File: ModelExporter.cpp

package info (click to toggle)
darkradiant 3.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 41,080 kB
  • sloc: cpp: 264,743; ansic: 10,659; python: 1,852; xml: 1,650; sh: 92; makefile: 21
file content (272 lines) | stat: -rw-r--r-- 6,460 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
#include "ModelExporter.h"

#include "i18n.h"
#include "ibrush.h"
#include "iclipper.h" // for caulk shader registry key
#include "ilightnode.h"
#include "ipatch.h"
#include "itextstream.h"
#include "imodel.h"
#include "os/fs.h"
#include "entitylib.h"
#include "registry/registry.h"
#include <stdexcept>
#include <fstream>

#include "PatchSurface.h"

namespace model
{

namespace
{

// Adapter methods to convert brush vertices to MeshVertex type
MeshVertex convertWindingVertex(const WindingVertex& in)
{
	MeshVertex out;

	out.vertex = in.vertex;
	out.normal = in.normal;
	out.texcoord = in.texcoord;
	out.bitangent = in.bitangent;
	out.tangent = in.tangent;
	out.colour = Vector4(1.0, 1.0, 1.0, 1.0);

	return out;
}

// Create a polygon out of 3 vertices defined in counter-clockwise winding
// Only the normal will be calculated, texcoord, tangent and bitangents will be zero
model::ModelPolygon createPolyCCW(const Vertex3& a, const Vertex3& b, const Vertex3& c)
{
	model::ModelPolygon poly;

	poly.a.vertex = a;
	poly.b.vertex = b;
	poly.c.vertex = c;

	// Calc normals for all three vertices
	poly.a.normal = poly.b.normal = poly.c.normal = (b-a).cross(c-a).getNormalised();

	return poly;
}

}

ModelExporter::ModelExporter(const model::IModelExporterPtr& exporter) :
	_exporter(exporter),
	_skipCaulk(false),
	_caulkMaterial(registry::getValue<std::string>(RKEY_CLIPPER_CAULK_SHADER)),
	_centerObjects(false),
	_origin(0,0,0),
	_useOriginAsCenter(false),
	_exportLightsAsObjects(false),
	_centerTransform(Matrix4::getIdentity())
{
	if (!_exporter)
	{
		rError() << "Cannot save out scaled models, no exporter found." << std::endl;
		return;
	}
}

void ModelExporter::setSkipCaulkMaterial(bool skipCaulk)
{
	_skipCaulk = skipCaulk;
}

void ModelExporter::setCenterObjects(bool centerObjects)
{
	_centerObjects = centerObjects;
}

void ModelExporter::setOrigin(const Vector3& origin)
{
	_origin = origin;
	_useOriginAsCenter = true;
}

void ModelExporter::setExportLightsAsObjects(bool enabled)
{
	_exportLightsAsObjects = enabled;
}

bool ModelExporter::pre(const scene::INodePtr& node)
{
	// Skip worldspawn
	if (Node_isWorldspawn(node)) return true;

	_nodes.push_back(node);

	return true;
}

const Matrix4& ModelExporter::getCenterTransform()
{
	return _centerTransform;
}

void ModelExporter::processNodes()
{
	AABB bounds = calculateModelBounds();

	if (_centerObjects)
	{
		// Depending on the center point, we need to use the object bounds
		// or just the translation towards the user-defined origin, ignoring bounds
		_centerTransform = _useOriginAsCenter ?
			Matrix4::getTranslation(-_origin) :
			Matrix4::getTranslation(-bounds.origin);
	}

	for (const scene::INodePtr& node : _nodes)
	{
		if (Node_isModel(node))
		{
			model::ModelNodePtr modelNode = Node_getModel(node);

			// Push the geometry into the exporter
			model::IModel& model = modelNode->getIModel();

			Matrix4 exportTransform = node->localToWorld().getPremultipliedBy(_centerTransform);

			for (int s = 0; s < model.getSurfaceCount(); ++s)
			{
				const model::IModelSurface& surface = model.getSurface(s);

				if (isExportableMaterial(surface.getActiveMaterial()))
				{
					_exporter->addSurface(surface, exportTransform);
				}
			}
		}
		else if (Node_isBrush(node))
		{
			processBrush(node);
		}
		else if (Node_isPatch(node))
		{
			processPatch(node);
		}
		else if (_exportLightsAsObjects && Node_getLightNode(node))
		{
			processLight(node);
		}
	}
}

AABB ModelExporter::calculateModelBounds()
{
	AABB bounds;

	for (const scene::INodePtr& node : _nodes)
	{
		// Only consider the node types supported by processNodes()
		if (!Node_isModel(node) && !Node_isBrush(node) && !Node_isPatch(node))
		{
			continue;
		}

		bounds.includeAABB(node->worldAABB());
	}

	return bounds;
}

void ModelExporter::processPatch(const scene::INodePtr& node)
{
	IPatch* patch = Node_getIPatch(node);

	if (patch == nullptr) return;

	const std::string& materialName = patch->getShader();

	if (!isExportableMaterial(materialName)) return;

	PatchMesh mesh = patch->getTesselatedPatchMesh();
    Matrix4 exportTransform = node->localToWorld().getPremultipliedBy(_centerTransform);

    // Convert the patch mesh to an indexed surface
    PatchSurface surface(materialName, mesh);
    _exporter->addSurface(surface, exportTransform);
}

void ModelExporter::processBrush(const scene::INodePtr& node)
{
	IBrush* brush = Node_getIBrush(node);

	if (brush == nullptr) return;

	Matrix4 exportTransform = node->localToWorld().getPremultipliedBy(_centerTransform);

	for (std::size_t b = 0; b < brush->getNumFaces(); ++b)
	{
		const IFace& face = brush->getFace(b);

		const std::string& materialName = face.getShader();

		if (!isExportableMaterial(materialName)) continue;

		const IWinding& winding = face.getWinding();

		std::vector<model::ModelPolygon> polys;

		if (winding.size() < 3)
		{
			rWarning() << "Skipping face with less than 3 winding verts" << std::endl;
			continue;
		}

		// Create triangles for this winding
		for (std::size_t i = 1; i < winding.size() - 1; ++i)
		{
			model::ModelPolygon poly;

			poly.a = convertWindingVertex(winding[i + 1]);
			poly.b = convertWindingVertex(winding[i]);
			poly.c = convertWindingVertex(winding[0]);

			polys.push_back(poly);
		}

		_exporter->addPolygons(materialName, polys, exportTransform);
	}
}

void ModelExporter::processLight(const scene::INodePtr& node)
{
	// Export lights as small polyhedron
	static const double EXTENTS = 8.0;
	std::vector<model::ModelPolygon> polys;

	Vertex3 up(0, 0, EXTENTS);
	Vertex3 down(0, 0, -EXTENTS);
	Vertex3 north(0, EXTENTS, 0);
	Vertex3 south(0, -EXTENTS, 0);
	Vertex3 east(EXTENTS, 0, 0);
	Vertex3 west(-EXTENTS, 0, 0);

	// Upper semi-diamond
	polys.push_back(createPolyCCW(up, south, east));
	polys.push_back(createPolyCCW(up, east, north));
	polys.push_back(createPolyCCW(up, north, west));
	polys.push_back(createPolyCCW(up, west, south));

	// Lower semi-diamond
	polys.push_back(createPolyCCW(down, south, west));
	polys.push_back(createPolyCCW(down, west, north));
	polys.push_back(createPolyCCW(down, north, east));
	polys.push_back(createPolyCCW(down, east, south));

	Matrix4 exportTransform = node->localToWorld().getPremultipliedBy(_centerTransform);

	_exporter->addPolygons("lights/default", polys, exportTransform);
}

bool ModelExporter::isExportableMaterial(const std::string& materialName)
{
	return !_skipCaulk || materialName != _caulkMaterial;
}

}