File: ContinuousBuffer.h

package info (click to toggle)
darkradiant 3.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 41,080 kB
  • sloc: cpp: 264,743; ansic: 10,659; python: 1,852; xml: 1,650; sh: 92; makefile: 21
file content (517 lines) | stat: -rw-r--r-- 16,856 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
#pragma once

#include <cstdint>
#include <stack>
#include <limits>
#include <vector>
#include "igeometrystore.h"
#include "itextstream.h"

namespace render
{

namespace detail
{

struct BufferTransaction
{
    IGeometryStore::Slot slot;
    std::size_t offset;
    std::size_t numChangedElements;
};

}

/**
 * Buffer object managing allocations within a continuous block of memory.
 *
 * While the memory location itself might change when the buffer is growing,
 * the whole data is always stored in a single continuous memory block.
 *
 * Use the allocate/deallocate methods to acquire or release a chunk of
 * a certain size. The chunk size is fixed and cannot be changed.
 */
template<typename ElementType>
class ContinuousBuffer
{
public:
    static constexpr std::size_t DefaultInitialSize = 65536;

    using Handle = std::uint32_t;

private:
    static constexpr std::size_t GrowthRate = 1; // 100% growth each time

    std::vector<ElementType> _buffer;

    struct SlotInfo
    {
        bool Occupied;      // whether this slot is free
        std::size_t Offset; // The index to the first element within the buffer
        std::size_t Size;   // Number of allocated elements
        std::size_t Used;   // Number of used elements

        SlotInfo() :
            Occupied(false),
            Offset(0),
            Size(0),
            Used(0)
        {}

        SlotInfo(std::size_t offset, std::size_t size, bool occupied) :
            Occupied(occupied),
            Offset(offset),
            Size(size),
            Used(0)
        {}
    };

    std::vector<SlotInfo> _slots;

    // A stack of slots that can be re-used instead
    std::stack<Handle> _emptySlots;

    // Last data size that was synced to the buffer object
    std::size_t _lastSyncedBufferSize;

    struct ModifiedMemoryChunk
    {
        Handle handle;
        std::size_t offset;
        std::size_t numElements;
    };

    // The slots that have been modified in between syncs
    std::vector<ModifiedMemoryChunk> _unsyncedModifications;

    std::size_t _allocatedElements;

public:
    ContinuousBuffer(std::size_t initialSize = DefaultInitialSize) :
        _lastSyncedBufferSize(0),
        _allocatedElements(0)
    {
        // Pre-allocate some memory, but don't go all the way down to zero
        _buffer.resize(initialSize == 0 ? 16 : initialSize);

        // The initial slot info which is going to be cut into pieces
        createSlotInfo(0, _buffer.size());
    }

    ContinuousBuffer(const ContinuousBuffer& other)
    {
        *this = other;
    }

    // Custom assignment operator
    ContinuousBuffer<ElementType>& operator=(const ContinuousBuffer<ElementType>& other)
    {
        _buffer.resize(other._buffer.size());
        memcpy(_buffer.data(), other._buffer.data(), other._buffer.size() * sizeof(ElementType));

        _slots.resize(other._slots.size());
        memcpy(_slots.data(), other._slots.data(), other._slots.size() * sizeof(SlotInfo));

        _emptySlots = other._emptySlots;
        _unsyncedModifications = other._unsyncedModifications;
        _allocatedElements = other._allocatedElements;

        return *this;
    }

    Handle allocate(std::size_t requiredSize)
    {
        auto handle = getNextFreeSlotForSize(requiredSize);

        _allocatedElements += requiredSize;

        return handle;
    }

    ElementType* getBufferStart()
    {
        return _buffer.data();
    }

    const ElementType* getBufferStart() const
    {
        return _buffer.data();
    }

    std::size_t getSize(Handle handle) const
    {
        return _slots[handle].Size;
    }

    std::size_t getNumUsedElements(Handle handle) const
    {
        return _slots[handle].Used;
    }

    std::size_t getOffset(Handle handle) const
    {
        return _slots[handle].Offset;
    }

    std::size_t getNumAllocatedElements() const
    {
        return _allocatedElements;
    }

    // The amount of memory used by this instance, in bytes
    std::size_t getBufferSizeInBytes() const
    {
        std::size_t total = 0;

        total += _buffer.capacity() * sizeof(ElementType);
        total += _slots.capacity() * sizeof(SlotInfo);
        total += _emptySlots.size() * sizeof(Handle);
        total += _unsyncedModifications.capacity() * sizeof(ModifiedMemoryChunk);
        total += sizeof(ContinuousBuffer<ElementType>);

        return total;
    }

    void setData(Handle handle, const std::vector<ElementType>& elements)
    {
        auto& slot = _slots[handle];

        auto numElements = elements.size();
        if (numElements > slot.Size)
        {
            throw std::logic_error("Cannot store more data than allocated in GeometryStore::Buffer::setData");
        }

        std::copy(elements.begin(), elements.end(), _buffer.begin() + slot.Offset);
        slot.Used = numElements;

        _unsyncedModifications.emplace_back(ModifiedMemoryChunk{ handle, 0, numElements });
    }

    void setSubData(Handle handle, std::size_t elementOffset, const std::vector<ElementType>& elements)
    {
        auto& slot = _slots[handle];

        auto numElements = elements.size();
        if (elementOffset + numElements > slot.Size)
        {
            throw std::logic_error("Cannot store more data than allocated in GeometryStore::Buffer::setSubData");
        }

        std::copy(elements.begin(), elements.end(), _buffer.begin() + slot.Offset + elementOffset);
        slot.Used = std::max(slot.Used, elementOffset + numElements);

        _unsyncedModifications.emplace_back(ModifiedMemoryChunk{ handle, elementOffset, numElements });
    }

    // Returns true if the size of this slot actually changed
    bool resizeData(Handle handle, std::size_t elementCount)
    {
        auto& slot = _slots[handle];

        if (elementCount > slot.Size)
        {
            throw std::logic_error("Cannot resize to a larger amount than allocated in GeometryStore::Buffer::resizeData");
        }

        if (slot.Used == elementCount) return false; // no size change

        slot.Used = elementCount;
        _unsyncedModifications.emplace_back(ModifiedMemoryChunk{ handle, 0, elementCount });
        return true;
    }

    void deallocate(Handle handle)
    {
        auto& releasedSlot = _slots[handle];
        releasedSlot.Occupied = false;
        releasedSlot.Used = 0;

        _allocatedElements -= releasedSlot.Size;

        // Check if the slot can merge with an adjacent one
        Handle slotIndexToMerge = std::numeric_limits<Handle>::max();
        if (findLeftFreeSlot(releasedSlot, slotIndexToMerge))
        {
            auto& slotToMerge = _slots[slotIndexToMerge];

            releasedSlot.Offset = slotToMerge.Offset;
            releasedSlot.Size += slotToMerge.Size;

            // The merged handle goes to recycling, block it against future use
            slotToMerge.Size = 0;
            slotToMerge.Used = 0;
            slotToMerge.Occupied = true;
            _emptySlots.push(slotIndexToMerge);
        }

        // Try to find an adjacent free slot to the right
        if (findRightFreeSlot(releasedSlot, slotIndexToMerge))
        {
            auto& slotToMerge = _slots[slotIndexToMerge];

            releasedSlot.Size += slotToMerge.Size;

            // The merged handle goes to recycling, block it against future use
            slotToMerge.Size = 0;
            slotToMerge.Used = 0;
            slotToMerge.Occupied = true;
            _emptySlots.push(slotIndexToMerge);
        }
    }

    void applyTransactions(const std::vector<detail::BufferTransaction>& transactions, const ContinuousBuffer<ElementType>& other,
        const std::function<std::uint32_t(IGeometryStore::Slot)>& getHandle)
    {
        // We might reach this point in single-buffer mode, trying to sync with ourselves
        // in which case we can take the shortcut to just mark the transactions that need to be GPU-synced
        if (&other == this)
        {
            for (const auto& transaction : transactions)
            {
                _unsyncedModifications.emplace_back(ModifiedMemoryChunk{
                    getHandle(transaction.slot), transaction.offset, transaction.numChangedElements });
            }

            return;
        }

        // Ensure the buffer is at least the same size
        auto otherSize = other._buffer.size();

        if (otherSize > _buffer.size())
        {
            _buffer.resize(otherSize);
        }

        for (const auto& transaction : transactions)
        {
            auto handle = getHandle(transaction.slot);
            auto& otherSlot = other._slots[handle];

            memcpy(_buffer.data() + otherSlot.Offset + transaction.offset,
                other._buffer.data() + otherSlot.Offset + transaction.offset,
                transaction.numChangedElements * sizeof(ElementType));

            // Remember this slot to be synced to the GPU
            _unsyncedModifications.emplace_back(ModifiedMemoryChunk{
                    handle, transaction.offset, transaction.numChangedElements });
        }

        // Replicate the slot allocation data
        _slots.resize(other._slots.size());
        memcpy(_slots.data(), other._slots.data(), other._slots.size() * sizeof(SlotInfo));

        _allocatedElements = other._allocatedElements;
        _emptySlots = other._emptySlots;
    }

    // Copies the updated memory to the given buffer object
    void syncModificationsToBufferObject(const IBufferObject::Ptr& buffer)
    {
        auto currentBufferSize = _buffer.size() * sizeof(ElementType);

        // On size change we upload everything
        if (_lastSyncedBufferSize != currentBufferSize)
        {
            // Resize the memory in the buffer object
            buffer->resize(currentBufferSize);
            _lastSyncedBufferSize = currentBufferSize;

            // Re-upload everything
            buffer->bind();
            buffer->setData(0, reinterpret_cast<unsigned char*>(_buffer.data()),
                _buffer.size() * sizeof(ElementType));
            buffer->unbind();
        }
        else
        {
            std::size_t minimumOffset = std::numeric_limits<std::size_t>::max();
            std::size_t maximumOffset = 0;

            std::size_t elementsToCopy = 0;

            // Size is the same, apply the updates to the GPU buffer
            // Determine the modified memory range
            for (auto& modifiedChunk : _unsyncedModifications)
            {
                auto& slot = _slots[modifiedChunk.handle];

                // Prevent the slot from exceeding its boundaries
                // It's possible that this is chunk has been modified before it has been freed
                if (modifiedChunk.numElements > slot.Size)
                {
                    modifiedChunk.numElements = slot.Size;
                }

                minimumOffset = std::min(slot.Offset + modifiedChunk.offset, minimumOffset);
                maximumOffset = std::max(slot.Offset + modifiedChunk.offset + modifiedChunk.numElements, maximumOffset);

                elementsToCopy += modifiedChunk.numElements;
            }

            // Restrict the maximum offset to the buffer size just to be safe
            maximumOffset = std::min(maximumOffset, _buffer.size());

            // Copy the data in one single operation or in multiple, depending on the effort
            if (elementsToCopy > 0)
            {
                buffer->bind();

                // Less than a couple of operations will be copied piece by piece
                if (_unsyncedModifications.size() < 100)
                {
                    for (auto modifiedChunk : _unsyncedModifications)
                    {
                        auto& slot = _slots[modifiedChunk.handle];

                        buffer->setData((slot.Offset + modifiedChunk.offset) * sizeof(ElementType),
                            reinterpret_cast<unsigned char*>(_buffer.data() + slot.Offset + modifiedChunk.offset),
                            modifiedChunk.numElements * sizeof(ElementType));
                    }
                }
                else // copy everything in between minimum and maximum in one operation
                {
                    buffer->setData(minimumOffset * sizeof(ElementType),
                        reinterpret_cast<unsigned char*>(_buffer.data() + minimumOffset),
                        (maximumOffset - minimumOffset) * sizeof(ElementType));
                }

                buffer->unbind();
            }
        }

        _unsyncedModifications.clear();
    }

private:
    bool findLeftFreeSlot(const SlotInfo& slotToTouch, Handle& found)
    {
        auto numSlots = _slots.size();

        for (Handle slotIndex = 0; slotIndex < numSlots; ++slotIndex)
        {
            const auto& candidate = _slots[slotIndex];

            if (candidate.Offset + candidate.Size == slotToTouch.Offset)
            {
                // The slot coordinates match, return true if this block is free
                found = slotIndex;
                return !candidate.Occupied;
            }
        }

        return false;
    }

    bool findRightFreeSlot(const SlotInfo& slotToTouch, Handle& found)
    {
        auto numSlots = _slots.size();
        auto offsetToMatch = slotToTouch.Offset + slotToTouch.Size;

        for (Handle slotIndex = 0; slotIndex < numSlots; ++slotIndex)
        {
            const auto& candidate = _slots[slotIndex];

            if (candidate.Offset == offsetToMatch)
            {
                // The slot coordinates match, return true if this block is free
                found = slotIndex;
                return !candidate.Occupied;
            }
        }

        return false;
    }

    Handle getNextFreeSlotForSize(std::size_t requiredSize)
    {
        auto numSlots = _slots.size();
        Handle rightmostFreeSlotIndex = static_cast<Handle>(numSlots);
        std::size_t rightmostFreeOffset = 0;
        std::size_t rightmostFreeSize = 0;

        for (Handle slotIndex = 0; slotIndex < numSlots; ++slotIndex)
        {
            auto& slot = _slots[slotIndex];

            if (slot.Occupied) continue;

            // Keep track of the highest slot, we need that when re-allocating
            if (slot.Offset > rightmostFreeOffset)
            {
                rightmostFreeOffset = slot.Offset;
                rightmostFreeSize = slot.Size;
                rightmostFreeSlotIndex = slotIndex;
            }

            if (slot.Size < requiredSize) continue; // this slot is no use for us

            // Calculate the remaining size before assignment
            auto remainingSize = slot.Size - requiredSize;
            slot.Size = requiredSize;
            slot.Occupied = true;

            if (remainingSize > 0)
            {
                // Allocate a new free slot with the remaining space
                createSlotInfo(slot.Offset + requiredSize, remainingSize);
            }

            return slotIndex;
        }

        // No space wherever, we need to expand the buffer

        // Allocate more memory
        auto oldBufferSize = _buffer.size();
        auto additionalSize = std::max(oldBufferSize * GrowthRate, requiredSize);
        auto newSize = oldBufferSize + additionalSize;
        _buffer.resize(newSize);

        // Ensure that the rightmost free slot is at the end of the buffer, otherwise allocate a new one
        if (rightmostFreeSlotIndex == numSlots || rightmostFreeOffset + rightmostFreeSize != oldBufferSize)
        {
            // Create a free slot with 0 size at the end of the storage
            _slots.emplace_back(oldBufferSize, 0, false);

            // Adjust rightMostFreeSlotIndex to always point at this new slot
            rightmostFreeSlotIndex = static_cast<Handle>(numSlots);
        }

        // Use the right most slot for our requirement, then cut up the rest of the space
        auto& rightmostFreeSlot = _slots[rightmostFreeSlotIndex];

        assert(rightmostFreeSlot.Size < requiredSize); // otherwise we've run wrong above

        auto remainingSize = rightmostFreeSlot.Size + additionalSize - requiredSize;

        rightmostFreeSlot.Occupied = true;
        rightmostFreeSlot.Size = requiredSize;

        createSlotInfo(rightmostFreeSlot.Offset + rightmostFreeSlot.Size, remainingSize);

        return rightmostFreeSlotIndex;
    }

    SlotInfo& createSlotInfo(std::size_t offset, std::size_t size, bool occupied = false)
    {
        if (_emptySlots.empty())
        {
            return _slots.emplace_back(offset, size, occupied);
        }

        // Re-use an old slot
        auto& slot = _slots.at(_emptySlots.top());
        _emptySlots.pop();

        slot.Occupied = occupied;
        slot.Offset = offset;
        slot.Size = size;
        slot.Used = 0;

        return slot;
    }
};

}