File: Lwo2Exporter.cpp

package info (click to toggle)
darkradiant 3.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 41,080 kB
  • sloc: cpp: 264,743; ansic: 10,659; python: 1,852; xml: 1,650; sh: 92; makefile: 21
file content (305 lines) | stat: -rw-r--r-- 10,414 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
#include "Lwo2Exporter.h"

#include <vector>
#include "itextstream.h"
#include "imodelsurface.h"
#include "imap.h"
#include "math/AABB.h"
#include "stream/utils.h"

#include "Lwo2Chunk.h"

// Namespace extension containing some LWO-specific data export functions
namespace stream
{

// Write a Variable Index (VX) data type to the given stream
void writeVariableIndex(std::ostream& stream, std::size_t index)
{
	// LWO2 defines the variable index VX data type which is
	// 32 bit as soon as the index value is greater than 0xFF00, otherwise 16 bit
	if (index < 0xFF00)
	{
		writeBigEndian<uint16_t>(stream, static_cast<uint16_t>(index));
	}
	else
	{
		// According to the specs, for values greater than 0xFF00:
		// "the index is written as an unsigned four byte integer with bits 24-31 set"
		writeBigEndian<uint32_t>(stream, static_cast<uint32_t>(index) | 0xFF000000);
	}
}

// Writes an S0 datatype to the given stream
void writeString(std::ostream& stream, const std::string& str)
{
	// LWO2 requires the following "Names or other character strings 
	// are written as a series of ASCII character values followed by 
	// a zero (or null) byte. If the length of the string including the 
	// null terminating byte is odd, an extra null is added so that the 
	// data that follows will begin on an even byte boundary."
	std::size_t len = str.length();

	// An empty string is a null-terminating byte plus the extra null
	if (len == 0)
	{
		stream.write("\0\0", 2);
		return;
	}

	// Write the string including the null-terminator
	stream.write(str.c_str(), len + 1);

	// Handle the extra padding byte
	if ((len + 1) % 2 == 1)
	{
		stream.write("\0", 1);
	}
}

} // namespace stream

namespace model
{

IModelExporterPtr Lwo2Exporter::clone()
{
	return std::make_shared<Lwo2Exporter>();
}

const std::string& Lwo2Exporter::getDisplayName() const
{
	static std::string _extension("Lightwave Object File");
	return _extension;
}

const std::string& Lwo2Exporter::getExtension() const
{
	static std::string _extension("LWO");
	return _extension;
}

void Lwo2Exporter::exportToPath(const std::string& outputPath, const std::string& filename)
{
    // Open the stream to the output file
    stream::ExportStream output(outputPath, filename, stream::ExportStream::Mode::Binary);

    exportToStream(output.getStream());

    output.close();
}

void Lwo2Exporter::exportToStream(std::ostream& stream)
{
	// The encompassing FORM chunk
	Lwo2Chunk fileChunk("FORM", Lwo2Chunk::Type::Chunk);

	// The data of the FORM file contains just the LWO2 id and the collection of chunks
	fileChunk.stream.write("LWO2", 4);

	// Assemble the list of regular Chunks, these all use 4 bytes for size info

	// TAGS
	Lwo2Chunk::Ptr tags = fileChunk.addChunk("TAGS");
	
	// Export all material names as tags
	if (!_surfaces.empty())
	{
		for (const Surfaces::value_type& pair : _surfaces)
		{
			stream::writeString(tags->stream, pair.second.materialName);
		}
	}
	else
	{
		stream::writeString(tags->stream, "");
	}

	// Create a single layer for the geometry
	Lwo2Chunk::Ptr layr = fileChunk.addChunk("LAYR");

	// LAYR{ number[U2], flags[U2], pivot[VEC12], name[S0], parent[U2] ? }

	stream::writeBigEndian<uint16_t>(layr->stream, 0); // number[U2]
	stream::writeBigEndian<uint16_t>(layr->stream, 0); // flags[U2]

	// pivot[VEC12]
	stream::writeBigEndian<float>(layr->stream, 0);
	stream::writeBigEndian<float>(layr->stream, 0);
	stream::writeBigEndian<float>(layr->stream, 0);

	stream::writeString(layr->stream, ""); // name[S0]
	// no parent index

	// Create the chunks for PNTS, POLS, PTAG, VMAP
	Lwo2Chunk::Ptr pnts = fileChunk.addChunk("PNTS");
	Lwo2Chunk::Ptr bbox = fileChunk.addChunk("BBOX");
	Lwo2Chunk::Ptr pols = fileChunk.addChunk("POLS");
	Lwo2Chunk::Ptr ptag = fileChunk.addChunk("PTAG");
	Lwo2Chunk::Ptr vmap = fileChunk.addChunk("VMAP");
	Lwo2Chunk::Ptr colourVmap = fileChunk.addChunk("VMAP");

	// We only ever export FACE polygons
	pols->stream.write("FACE", 4);
	ptag->stream.write("SURF", 4); // we tag the surfaces

	// Texture UV Coordinates go into one VMAP
	// VMAP { type[ID4], dimension[U2], name[S0], ...) }
	vmap->stream.write("TXUV", 4);		// "TXUV"
	stream::writeBigEndian<uint16_t>(vmap->stream, 2); // dimension (2 vector components)
	
	std::string uvmapName = "UVMap";
	stream::writeString(vmap->stream, uvmapName);

	// Vertex Colours go into another VMAP
	// VMAP { type[ID4], dimension[U2], name[S0], ...) }
	colourVmap->stream.write("RGBA", 4); // type [ID4] == "RGBA"
	stream::writeBigEndian<uint16_t>(colourVmap->stream, 4); // dimension (4 colour components)

	std::string vertColourMapName = "VertexColourMap";
	stream::writeString(colourVmap->stream, vertColourMapName); // map name [S0]

	std::size_t vertexIdxStart = 0;
	std::size_t polyNum = 0; // poly index is used across all surfaces

	AABB bounds;

	// Write all surface data
	std::size_t surfNum = 0;
	for (Surfaces::value_type& pair : _surfaces)
	{
		Surface& surface = pair.second;

		for (std::size_t v = 0; v < surface.vertices.size(); ++v)
		{
			const MeshVertex& vertex = surface.vertices[v];
			std::size_t vertNum = vertexIdxStart + v;

			// "The LightWave coordinate system is left-handed, with +X to the right or east, +Y upward, and +Z forward or north."
			stream::writeBigEndian<float>(pnts->stream, static_cast<float>(vertex.vertex.x()));
			stream::writeBigEndian<float>(pnts->stream, static_cast<float>(vertex.vertex.z()));
			stream::writeBigEndian<float>(pnts->stream, static_cast<float>(vertex.vertex.y()));

			// Write the UV map data (invert the T axis)
			stream::writeVariableIndex(vmap->stream, vertNum);
			stream::writeBigEndian<float>(vmap->stream, static_cast<float>(vertex.texcoord.x()));
			stream::writeBigEndian<float>(vmap->stream, 1.0f - static_cast<float>(vertex.texcoord.y()));

			// Write the vertex colour data
			stream::writeVariableIndex(colourVmap->stream, vertNum);
			stream::writeBigEndian<float>(colourVmap->stream, static_cast<float>(vertex.colour.x()));
			stream::writeBigEndian<float>(colourVmap->stream, static_cast<float>(vertex.colour.y()));
			stream::writeBigEndian<float>(colourVmap->stream, static_cast<float>(vertex.colour.z()));
			stream::writeBigEndian<float>(colourVmap->stream, static_cast<float>(vertex.colour.w()));

			// Accumulate the BBOX
			bounds.includePoint(vertex.vertex);
		}

		int16_t numVerts = 3; // we export triangles

		// LWO2 sez: "When writing POLS, the vertex list for each polygon should begin 
		// at a convex vertex and proceed clockwise as seen from the visible side of the polygon"
		// DarkRadiant uses CCW windings, so reverse the index ordering

		for (std::size_t i = 0; i + 2 < surface.indices.size(); i += 3)
		{
			stream::writeBigEndian<uint16_t>(pols->stream, numVerts); // [U2]

			// The three vertices defining this polygon (reverse indices to produce LWO2 windings)
			stream::writeVariableIndex(pols->stream, vertexIdxStart + surface.indices[i+2]); // [VX]
			stream::writeVariableIndex(pols->stream, vertexIdxStart + surface.indices[i+1]); // [VX]
			stream::writeVariableIndex(pols->stream, vertexIdxStart + surface.indices[i+0]); // [VX]

			// The surface mapping in the PTAG
			stream::writeVariableIndex(ptag->stream, polyNum); // [VX]
			stream::writeBigEndian<uint16_t>(ptag->stream, static_cast<uint16_t>(surfNum)); // [U2]

			++polyNum;
		}

		// Write the SURF chunk for the surface
		Lwo2Chunk::Ptr surf = fileChunk.addChunk("SURF");

		stream::writeString(surf->stream, surface.materialName);
		stream::writeString(surf->stream, ""); // empty parent name

		// Define the base surface colour as <1.0, 1.0, 1.0>
		Lwo2Chunk::Ptr colr = surf->addSubChunk("COLR");
		
		stream::writeBigEndian<float>(colr->stream, 1.0f);
		stream::writeBigEndian<float>(colr->stream, 1.0f);
		stream::writeBigEndian<float>(colr->stream, 1.0f);
		stream::writeVariableIndex(colr->stream, 0);

		// Reference the name of the vertex colour map
		Lwo2Chunk::Ptr vcol = surf->addSubChunk("VCOL");
		stream::writeBigEndian<float>(vcol->stream, 1.0f); // intensity [F4]
		stream::writeVariableIndex(vcol->stream, 0); // [VX]
		vcol->stream.write("RGBA", 4); // vmap-type [ID4]
		stream::writeString(vcol->stream, vertColourMapName); // name [S0]

		// Smoothing angle
		Lwo2Chunk::Ptr sman = surf->addSubChunk("SMAN");
		stream::writeBigEndian<float>(sman->stream, static_cast<float>(degrees_to_radians(95.0f))); // 95 degrees smoothing angle

		// Define the BLOK subchunk
		Lwo2Chunk::Ptr blok = surf->addSubChunk("BLOK");

		// Add the IMAP subchunk
		Lwo2Chunk::Ptr imap = blok->addSubChunk("IMAP");
		{
			// Use the same name as the surface as ordinal string
			stream::writeString(imap->stream, surface.materialName);

			Lwo2Chunk::Ptr imapChan = imap->addSubChunk("CHAN");
			imapChan->stream.write("COLR", 4);

			Lwo2Chunk::Ptr imapEnab = imap->addSubChunk("ENAB");
			stream::writeBigEndian<uint16_t>(imapEnab->stream, 1);
		}

		// TMAP
		Lwo2Chunk::Ptr blokTmap = blok->addSubChunk("TMAP");
		{
			Lwo2Chunk::Ptr tmapSize = blokTmap->addSubChunk("SIZE");
			stream::writeBigEndian<float>(tmapSize->stream, 1.0f);
			stream::writeBigEndian<float>(tmapSize->stream, 1.0f);
			stream::writeBigEndian<float>(tmapSize->stream, 1.0f);
			stream::writeVariableIndex(tmapSize->stream, 0);
		}

		// PROJ
		Lwo2Chunk::Ptr blokProj = blok->addSubChunk("PROJ");
		stream::writeBigEndian<uint16_t>(blokProj->stream, 5); // UV-mapped projection

		// AXIS
		Lwo2Chunk::Ptr blokAxis = blok->addSubChunk("AXIS");
		stream::writeBigEndian<uint16_t>(blokAxis->stream, 2); // Z axis

		// VMAP 
		Lwo2Chunk::Ptr blokVmap = blok->addSubChunk("VMAP");
		stream::writeString(blokVmap->stream, uvmapName);

		// Reposition the vertex index
		vertexIdxStart += surface.vertices.size();

		++surfNum;
	}

	// Write the bounds now that we know all the points
	Vector3 min = bounds.origin - bounds.extents;
	Vector3 max = bounds.origin + bounds.extents;

	stream::writeBigEndian<float>(bbox->stream, static_cast<float>(min.x()));
	stream::writeBigEndian<float>(bbox->stream, static_cast<float>(min.y()));
	stream::writeBigEndian<float>(bbox->stream, static_cast<float>(min.z()));

	stream::writeBigEndian<float>(bbox->stream, static_cast<float>(max.x()));
	stream::writeBigEndian<float>(bbox->stream, static_cast<float>(max.y()));
	stream::writeBigEndian<float>(bbox->stream, static_cast<float>(max.z()));

	fileChunk.writeToStream(stream);
}

}