File: AseModel.cpp

package info (click to toggle)
darkradiant 3.9.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 41,080 kB
  • sloc: cpp: 264,743; ansic: 10,659; python: 1,852; xml: 1,650; sh: 92; makefile: 21
file content (614 lines) | stat: -rw-r--r-- 23,022 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
#include "AseModel.h"

#include <unordered_map>
#include <fmt/format.h>
#include "parser/Tokeniser.h"
#include "parser/ParseException.h"
#include "string/case_conv.h"
#include "string/trim.h"
#include "string/convert.h"
#include "render.h"

#include "render/VertexHashing.h"

/* -----------------------------------------------------------------------------

ASE Loading Code based on the original PicoModel ASE parser (licence as follows)

PicoModel Library

Copyright (c) 2002, Randy Reddig & seaw0lf
All rights reserved.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list
of conditions and the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other aseMaterialList provided with the distribution.

Neither the names of the copyright holders nor the names of its contributors may
be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

----------------------------------------------------------------------------- */

namespace model
{

struct AseModel::Face
{
    Face()
    {
        vertexIndices[0] = vertexIndices[1] = vertexIndices[2] = 0;
        normalIndices[0] = normalIndices[1] = normalIndices[2] = 0;
        texcoordIndices[0] = texcoordIndices[1] = texcoordIndices[2] = 0;
        colourIndices[0] = colourIndices[1] = colourIndices[2] = 0;
    }

    std::size_t vertexIndices[3];
    std::size_t normalIndices[3];
    std::size_t texcoordIndices[3];
    std::size_t colourIndices[3];
};

AseModel::Material::Material() :
    uOffset(0),
    vOffset(0),
    uTiling(1),
    vTiling(1),
    uvAngle(0)
{}

void AseModel::finishSurface(Mesh& mesh, std::size_t materialIndex, const Matrix4& nodeMatrix)
{
    static Vector3 White(1, 1, 1);

    if (materialIndex >= _materials.size())
    {
        throw parser::ParseException(fmt::format("Cannot submit triangles, material index {0} is out of range", materialIndex));
    }

    const auto& material = _materials[materialIndex];

    // submit the triangle to the model
    auto& surface = ensureSurface(material.diffuseBitmap);

    surface.vertices.reserve(surface.vertices.size() + mesh.vertices.size());
    surface.indices.reserve(surface.indices.size() + mesh.faces.size() * 3);

    double materialSin = sin(material.uvAngle);
    double materialCos = cos(material.uvAngle);

    // Hash table to provide quick (and coarse) lookup of vertices with similar XYZ coords
    std::unordered_map<MeshVertex, std::size_t> vertexIndices;

    for (const auto& face : mesh.faces)
    {
        // we pull the data from the vertex, color and texcoord arrays using the face index data
        for (int j = 0; j < 3; ++j)
        {
            const auto& vertex = mesh.vertices[face.vertexIndices[j]];
            const auto& normal = mesh.normals[face.normalIndices[j]];

            double u, v;

            // greebo: Apply shift, scale and rotation
            // Also check for empty texcoords, some models surfaces don't have any tverts
            if (!mesh.texcoords.empty())
            {
                u = mesh.texcoords[face.texcoordIndices[j]].x() * material.uTiling + material.uOffset;
                v = mesh.texcoords[face.texcoordIndices[j]].y() * material.vTiling + material.vOffset;
            }
            else
            {
                u = 0;
                v = 0;
            }

            const auto& colour = !mesh.colours.empty() ? mesh.colours[face.colourIndices[j]] : White;
            
            MeshVertex meshVertex(
                vertex,
                nodeMatrix.transformDirection(normal).getNormalised(),
                TexCoord2f(u * materialCos + v * materialSin, u * -materialSin + v * materialCos),
                colour
            );

            // Try to look up an existing vertex or add a new index
            auto emplaceResult = vertexIndices.try_emplace(meshVertex, surface.vertices.size());

            if (emplaceResult.second)
            {
                // This was a new vertex, copy it to the vertex array
                surface.vertices.emplace_back(emplaceResult.first->first);
            }
            
            // The emplaceResult now points to a valid index in the vertex array
            surface.indices.emplace_back(static_cast<IndexBuffer::value_type>(emplaceResult.first->second));
        }
    }
}

AseModel::Surface& AseModel::addSurface(const std::string& name)
{
    return _surfaces.emplace_back(Surface{name});
}

AseModel::Surface& AseModel::ensureSurface(const std::string& name)
{
    for (auto& surface : _surfaces)
    {
        if (surface.material == name)
        {
            return surface;
        }
    }

    return addSurface(name);
}

std::vector<AseModel::Surface>& AseModel::getSurfaces()
{
    return _surfaces;
}

void AseModel::parseMaterialList(parser::StringTokeniser& tokeniser)
{
    _materials.clear();

    int blockLevel = 0;

    while (tokeniser.hasMoreTokens())
    {
        auto token = tokeniser.nextToken();
        string::to_lower(token);

        if (token == "}")
        {
            if (--blockLevel == 0) break;
        }
        else if (token == "{")
        {
            ++blockLevel;
        }
        else if (token == "*material_count")
        {
            // Material count is ignored, we just add every *MATERIAL block we encounter
            tokeniser.skipTokens(1);
        }
        else if (token == "*material")
        {
            // The next token must be numeric, but we ignore it
            string::convert<std::size_t>(tokeniser.nextToken());

            auto& material = _materials.emplace_back();

            tokeniser.assertNextToken("{");
            int level = 1;

            /* parse material block */
            while (tokeniser.hasMoreTokens())
            {
                token = tokeniser.nextToken();
                string::to_lower(token);

                if (token.empty()) continue;

                /* handle levels */
                if (token[0] == '{') level++;
                if (token[0] == '}') level--;

                if (level == 0) break;

                /* parse material name */
                if (token == "*material_name")
                {
                    material.materialName = string::trim_copy(tokeniser.nextToken(), "\"");
                }
                /* material diffuse map */
                else if (token == "*map_diffuse")
                {
                    int sublevel = 0;

                    /* parse material block */
                    while (tokeniser.hasMoreTokens())
                    {
                        token = tokeniser.nextToken();
                        string::to_lower(token);

                        if (token.empty()) continue;

                        /* handle levels */
                        if (token[0] == '{') sublevel++;
                        if (token[0] == '}') sublevel--;

                        if (sublevel == 0) break;

                        /* parse diffuse map bitmap */
                        if (token == "*bitmap")
                        {
                            material.diffuseBitmap = string::trim_copy(tokeniser.nextToken(), "\"");
                        }
                        else if (token == "*uvw_u_offset")
                        {
                            // Negate the u offset value
                            material.uOffset = -string::convert<float>(tokeniser.nextToken());
                        }
                        else if (token == "*uvw_v_offset")
                        {
                            material.vOffset = string::convert<float>(tokeniser.nextToken());
                        }
                        else if (token == "*uvw_u_tiling")
                        {
                            material.uTiling = string::convert<float>(tokeniser.nextToken());
                        }
                        else if (token == "*uvw_v_tiling")
                        {
                            material.vTiling = string::convert<float>(tokeniser.nextToken());
                        }
                        else if (token == "*uvw_angle")
                        {
                            material.uvAngle = string::convert<float>(tokeniser.nextToken());
                        }
                    }
                } // end map_diffuse block
            } // end material block
        }
    }
}

void AseModel::parseFaceNormals(Mesh& mesh, parser::StringTokeniser& tokeniser)
{
    // *MESH_FACENORMAL 0   -1.0000   0.0000  0.0000
    
    // Get the face index from this keyword, disregard the normal itself
    auto faceIndex = string::convert<std::size_t>(tokeniser.nextToken());

    if (faceIndex >= mesh.faces.size()) throw parser::ParseException("MESH_FACENORMAL index out of bounds >= MESH_NUMFACES");
    if (faceIndex * 3 + 2 >= mesh.normals.size()) throw parser::ParseException("Not enough normals allocated < 3*MESH_NUMFACES");

    tokeniser.skipTokens(3); // skip the 3 face normal components

    auto& face = mesh.faces[faceIndex];

    // Parse three vertex normals following the face normal
    for (int i = 0; i < 3; ++i)
    {
        // model mesh vertex normal
        if (string::to_lower_copy(tokeniser.nextToken()) != "*mesh_vertexnormal")
        {
            throw parser::ParseException("Expected three *MESH_VERTEXNORMAL after *MESH_FACENORMAL");
        }

        // *MESH_VERTEXNORMAL 1  -1.0000  0.0000  0.0000

        // Validate the index, just in case
        auto index = string::convert<std::size_t>(tokeniser.nextToken());
        if (index >= mesh.vertices.size()) throw parser::ParseException("MESH_VERTEXNORMAL index out of bounds >= MESH_NUMVERTEX");

        // Parse the normal and add it to the pile (don't bother checking for duplicates)
        auto normalIndex = faceIndex * 3 + i;

        auto& normal = mesh.normals[normalIndex];

        normal.x() = string::convert<double>(tokeniser.nextToken());
        normal.y() = string::convert<double>(tokeniser.nextToken());
        normal.z() = string::convert<double>(tokeniser.nextToken());

        // To keep the same winding order, look up the [0..2] index by matching the normal index
        // against what is already stored in the face.vertexIndices array.
        int n;

        for (n = 0; n < 3; ++n)
        {
            if (face.vertexIndices[n] == index)
            {
                face.normalIndices[n] = normalIndex;
                break;
            }
        }

        if (n == 3)
        {
            throw parser::ParseException(fmt::format("Could not match the face vertex indices against the "
                "index specified in MESH_VERTEXNORMAL (face index: {0})", faceIndex));
        }
    }
}

void AseModel::parseMesh(Mesh& mesh, parser::StringTokeniser& tokeniser)
{
    int blockLevel = 0;

    while (tokeniser.hasMoreTokens())
    {
        auto token = tokeniser.nextToken();
        string::to_lower(token);

        if (token == "}")
        {
            if (--blockLevel == 0) break;
        }
        else if (token == "{")
        {
            ++blockLevel;
        }
        else if (token == "*mesh_numvertex")
        {
            // Parse the number to allocate space in the vertex vector
            auto numVertices = string::convert<std::size_t>(tokeniser.nextToken());
            mesh.vertices.resize(numVertices);
        }
        else if (token == "*mesh_numfaces")
        {
            auto numFaces = string::convert<std::size_t>(tokeniser.nextToken());
            mesh.faces.resize(numFaces);

            // We will get 3 vertex normals per face, make room for that
            mesh.normals.resize(numFaces * 3);
        }
        else if (token == "*mesh_numtvertex")
        {
            auto numTextureVertices = string::convert<std::size_t>(tokeniser.nextToken());
            mesh.texcoords.resize(numTextureVertices);
        }
        else if (token == "*mesh_numcvertex")
        {
            auto numColorVertices = string::convert<std::size_t>(tokeniser.nextToken());
            mesh.colours.resize(numColorVertices, Vector3(1.0, 1.0, 1.0));
        }
        /* model mesh vertex */
        else if (token == "*mesh_vertex")
        {
            auto index = string::convert<std::size_t>(tokeniser.nextToken());

            if (index >= mesh.vertices.size()) throw parser::ParseException("MESH_VERTEX index out of bounds >= MESH_NUMVERTEX");

            auto& vertex = mesh.vertices[index];
            vertex.x() = string::convert<double>(tokeniser.nextToken());
            vertex.y() = string::convert<double>(tokeniser.nextToken());
            vertex.z() = string::convert<double>(tokeniser.nextToken());
        }
        else if (token == "*mesh_facenormal")
        {
            parseFaceNormals(mesh, tokeniser);
        }
        /* model mesh face */
        else if (token == "*mesh_face")
        {
            // *MESH_FACE    0:    A:    3 B:    1 C:    2 [AB:    0 BC:    0 CA:    0]	 [*MESH_SMOOTHING 0]	 *MESH_MTLID 0
            auto index = string::convert<std::size_t>(string::trim_right_copy(tokeniser.nextToken(), ":"));

            if (index >= mesh.faces.size()) throw parser::ParseException("MESH_FACE index out of bounds >= MESH_NUMFACES");

            auto& face = mesh.faces[index];

            // Note: we're reversing the winding to get CW ordering
            tokeniser.assertNextToken("A:");
            face.vertexIndices[2] = string::convert<std::size_t>(tokeniser.nextToken());

            tokeniser.assertNextToken("B:");
            face.vertexIndices[1] = string::convert<std::size_t>(tokeniser.nextToken());

            tokeniser.assertNextToken("C:");
            face.vertexIndices[0] = string::convert<std::size_t>(tokeniser.nextToken());

            if (face.vertexIndices[2] >= mesh.vertices.size()) throw parser::ParseException("MESH_FACE vertex index 0 out of bounds >= MESH_NUMFACES");
            if (face.vertexIndices[1] >= mesh.vertices.size()) throw parser::ParseException("MESH_FACE vertex index 1 out of bounds >= MESH_NUMFACES");
            if (face.vertexIndices[0] >= mesh.vertices.size()) throw parser::ParseException("MESH_FACE vertex index 2 out of bounds >= MESH_NUMFACES");

            // Leave the rest of the line (*MESH_MTLID and *MESH_SMOOTHING) unparsed, 
            // and let the outer loop deal with any keywords that might follow or might not follow
        }
        /* model texture vertex */
        else if (token == "*mesh_tvert")
        {
            auto index = string::convert<std::size_t>(tokeniser.nextToken());

            if (index >= mesh.texcoords.size()) throw parser::ParseException("MESH_TVERT index out of bounds >= MESH_NUMTVERTEX");

            auto& texcoord = mesh.texcoords[index];
            texcoord.x() = string::convert<double>(tokeniser.nextToken());
            /* ydnar: invert t */
            texcoord.y() = 1.0 - string::convert<double>(tokeniser.nextToken());
            // ignore the third texcoord value
            tokeniser.nextToken();
        }
        /* ydnar: model mesh texture face */
        else if (token == "*mesh_tface")
        {
            // *MESH_TFACE 0    0   1   2
            auto index = string::convert<std::size_t>(tokeniser.nextToken());

            if (index >= mesh.faces.size()) throw parser::ParseException("MESH_TFACE index out of bounds >= MESH_NUMFACES");

            auto& face = mesh.faces[index];

            // Reverse the winding order
            face.texcoordIndices[2] = string::convert<std::size_t>(tokeniser.nextToken());
            face.texcoordIndices[1] = string::convert<std::size_t>(tokeniser.nextToken());
            face.texcoordIndices[0] = string::convert<std::size_t>(tokeniser.nextToken());

            if (face.texcoordIndices[2] >= mesh.texcoords.size()) throw parser::ParseException("MESH_TFACE texcoord index 0 out of bounds >= MESH_NUMTVERTEX");
            if (face.texcoordIndices[1] >= mesh.texcoords.size()) throw parser::ParseException("MESH_TFACE texcoord index 1 out of bounds >= MESH_NUMTVERTEX");
            if (face.texcoordIndices[0] >= mesh.texcoords.size()) throw parser::ParseException("MESH_TFACE texcoord index 2 out of bounds >= MESH_NUMTVERTEX");
        }
        /* model color vertex */
        else if (token == "*mesh_vertcol")
        {
            auto index = string::convert<std::size_t>(tokeniser.nextToken());

            if (index >= mesh.colours.size()) throw parser::ParseException("MESH_VERTCOL index out of bounds >= MESH_NUMCVERTEX");

            auto& colour = mesh.colours[index];
            colour.x() = string::convert<double>(tokeniser.nextToken());
            colour.y() = string::convert<double>(tokeniser.nextToken());
            colour.z() = string::convert<double>(tokeniser.nextToken());
        }
        /* model color face */
        else if (token == "*mesh_cface")
        {
            // *MESH_CFACE 0    0   1   2
            auto index = string::convert<std::size_t>(tokeniser.nextToken());

            if (index >= mesh.faces.size()) throw parser::ParseException("MESH_CFACE index out of bounds >= MESH_NUMFACES");

            auto& face = mesh.faces[index];

            // Reverse the winding order
            face.colourIndices[2] = string::convert<std::size_t>(tokeniser.nextToken());
            face.colourIndices[1] = string::convert<std::size_t>(tokeniser.nextToken());
            face.colourIndices[0] = string::convert<std::size_t>(tokeniser.nextToken());

            if (face.colourIndices[2] >= mesh.colours.size()) throw parser::ParseException("MESH_CFACE colour index 0 out of bounds >= MESH_NUMCVERTEX");
            if (face.colourIndices[1] >= mesh.colours.size()) throw parser::ParseException("MESH_CFACE colour index 1 out of bounds >= MESH_NUMCVERTEX");
            if (face.colourIndices[0] >= mesh.colours.size()) throw parser::ParseException("MESH_CFACE colour index 2 out of bounds >= MESH_NUMCVERTEX");
        }
    }
}

void AseModel::parseNodeMatrix(Matrix4& matrix, parser::StringTokeniser& tokeniser)
{
    int blockLevel = 0;

    // We parse the rows in the ASE file into the columns of the matrix
    // to be able to just use Matrix4::transformDirection() to transform the normal
    while (tokeniser.hasMoreTokens())
    {
        auto token = tokeniser.nextToken();
        string::to_lower(token);

        if (token == "}")
        {
            if (--blockLevel == 0) break;
        }
        else if (token == "{")
        {
            ++blockLevel;
        }
        else if (token == "*tm_row0")
        {
            matrix.xx() = string::convert<double>(tokeniser.nextToken());
            matrix.xy() = string::convert<double>(tokeniser.nextToken());
            matrix.xz() = string::convert<double>(tokeniser.nextToken());
        }
        else if (token == "*tm_row1")
        {
            matrix.yx() = string::convert<double>(tokeniser.nextToken());
            matrix.yy() = string::convert<double>(tokeniser.nextToken());
            matrix.yz() = string::convert<double>(tokeniser.nextToken());
        }
        else if (token == "*tm_row2")
        {
            matrix.zx() = string::convert<double>(tokeniser.nextToken());
            matrix.zy() = string::convert<double>(tokeniser.nextToken());
            matrix.zz() = string::convert<double>(tokeniser.nextToken());
        }
        // The fourth row *TM_ROW3 is ignored, translations are not applicable to normals
    }
}

void AseModel::parseGeomObject(parser::StringTokeniser& tokeniser)
{
    Mesh mesh;
    Matrix4 nodeMatrix = Matrix4::getIdentity();
    // even if no *MATERIAL_REF is found in the object, we use material 0 by default
    std::size_t materialIndex = 0;

    int blockLevel = 0;

    while (tokeniser.hasMoreTokens())
    {
        auto token = tokeniser.nextToken();
        string::to_lower(token);

        if (token == "}")
        {
            if (--blockLevel == 0) break;
        }
        else if (token == "{")
        {
            ++blockLevel;
        }
        else if (token == "*mesh")
        {
            parseMesh(mesh, tokeniser);
        }
        else if (token == "*node_tm")
        {
            // The NODE_TM block is parsed by the engine and applied to the
            // normals of the mesh.
            parseNodeMatrix(nodeMatrix, tokeniser);
        }
        /* Optional: mesh material reference. This usually comes at the end of
         * geomobjects after the mesh blocks. we must assume that the
         * new mesh was already created so all we can do here is assign
         * the material reference id (shader index) now. */
        else if (token == "*material_ref")
        {
            auto index = string::convert<std::size_t>(tokeniser.nextToken());

            if (index >= _materials.size()) throw parser::ParseException("MATERIAL_REF index out of bounds >= MATERIAL_COUNT");

            materialIndex = index;
        }
    }

    finishSurface(mesh, materialIndex, nodeMatrix);
}

void AseModel::parseFromTokens(parser::StringTokeniser& tokeniser)
{
    if (string::to_lower_copy(tokeniser.nextToken()) != "*3dsmax_asciiexport")
    {
        throw parser::ParseException("Missing 3DSMAX_ASCIIEXPORT header");
    }

    while (tokeniser.hasMoreTokens())
    {
        auto token = tokeniser.nextToken();
        string::to_lower(token);

        // skip invalid ase statements
        if (token[0] != '*' && token[0] != '{' && token[0] != '}')
        {
            continue;
        }

        if (token == "*material_list")
        {
            parseMaterialList(tokeniser);
        }
        else if (token== "*geomobject")
        {
            parseGeomObject(tokeniser);
        }
    }
}

std::shared_ptr<AseModel> AseModel::CreateFromStream(std::istream& stream)
{
    auto model = std::make_shared<AseModel>();

    parser::BasicStringTokeniser tokeniser(stream);
    model->parseFromTokens(tokeniser);

    return model;
}

} // namespace