1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
#include "Renderables.h"
#include "LightNode.h"
#include "../EntitySettings.h"
namespace entity
{
namespace
{
inline void applyTransform(std::vector<render::RenderVertex>& vertices, const Matrix4& transform)
{
for (auto& vertex : vertices)
{
auto transformed = transform * Vector3{ vertex.vertex.x(), vertex.vertex.y(), vertex.vertex.z() };
vertex.vertex = { static_cast<float>(transformed.x()), static_cast<float>(transformed.y()), static_cast<float>(transformed.z()) };
}
}
}
void RenderableLightOctagon::updateGeometry()
{
if (!_needsUpdate) return;
_needsUpdate = false;
// Generate the indexed vertex data
static Vector3 Origin(0, 0, 0);
static Vector3 Extents(8, 8, 8);
// Calculate the light vertices of this bounding box and store them into <points>
Vector3f max(Origin + Extents);
Vector3f min(Origin - Extents);
Vector3f mid(Origin);
auto colour = _light.getRenderState() == scene::INode::RenderState::Active ?
_light.getEntityColour() : INACTIVE_ENTITY_COLOUR;
colour.w() = _alpha;
// top, bottom, tleft, tright, bright, bleft
std::vector<render::RenderVertex> vertices
{
render::RenderVertex(Vector3{ mid[0], mid[1], max[2] }, {0,0,0}, {0,0}, colour),
render::RenderVertex(Vector3{ mid[0], mid[1], min[2] }, {0,0,0}, {0,0}, colour),
render::RenderVertex(Vector3{ min[0], max[1], mid[2] }, {0,0,0}, {0,0}, colour),
render::RenderVertex(Vector3{ max[0], max[1], mid[2] }, {0,0,0}, {0,0}, colour),
render::RenderVertex(Vector3{ max[0], min[1], mid[2] }, {0,0,0}, {0,0}, colour),
render::RenderVertex(Vector3{ min[0], min[1], mid[2] }, {0,0,0}, {0,0}, colour),
};
// Orient the points using the transform
applyTransform(vertices, _light.localToWorld());
// Indices are always the same, therefore constant
static const std::vector<unsigned int> Indices
{
0, 2, 3,
0, 3, 4,
0, 4, 5,
0, 5, 2,
1, 2, 5,
1, 5, 4,
1, 4, 3,
1, 3, 2
};
updateGeometryWithData(render::GeometryType::Triangles, vertices, Indices);
}
void RenderableLightVolume::updateGeometry()
{
if (!_needsUpdate) return;
_needsUpdate = false;
if (_light.isProjected())
{
updateProjectedLightVolume();
}
else
{
updatePointLightVolume();
}
}
void RenderableLightVolume::updatePointLightVolume()
{
static Vector3 Origin(0, 0, 0);
const auto& radius = _light.getLightRadius();
// Calculate the corner vertices of this bounding box, plus the mid-point
Vector3f max(Origin + radius);
Vector3f min(Origin - radius);
auto colour = _light.getRenderState() == scene::INode::RenderState::Active ?
_light.getEntityColour() : INACTIVE_ENTITY_COLOUR;
// Load the 8 corner points
std::vector<render::RenderVertex> vertices
{
render::RenderVertex(Vector3{ min[0], min[1], min[2] }, {0,0,0}, {0,0}, colour),
render::RenderVertex(Vector3{ max[0], min[1], min[2] }, {0,0,0}, {0,0}, colour),
render::RenderVertex(Vector3{ max[0], max[1], min[2] }, {0,0,0}, {0,0}, colour),
render::RenderVertex(Vector3{ min[0], max[1], min[2] }, {0,0,0}, {0,0}, colour),
render::RenderVertex(Vector3{ min[0], min[1], max[2] }, {0,0,0}, {0,0}, colour),
render::RenderVertex(Vector3{ max[0], min[1], max[2] }, {0,0,0}, {0,0}, colour),
render::RenderVertex(Vector3{ max[0], max[1], max[2] }, {0,0,0}, {0,0}, colour),
render::RenderVertex(Vector3{ min[0], max[1], max[2] }, {0,0,0}, {0,0}, colour),
};
// Orient the points using the transform
applyTransform(vertices, _light.localToWorld());
static const std::vector<unsigned int> Indices
{
0, 1, // bottom rectangle
1, 2, //
2, 3, //
3, 0, //
4, 5, // top rectangle
5, 6, //
6, 7, //
7, 4, //
0, 4, // vertical edges
1, 5, //
2, 6, //
3, 7, //
0, 6, // diagonals
1, 7, //
2, 4, //
3, 5, //
};
updateGeometryWithData(render::GeometryType::Lines, vertices, Indices);
}
void RenderableLightVolume::updateProjectedLightVolume()
{
const auto& frustum = _light.getLightFrustum();
// greebo: These four define the base area and are always needed to draw the light
auto backUpperLeft = frustum.getCornerPoint(Frustum::BACK, Frustum::TOP_LEFT);
auto backLowerLeft = frustum.getCornerPoint(Frustum::BACK, Frustum::BOTTOM_LEFT);
auto backUpperRight = frustum.getCornerPoint(Frustum::BACK, Frustum::TOP_RIGHT);
auto backLowerRight = frustum.getCornerPoint(Frustum::BACK, Frustum::BOTTOM_RIGHT);
const auto& lightStart = _light.getLightStart();
auto colour = _light.getEntityColour();
if (lightStart != Vector3(0, 0, 0))
{
// Calculate the vertices defining the top area
auto frontUpperLeft = frustum.getCornerPoint(Frustum::FRONT, Frustum::TOP_LEFT);
auto frontLowerLeft = frustum.getCornerPoint(Frustum::FRONT, Frustum::BOTTOM_LEFT);
auto frontUpperRight = frustum.getCornerPoint(Frustum::FRONT, Frustum::TOP_RIGHT);
auto frontLowerRight = frustum.getCornerPoint(Frustum::FRONT, Frustum::BOTTOM_RIGHT);
std::vector<render::RenderVertex> vertices
{
render::RenderVertex(frontUpperLeft, {0,0,0}, {0,0}, colour),
render::RenderVertex(frontLowerLeft, {0,0,0}, {0,0}, colour),
render::RenderVertex(frontLowerRight, {0,0,0}, {0,0}, colour),
render::RenderVertex(frontUpperRight, {0,0,0}, {0,0}, colour),
render::RenderVertex(backUpperLeft, {0,0,0}, {0,0}, colour),
render::RenderVertex(backLowerLeft, {0,0,0}, {0,0}, colour),
render::RenderVertex(backLowerRight, {0,0,0}, {0,0}, colour),
render::RenderVertex(backUpperRight, {0,0,0}, {0,0}, colour),
};
// Orient the points using the transform
applyTransform(vertices, _light.localToWorld());
static const std::vector<unsigned int> Indices
{
0, 4, // top up right to bottom up right
1, 5, // top down right to bottom down right
2, 6, // top down left to bottom down left
3, 7, // top up left to bottom up left
0, 1, // top up right to top down right
1, 2, // top down right to top down left
2, 3, // top down left to top up left
3, 0, // top up left to top up right
4, 5, // bottom up right to bottom down right
5, 6, // bottom down right to bottom down left
6, 7, // bottom down left to bottom up left
7, 4, // bottom up left to bottom up right
};
updateGeometryWithData(render::GeometryType::Lines, vertices, Indices);
}
else
{
// no light_start, just use the top vertex (doesn't need to be mirrored)
auto top = Plane3::intersect(frustum.left, frustum.right, frustum.top);
std::vector<render::RenderVertex> vertices
{
render::RenderVertex(top, {0,0,0}, {0,0}, colour),
render::RenderVertex(backUpperLeft, {0,0,0}, {0,0}, colour),
render::RenderVertex(backLowerLeft, {0,0,0}, {0,0}, colour),
render::RenderVertex(backLowerRight, {0,0,0}, {0,0}, colour),
render::RenderVertex(backUpperRight, {0,0,0}, {0,0}, colour),
};
// Orient the points using the transform
applyTransform(vertices, _light.localToWorld());
static const std::vector<unsigned int> Indices
{
0, 1, // top to first
0, 2, // top to second
0, 3, // top to third
0, 4, // top to fourth
1, 2, // first to second
2, 3, // second to third
3, 4, // third to fourth
4, 1, // fourth to first
};
updateGeometryWithData(render::GeometryType::Lines, vertices, Indices);
}
}
namespace detail
{
inline void addVertex(std::vector<render::RenderVertex>& vertices, std::vector<unsigned int>& indices,
const Vector3& vertex, const Vector4& colour)
{
indices.push_back(static_cast<unsigned int>(vertices.size()));
vertices.push_back(render::RenderVertex(vertex, { 0,0,0 }, { 0,0 }, colour));
}
}
void RenderableLightVertices::updateGeometry()
{
if (!_needsUpdate) return;
_needsUpdate = false;
std::vector<render::RenderVertex> vertices;
std::vector<unsigned int> indices;
vertices.reserve(LightVertexInstanceSet::NumVertices);
indices.reserve(LightVertexInstanceSet::NumVertices);
auto& settings = *EntitySettings::InstancePtr();
const auto& colourVertexSelected = settings.getLightVertexColour(LightEditVertexType::Selected);
const auto& colourVertexDeselected = settings.getLightVertexColour(LightEditVertexType::Deselected);
const auto& colourVertexInactive = settings.getLightVertexColour(LightEditVertexType::Inactive);
const auto& colourStartEndSelected = settings.getLightVertexColour(LightEditVertexType::StartEndSelected);
const auto& colourStartEndDeselected = settings.getLightVertexColour(LightEditVertexType::StartEndDeselected);
// Local colour evaluation lambdas
auto getRegularVertexColour = [&](const VertexInstance& instance)->const Vector3&
{
return _mode != selection::ComponentSelectionMode::Vertex ? colourVertexInactive :
instance.isSelected() ? colourVertexSelected : colourVertexDeselected;
};
auto getStartEndVertexColour = [&](const VertexInstance& instance)->const Vector3&
{
return _mode != selection::ComponentSelectionMode::Vertex ? colourVertexInactive :
instance.isSelected() ? colourStartEndSelected : colourStartEndDeselected;
};
if (_light.isProjected())
{
detail::addVertex(vertices, indices, _instances.target.getVertex(), getRegularVertexColour(_instances.target));
detail::addVertex(vertices, indices, _instances.right.getVertex(), getRegularVertexColour(_instances.right));
detail::addVertex(vertices, indices, _instances.up.getVertex(), getRegularVertexColour(_instances.up));
if (_useFlags.start)
{
detail::addVertex(vertices, indices, _instances.start.getVertex(), getStartEndVertexColour(_instances.start));
}
if (_useFlags.end)
{
detail::addVertex(vertices, indices, _instances.end.getVertex(), getStartEndVertexColour(_instances.end));
}
}
else
{
// Not a projected light, include just the light centre vertex
detail::addVertex(vertices, indices, _instances.center.getVertex(), getRegularVertexColour(_instances.center));
}
// Apply the local2world transform to all the vertices
const auto& local2World = _light.localToWorld();
applyTransform(vertices, local2World);
updateGeometryWithData(render::GeometryType::Points, vertices, indices);
}
} // namespace
|