File: StaticModel.cpp

package info (click to toggle)
darkradiant 3.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 41,080 kB
  • sloc: cpp: 264,743; ansic: 10,659; python: 1,852; xml: 1,650; sh: 92; makefile: 21
file content (369 lines) | stat: -rw-r--r-- 9,683 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#include "StaticModel.h"
#include "StaticModelSurface.h"

#include "ivolumetest.h"
#include "iselectiontest.h"
#include "texturelib.h"
#include "ishaders.h"
#include "modelskin.h"
#include "ifilter.h"
#include "imodelsurface.h"
#include "VolumeIntersectionValue.h"
#include "math/Ray.h"
#include "BasicUndoMemento.h"

namespace model
{

StaticModel::StaticModel(const std::vector<StaticModelSurfacePtr>& surfaces) :
    _scaleTransformed(1, 1, 1),
    _scale(1, 1, 1),
    _undoStateSaver(nullptr)
{
    for (const auto& surface : surfaces)
    {
        auto& inserted = _surfaces.emplace_back(surface);

        // Extend the model AABB to include each surface's AABB
        _localAABB.includeAABB(inserted.surface->getAABB());
    }
}

StaticModel::StaticModel(const StaticModel& other) :
    _surfaces(other._surfaces.size()),
    _scaleTransformed(other._scaleTransformed),
    _scale(other._scale), // use scale of other model
    _localAABB(other._localAABB),
    _filename(other._filename),
    _modelPath(other._modelPath),
    _undoStateSaver(nullptr)
{
    // Copy the other model's surfaces, but not its shaders, revert to default
    for (std::size_t i = 0; i < other._surfaces.size(); ++i)
    {
        // Copy-construct the other surface, inheriting any applied scale
        _surfaces[i].surface = std::make_shared<StaticModelSurface>(*(other._surfaces[i].surface));
        _surfaces[i].originalSurface = other._surfaces[i].originalSurface;
        _surfaces[i].surface->setActiveMaterial(_surfaces[i].surface->getDefaultMaterial());
    }
}

void StaticModel::connectUndoSystem(IUndoSystem& undoSystem)
{
    assert(_undoStateSaver == nullptr);

    _undoStateSaver = undoSystem.getStateSaver(*this);
}

void StaticModel::disconnectUndoSystem(IUndoSystem& undoSystem)
{
    assert(_undoStateSaver != nullptr);

    _undoStateSaver = nullptr;
    undoSystem.releaseStateSaver(*this);
}

void StaticModel::foreachVisibleSurface(const std::function<void(const Surface& s)>& func) const
{
    for (const Surface& surface : _surfaces)
    {
        assert(surface.shader);

        // Check if the surface's shader is filtered, if not then submit it for rendering
        const MaterialPtr& surfaceShader = surface.shader->getMaterial();

        if (surfaceShader && surfaceShader->isVisible())
        {
            func(surface);
        }
    }
}

void StaticModel::setRenderSystem(const RenderSystemPtr& renderSystem)
{
    _renderSystem = renderSystem;

    captureShaders();
}

std::string StaticModel::getFilename() const 
{
    return _filename;
}

void StaticModel::setFilename(const std::string& name)
{
    _filename = name;
}

// Return vertex count of this model
int StaticModel::getVertexCount() const 
{
    int sum = 0;

    for (const Surface& s : _surfaces)
    {
        sum += s.surface->getNumVertices();
    }

    return sum;
}

// Return poly count of this model
int StaticModel::getPolyCount() const
{
    int sum = 0;

    for (const Surface& s : _surfaces)
    {
        sum += s.surface->getNumTriangles();
    }

    return sum;
}

const IModelSurface& StaticModel::getSurface(unsigned surfaceNum) const
{
    assert(surfaceNum >= 0 && surfaceNum < _surfaces.size());
    return *(_surfaces[surfaceNum].surface);
}

// Apply the given skin to this model
void StaticModel::applySkin(const decl::ISkin::Ptr& skin)
{
    // Apply the skin to each surface, then try to capture shaders
    for (auto& s : _surfaces)
    {
        const std::string& defaultMaterial = s.surface->getDefaultMaterial();
        const std::string& activeMaterial = s.surface->getActiveMaterial();

        // Look up the remap for this surface's material name. If there is a remap
        // change the Shader* to point to the new shader.
        auto remap = skin ? skin->getRemap(defaultMaterial) : std::string();

        if (!remap.empty() && remap != activeMaterial)
        {
            // Save the remapped shader name
            s.surface->setActiveMaterial(remap);
        }
        else if (remap.empty() && activeMaterial != defaultMaterial)
        {
            // No remap, so reset our shader to the original unskinned shader
            s.surface->setActiveMaterial(defaultMaterial);
        }
    }

    captureShaders();

    // greebo: Update the active material list after applying this skin
    updateMaterialList();
}

void StaticModel::captureShaders()
{
    auto renderSystem = _renderSystem.lock();

    // Capture or release our shaders
    for (auto& s : _surfaces)
    {
        if (renderSystem)
        {
            s.shader = renderSystem->capture(s.surface->getActiveMaterial());
        }
        else
        {
            s.shader.reset();
        }
    }

    _sigShadersChanged.emit();
}

sigc::signal<void>& StaticModel::signal_ShadersChanged()
{
    return _sigShadersChanged;
}

sigc::signal<void>& StaticModel::signal_SurfaceScaleApplied()
{
    return _sigSurfaceScaleApplied;
}

// Update the list of active materials
void StaticModel::updateMaterialList() const
{
    _materialList.clear();

    for (const auto& s : _surfaces)
    {
        _materialList.push_back(s.surface->getActiveMaterial());
    }
}

// Return the list of active skins for this model
const StringList& StaticModel::getActiveMaterials() const
{
    // If the material list is empty, populate it
    if (_materialList.empty())
    {
        updateMaterialList();
    }

    // Return the list
    return _materialList;
}

void StaticModel::testSelect(Selector& selector, SelectionTest& test, const Matrix4& localToWorld)
{
    // Perform a volume intersection (AABB) check on each surface. For those
    // that intersect, call the surface's own testSelection method to perform
    // a proper selection test.
    for (const auto& surface : _surfaces)
    {
        // Check volume intersection
        if (test.getVolume().TestAABB(surface.surface->getAABB(), localToWorld) != VOLUME_OUTSIDE)
        {
            bool twoSided = surface.shader && surface.shader->getMaterial()->getCullType() == Material::CULL_NONE;

            // Volume intersection passed, delegate the selection test
            surface.surface->testSelect(selector, test, localToWorld, twoSided);
        }
    }
}

bool StaticModel::getIntersection(const Ray& ray, Vector3& intersection, const Matrix4& localToWorld)
{
    Vector3 bestIntersection = ray.origin;

    // Test each surface and take the nearest point to the ray origin
    for (SurfaceList::iterator i = _surfaces.begin(); i != _surfaces.end(); ++i)
    {
        Vector3 surfaceIntersection;

        if (i->surface->getIntersection(ray, surfaceIntersection, localToWorld))
        {
            // Test if this surface intersection is better than what we currently have
            auto oldDistSquared = (bestIntersection - ray.origin).getLengthSquared();
            auto newDistSquared = (surfaceIntersection - ray.origin).getLengthSquared();

            if ((oldDistSquared == 0 && newDistSquared > 0) || newDistSquared < oldDistSquared)
            {
                bestIntersection = surfaceIntersection;
            }
        }
    }

    if ((bestIntersection - ray.origin).getLengthSquared() > 0)
    {
        intersection = bestIntersection;
        return true;
    }
    else
    {
        return false;
    }
}

const StaticModel::SurfaceList& StaticModel::getSurfaces() const
{
    return _surfaces;
}

std::string StaticModel::getModelPath() const
{
    return _modelPath;
}

void StaticModel::setModelPath(const std::string& modelPath)
{
    _modelPath = modelPath;
}

bool StaticModel::revertScale()
{
    if (_scaleTransformed == _scale) return false;

    _scaleTransformed = _scale;
    return true;
}

void StaticModel::evaluateScale(const Vector3& scale)
{
    _scaleTransformed *= scale;

    applyScaleToSurfaces();
}

void StaticModel::applyScaleToSurfaces()
{
    _localAABB = AABB();

    // Apply the scale to each surface
    for (Surface& surf : _surfaces)
    {
        // Are we still using the original surface? If yes,
        // it's now time to create a working copy
        if (surf.surface == surf.originalSurface)
        {
            // Copy-construct the surface
            surf.surface = std::make_shared<StaticModelSurface>(*surf.originalSurface);
        }

        // Apply the scale, on top of the original surface, this should save us from
        // reverting the transformation each time the scale changes
        surf.surface->applyScale(_scaleTransformed, *(surf.originalSurface));

        // Extend the model AABB to include the surface's AABB
        _localAABB.includeAABB(surf.surface->getAABB());
    }

    // Notify the model node to queue a renderable update
    _sigSurfaceScaleApplied.emit();
}

// Freeze transform, move the applied scale to the original model
void StaticModel::freezeScale()
{
    undoSave();

    // Apply the scale to each surface
    _scale = _scaleTransformed;
}

void StaticModel::undoSave()
{
    if (_undoStateSaver != nullptr)
    {
        _undoStateSaver->saveState();
    }
}

IUndoMementoPtr StaticModel::exportState() const
{
    return IUndoMementoPtr(new undo::BasicUndoMemento<Vector3>(_scale));
}

void StaticModel::importState(const IUndoMementoPtr& state)
{
    undoSave();

    _scale = std::static_pointer_cast< undo::BasicUndoMemento<Vector3> >(state)->data();
    _scaleTransformed = _scale;

    applyScaleToSurfaces();
}

const Vector3& StaticModel::getScale() const
{
    return _scale;
}

void StaticModel::foreachSurface(const std::function<void(const StaticModelSurface&)>& func) const
{
    for (const Surface& surf : _surfaces)
    {
        func(*surf.surface);
    }
}

} // namespace