize);
}
return slotIndex;
}
// No space wherever, we need to expand the buffer
// Allocate more memory
auto oldBufferSize = _buffer.size();
auto additionalSize = std::max(oldBufferSize * GrowthRate, requiredSize);
auto newSize = oldBufferSize + additionalSize;
_buffer.resize(newSize);
// Ensure that the rightmost free slot is at the end of the buffer, otherwise allocate a new one
if (rightmostFreeSlotIndex == numSlots || rightmostFreeOffset + rightmostFreeSize != oldBufferSize)
{
// Create a free slot with 0 size at the end of the storage
_slots.emplace_back(oldBufferSize, 0, false);
// Adjust rightMostFreeSlotIndex to always point at this new slot
rightmostFreeSlotIndex = static_cast<Handle>(numSlots);
}
// Use the right most slot for our requirement, then cut up the rest of the space
auto& rightmostFreeSlot = _slots[rightmostFreeSlotIndex];
assert(rightmostFreeSlot.Size < requiredSize); // otherwise we've run wrong above
auto remainingSize = rightmostFreeSlot.Size + additionalSize - requiredSize;
rightmostFreeSlot.Occupied = true;
rightmostFreeSlot.Size = requiredSize;
createSlotInfo(rightmostFreeSlot.Offset + rightmostFreeSlot.Size, remainingSize);
return rightmostFreeSlotIndex;
}
SlotInfo& createSlotInfo(std::size_t offset, std::size_t size, bool occupied = false)
{
if (_emptySlots.empty())
{
return _slots.emplace_back(offset, size, occupied);
}
// Re-use an old slot
auto& slot = _slots.at(_emptySlots.top());
_emptySlots.pop();
slot.Occupied = occupied;
slot.Offset = offset;
slot.Size = size;
slot.Used = 0;
return slot;
}
};
}
|