1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733
|
#include "RenderableParticleBunch.h"
#include "itextstream.h"
#include "math/pi.h"
#include "string/string.h"
namespace particles
{
RenderableParticleBunch::RenderableParticleBunch(std::size_t index,
Rand48::result_type randSeed, const IStageDef& stage, const Matrix4& viewRotation,
const Vector3& direction, const Vector3& entityColour) :
_index(index),
_stage(stage),
_quads(),
_randSeed(randSeed),
_distributeParticlesRandomly(_stage.getRandomDistribution()),
_offset(_stage.getOffset()),
_viewRotation(viewRotation),
_direction(direction),
_entityColour(entityColour)
{
// Geometry is written in update(), just reserve the space
}
void RenderableParticleBunch::update(std::size_t time)
{
_bounds = AABB();
_quads.clear();
// Length of one cycle (duration + deadtime)
std::size_t cycleMsec = static_cast<std::size_t>(_stage.getCycleMsec());
if (cycleMsec == 0)
{
return;
}
// Reserve enough space for all the particles (non-animated case)
_quads.reserve(_stage.getCount() * 4);
// Normalise the global input time into local cycle time
// The cycleTime may be larger than the _stage.cycleMsec argument if bunching is turned off
std::size_t cycleTime = time - cycleMsec * _index;
// Reset the random number generator using our stored seed
_random.seed(_randSeed);
// Calculate the time between each particle spawn
// When bunching is set to 1 the spacing is 0, and vice versa.
std::size_t stageDurationMsec = static_cast<std::size_t>(SEC2MS(_stage.getDuration()));
float spawnSpacing = _stage.getBunching() * static_cast<float>(stageDurationMsec) / _stage.getCount();
// This is the spacing between each particle
std::size_t spawnSpacingMsec = static_cast<std::size_t>(spawnSpacing);
// Generate all particle quads, regardless of their visibility
// Visibility is considered by not rendering particles that haven't been spawned yet
for (std::size_t i = 0; i < static_cast<std::size_t>(_stage.getCount()); ++i)
{
// Consider bunching parameter
std::size_t particleStartTimeMsec = i * spawnSpacingMsec;
if (cycleTime < particleStartTimeMsec)
{
// This particle is not visible at the given time
continue;
}
assert(particleStartTimeMsec < stageDurationMsec); // some sanity checks
// Get the "local particle time" in msecs
std::size_t particleTime = cycleTime - particleStartTimeMsec;
// Generate the particle renderinfo structure (our working set)
ParticleRenderInfo particle(i, _random);
// Calculate the time fraction [0..1]
particle.timeFraction = static_cast<float>(particleTime) / stageDurationMsec;
// We need the particle time in seconds for the location/angle integrations
particle.timeSecs = MS2SEC(particleTime);
// Calculate particle origin at time t
calculateOrigin(particle);
// Get the initial angle value
particle.angle = _stage.getInitialAngle();
if (particle.angle == 0)
{
// Use random angle
particle.angle = 360 * static_cast<float>(_random()) / _random.max();
}
// Past this point, no more "randomness" is required, so let's check if we still need
// to render this particular particle. Don't dismiss particles too early, as each of them
// will change the RNG state in the calculations above. These state changes are important for
// all the subsequent particles.
// Each particle has a lifetime of <stage duration> at maximum
if (particleTime > stageDurationMsec)
{
continue; // particle has expired
}
// Calculate the time-dependent angle
// according to docs, half the quads have negative rotation speed
int rotFactor = i % 2 == 0 ? -1 : 1;
particle.angle += rotFactor * integrate(_stage.getRotationSpeed(), particle.timeSecs);
// Calculate render colour for this particle
calculateColour(particle);
// Consider quad size
particle.size = _stage.getSize().evaluate(particle.timeFraction);
// Consider aspect ratio
particle.aspect = _stage.getAspect().evaluate(particle.timeFraction);
// Consider animation frames
particle.animFrames = static_cast<std::size_t>(_stage.getAnimationFrames());
if (particle.animFrames > 0)
{
// Calculate the s coordinates and the resulting particle colour
calculateAnim(particle);
}
// For aimed orientation, we need to override particle height and aspect
if (_stage.getOrientationType() == IStageDef::ORIENTATION_AIMED)
{
pushAimedParticles(particle, stageDurationMsec);
}
else
{
if (particle.animFrames > 0)
{
// Animated, push two crossfaded quads
pushQuad(particle, particle.curColour, particle.sWidth * particle.curFrame, particle.sWidth);
pushQuad(particle, particle.nextColour, particle.sWidth * particle.nextFrame, particle.sWidth);
}
else
{
// Non-animated quad
pushQuad(particle, particle.colour);
}
}
}
}
void RenderableParticleBunch::addVertexData(std::vector<render::RenderVertex>& vertices,
std::vector<unsigned int>& indices, const Matrix4& localToWorld)
{
if (_quads.empty()) return;
auto firstIndex = static_cast<unsigned int>(vertices.size());
auto quadIndex = 0;
for (const auto& quad : _quads)
{
for (auto i = 0; i < 4; ++i)
{
auto worldVertex = localToWorld * quad.verts[i].vertex;
vertices.push_back(render::RenderVertex(
worldVertex,
quad.verts[i].normal,
quad.verts[i].texcoord,
quad.verts[i].colour)
);
}
auto index = firstIndex + quadIndex * 4;
indices.push_back(index + 0);
indices.push_back(index + 1);
indices.push_back(index + 2);
indices.push_back(index + 0);
indices.push_back(index + 2);
indices.push_back(index + 3);
quadIndex++;
}
}
const AABB& RenderableParticleBunch::getBounds()
{
if (!_bounds.isValid())
{
calculateBounds();
}
return _bounds;
}
Matrix4 RenderableParticleBunch::getAimedMatrix(const Vector3& particleVelocity)
{
// Get the velocity direction in object space, use the same velocity for all trailing quads
Vector3 vel = particleVelocity.getNormalised();
// Construct the matrices
const Matrix4& camera2Object = _viewRotation;
// The matrix rotating the particle into velocity space
Matrix4 object2Vel = Matrix4::getRotation(Vector3(0,1,0), vel);
// Transform the view (-z) vector into object space
Vector3 view = camera2Object.transformPoint(Vector3(0,0,-1));
// Project the view vector onto the plane defined by the velocity vector
Vector3 viewProj = view - vel * view.dot(vel);
// This is the particle normal in object space (after being oriented such that y || velocity)
Vector3 z = object2Vel.zCol3();
// The particle needs to be rotated by this angle around the velocity axis
double aimedAngle = z.angle(-viewProj);
// Use the cross to check whether to rotate in negative or positive direction
if (z.cross(-viewProj).dot(vel) > 0)
{
aimedAngle *= -1;
}
// Calculate the rotation of the particle normal towards the view vector, around the velocity axis
Matrix4 vel2aimed = Matrix4::getRotation(vel, aimedAngle);
// Combine the matrices object2Vel => vel2aimed;
return vel2aimed.getMultipliedBy(object2Vel);
}
void RenderableParticleBunch::calculateAnim(ParticleRenderInfo& particle)
{
// At a given time, two particles can be visible at most
float frameRate = _stage.getAnimationRate();
// The time interval for cross-fading, fall back to entire duration * 3 for zero animation rates
float frameIntervalSecs = frameRate > 0 ? 1.0f / frameRate : 3 * _stage.getDuration();
// Calculate the current frame number, wrap around
particle.curFrame = static_cast<std::size_t>(floor(particle.timeSecs / frameIntervalSecs)) % particle.animFrames;
// Wrap next frame around animationFrame count for looping
particle.nextFrame = (particle.curFrame + 1) % particle.animFrames;
// Calculate the time within the frame, relative to frame start
float frameMicrotime = float_mod(particle.timeSecs, frameIntervalSecs);
// As a fading lasts as long as the entire interval, the alpha gradient is the same as the FPS value
// The "current" particle is always fading out, the nextFrame is fading in
float curAlpha = 1.0f - frameRate * frameMicrotime;
float nextAlpha = frameRate * frameMicrotime;
particle.curColour = particle.colour * curAlpha;
particle.nextColour = particle.colour * nextAlpha;
// The width of a single frame in texture space
particle.sWidth = 1.0f / particle.animFrames;
}
void RenderableParticleBunch::calculateColour(ParticleRenderInfo& particle)
{
Vector4 mainColour = !_stage.getUseEntityColour() ?
_stage.getColour() : Vector4(_entityColour.x(), _entityColour.y(), _entityColour.z(), 1);
// We start with the stage's standard colour
particle.colour = mainColour;
// Consider fade index fraction, which can spawn particles already faded to some extent
float fadeIndexFraction = _stage.getFadeIndexFraction();
if (fadeIndexFraction > 0)
{
// greebo: The linear fading function goes like this:
// frac(t) = (startFrac - t) / (startFrac - 1) with t in [0..1]
// Boundary conditions: frac(1) = 1 and frac(startFrac) = 0
// Use the particle index as "time", normalised to [0..1]
// such that particle with higher index start more faded
float pIdx = static_cast<float>(particle.index) / _stage.getCount();
// Calculate how much we should be faded already
float startFrac = 1.0f - fadeIndexFraction;
float frac = (startFrac - pIdx) / (startFrac - 1.0f);
// Ignore negative fraction values, this also takes care that only
// those particles with time >= fadeIndexFraction get faded.
if (frac > 0)
{
particle.colour = lerpColour(particle.colour, _stage.getFadeColour(), frac);
}
}
float fadeInFraction = _stage.getFadeInFraction();
if (fadeInFraction > 0 && particle.timeFraction <= fadeInFraction)
{
particle.colour = lerpColour(_stage.getFadeColour(), mainColour, particle.timeFraction / fadeInFraction);
}
float fadeOutFraction = _stage.getFadeOutFraction();
float fadeOutFractionInverse = 1.0f - fadeOutFraction;
if (fadeOutFraction > 0 && particle.timeFraction >= fadeOutFractionInverse)
{
particle.colour = lerpColour(mainColour, _stage.getFadeColour(), (particle.timeFraction - fadeOutFractionInverse) / fadeOutFraction);
}
}
void RenderableParticleBunch::calculateOrigin(ParticleRenderInfo& particle)
{
// Check if the main direction is different to the z axis
Vector3 dir = _direction.getNormalised();
Vector3 zDir(0,0,1);
double deviation = dir.angle(zDir);
Matrix4 rotation = deviation != 0 ? Matrix4::getRotation(zDir, dir) : Matrix4::getIdentity();
// Consider offset as starting point
particle.origin = rotation.transformPoint(_offset);
switch (_stage.getCustomPathType())
{
case IStageDef::PATH_STANDARD: // Standard path calculation
{
// Consider particle distribution
Vector3 distributionOffset = getDistributionOffset(particle, _distributeParticlesRandomly);
// Add this to the origin
particle.origin += distributionOffset;
// Calculate particle direction, pass distribution offset (this is needed for DIRECTION_OUTWARD)
Vector3 particleDirection = getDirection(particle, rotation, distributionOffset);
// Consider speed
particle.origin += particleDirection * integrate(_stage.getSpeed(), particle.timeSecs);
}
break;
case IStageDef::PATH_FLIES:
{
// greebo: "Flies" particles are moving on the surface of a sphere of radius <size>
// The radial and axial speeds are chosen at random (but never 0) and are constant
// during the lifetime of a particle. Starting position appears to be random,
// but different to the "distribution sphere" type (i.e. it is not evenly distributed,
// instead the particles seem to bunch themselves at the poles).
// Sphere radius
float radius = _stage.getCustomPathParm(2);
// Generate starting conditions speed (+/-50%)
float rand = 2 * particle.rand[0] - 1.0f;
float radialSpeedFactor = 1.0f + 0.5f * rand * rand;
// greebo: factor 0.4 is empirical, I measured a few D3 particles for their circulation times
float radialSpeed = _stage.getCustomPathParm(0) * radialSpeedFactor * 0.4f;
rand = 2 * particle.rand[1] - 1.0f;
float axialSpeedFactor = 1.0f + 0.5f * rand * rand;
float axialSpeed = _stage.getCustomPathParm(1) * axialSpeedFactor * 0.4f;
float phi0 = 2 * static_cast<float>(math::PI) * particle.rand[2];
float theta0 = static_cast<float>(math::PI) * particle.rand[3];
// Calculate angles at the given particleTime
float phi = phi0 + axialSpeed * particle.timeSecs;
float theta = theta0 + radialSpeed * particle.timeSecs;
// Pre-calculate the sin/cos values
float cosPhi = cos(phi);
float sinPhi = sin(phi);
float cosTheta = cos(theta);
float sinTheta = sin(theta);
// Move the particle origin
particle.origin += Vector3(radius * cosTheta * sinPhi, radius * sinTheta * sinPhi, radius * cosPhi);
}
break;
case IStageDef::PATH_HELIX:
{
// greebo: Helical movement is describing an elliptic cylinder, its shape is determined by
// sizeX, sizeY and sizeZ. Particles are spawned randomly on that cylinder surface,
// their velocities (radial and axial) are also random (both negative and positive
// velocities are allowed).
float sizeX = _stage.getCustomPathParm(0);
float sizeY = _stage.getCustomPathParm(1);
float sizeZ = _stage.getCustomPathParm(2);
float radialSpeed = _stage.getCustomPathParm(3) * (2 * particle.rand[0] - 1.0f);
float axialSpeed = _stage.getCustomPathParm(4) * (2 * particle.rand[1] - 1.0f);
float phi0 = 2 * static_cast<float>(math::PI) * particle.rand[2];
float z0 = sizeZ * (2 * particle.rand[3] - 1.0f);
float sinPhi = sin(phi0 + radialSpeed * particle.timeSecs);
float cosPhi = cos(phi0 + radialSpeed * particle.timeSecs);
float x = sizeX * cosPhi;
float y = sizeY * sinPhi;
float z = z0 + axialSpeed * particle.timeSecs;
particle.origin += Vector3(x, y, z);
}
break;
case IStageDef::PATH_ORBIT:
case IStageDef::PATH_DRIP:
// These are actually unsupported by the engine ("bad path type")
rWarning() << "Unsupported path type (drip/orbit)." << std::endl;
break;
default:
// Nothing
break;
};
// Consider gravity
// if "world" is set, use -z as gravity direction, otherwise use the reverse emitter direction
Vector3 gravity = _stage.getWorldGravityFlag() ? Vector3(0,0,-1) : -_direction.getNormalised();
particle.origin += gravity * _stage.getGravity() * particle.timeSecs * particle.timeSecs * 0.5f;
}
Vector3 RenderableParticleBunch::getDirection(ParticleRenderInfo& particle, const Matrix4& rotation, const Vector3& distributionOffset)
{
switch (_stage.getDirectionType())
{
case IStageDef::DIRECTION_CONE:
{
// Find a random vector on the sphere surface defined by the cone with apex 2*angle
float u = particle.rand[3];
// Scale the variable v such that it takes uniform values in the interval [(1+cos(angle))/2 .. 1]
float angleRad = _stage.getDirectionParm(0) * static_cast<float>(math::PI) / 180.0f;
float v0 = (1 + cos(angleRad)) * 0.5f;
float v1 = 1;
float v = v0 + particle.rand[4] * (v1 - v0);
float theta = 2 * static_cast<float>(math::PI) * u;
float phi = acos(2*v - 1);
Vector3 endPoint(cos(theta) * sin(phi), sin(theta) * sin(phi), cos(phi));
// Rotate the vector into the particle's main direction
endPoint = rotation.transformPoint(endPoint);
return endPoint.getNormalised();
}
case IStageDef::DIRECTION_OUTWARD:
{
// This heavily relies on particles being distributed randomly within the spawn area
Vector3 direction = distributionOffset.getNormalised();
// Consider upwards bias
direction.z() += _stage.getDirectionParm(0);
return direction; // CHECKME: Use .getNormalised() ?
}
default:
return Vector3(0,0,1);
};
}
Vector3 RenderableParticleBunch::getDistributionOffset(ParticleRenderInfo& particle, bool distributeParticlesRandomly)
{
switch (_stage.getDistributionType())
{
// Rectangular distribution
case IStageDef::DISTRIBUTION_RECT:
{
// Factors to use for the random distribution
float randX = 1.0f;
float randY = 1.0f;
float randZ = 1.0f;
if (distributeParticlesRandomly)
{
// Rectangular spawn zone
randX = 2 * particle.rand[0] - 1.0f;
randY = 2 * particle.rand[1] - 1.0f;
randZ = 2 * particle.rand[2] - 1.0f;
}
// If random distribution is off, particles get spawned at <sizex, sizey, sizez>
return Vector3(randX * _stage.getDistributionParm(0),
randY * _stage.getDistributionParm(1),
randZ * _stage.getDistributionParm(2));
}
case IStageDef::DISTRIBUTION_CYLINDER:
{
// Get the cylinder dimensions
float sizeX = _stage.getDistributionParm(0);
float sizeY = _stage.getDistributionParm(1);
float sizeZ = _stage.getDistributionParm(2);
float ringFrac = _stage.getDistributionParm(3);
// greebo: Some tests showed that for the cylinder type
// the fourth parameter ("ringfraction") is only effective if >1,
// it effectively scales the elliptic shape by that factor.
// Values < 1.0 didn't have any effect (?) Someone could double-check that.
// Interestingly, the built-in particle editor doesn't really allow editing that parameter.
if (ringFrac > 1.0f)
{
sizeX *= ringFrac;
sizeY *= ringFrac;
}
if (distributeParticlesRandomly)
{
// Get a random angle in [0..2pi]
float angle = static_cast<float>(2*math::PI) * particle.rand[0];
float xPos = cos(angle) * sizeX;
float yPos = sin(angle) * sizeY;
float zPos = sizeZ * (2 * particle.rand[1] - 1.0f);
return Vector3(xPos, yPos, zPos);
}
else
{
// Random distribution is off, particles get spawned at <sizex, sizey, sizez>
return Vector3(sizeX, sizeY, sizeZ);
}
}
case IStageDef::DISTRIBUTION_SPHERE:
{
// Get the sphere dimensions
float maxX = _stage.getDistributionParm(0);
float maxY = _stage.getDistributionParm(1);
float maxZ = _stage.getDistributionParm(2);
float ringFrac = _stage.getDistributionParm(3);
float minX = maxX * ringFrac;
float minY = maxY * ringFrac;
float minZ = maxZ * ringFrac;
if (distributeParticlesRandomly)
{
// The following is modeled after http://mathworld.wolfram.com/SpherePointPicking.html
float u = particle.rand[0];
float v = particle.rand[1];
float theta = 2 * static_cast<float>(math::PI) * u;
float phi = acos(2*v - 1);
// Take the sqrt(radius) to correct bunching at the center of the sphere
float r = sqrt(particle.rand[2]);
float x = (minX + (maxX - minX) * r) * cos(theta) * sin(phi);
float y = (minY + (maxY - minY) * r) * sin(theta) * sin(phi);
float z = (minZ + (maxZ - minZ) * r) * cos(phi);
return Vector3(x,y,z);
}
else
{
// Random distribution is off, particles get spawned at <sizex, sizey, sizez>
return Vector3(maxX, maxY, maxZ);
}
}
// Default case, should not be reachable
default:
return Vector3(0,0,0);
};
}
void RenderableParticleBunch::pushQuad(ParticleRenderInfo& particle, const Vector4& colour, float s0, float sWidth)
{
// greebo: Create a (rotated) quad facing the z axis
// then rotate it to fit the requested orientation
// finally translate it to its position.
const Vector3 normal = _viewRotation.zCol3();
_quads.push_back(ParticleQuad(particle.size, particle.aspect, particle.angle, colour, normal, s0, sWidth));
_quads.back().transform(_viewRotation);
_quads.back().translate(particle.origin);
}
void RenderableParticleBunch::pushAimedParticles(ParticleRenderInfo& particle, std::size_t stageDurationMsec)
{
int trails = static_cast<int>(_stage.getOrientationParm(0)); // trails
float aimedTime = _stage.getOrientationParm(1); // time
if (trails < 0)
{
trails = 0;
}
// The time parameter defaults to 0.5 if not specified
if (aimedTime == 0.0f)
{
aimedTime = 0.5f;
}
// The time delta to step into the past
int numQuads = trails + 1;
// The time delta between quads
float timeStep = aimedTime / numQuads;
Vector3 lastOrigin = particle.origin;
for (int i = 1; i <= numQuads; ++i)
{
// Copy over the info of the incoming particle (contains anim info, colour, etc.)
ParticleRenderInfo aimedParticle = particle;
// Get the time of the i-th particle in seconds, plus the fraction
aimedParticle.timeSecs = particle.timeSecs - timeStep * i;
aimedParticle.timeFraction = SEC2MS(aimedParticle.timeSecs) / stageDurationMsec;
// Get origin and velocity at that time
calculateOrigin(aimedParticle);
// Gotcha: don't bother calculating the actual velocity at the given time, just use the
// difference vector of the two origins, this is enough to receive the "aimed" direction
Vector3 velocity = lastOrigin - aimedParticle.origin;
float height = static_cast<float>(velocity.getLength());
aimedParticle.aspect = height / (2 * aimedParticle.size);
// Calculate the vertical texture coordinates
aimedParticle.tWidth = 1.0f / static_cast<float>(numQuads);
aimedParticle.t0 = (i - 1) * aimedParticle.tWidth;
// The matrix is special for each particle. For helix and other path types
// it's necessary to apply the same matrix to each vertex sharing the same 3D location.
// Calculate the matrix to orient it towards the viewer
Matrix4 local2aimed = getAimedMatrix(velocity);
{
const Vector3 normal = local2aimed.zCol3();
// Ignore the angle for aimed orientation
ParticleQuad curQuad(aimedParticle.size, aimedParticle.aspect, 0,
aimedParticle.colour, normal, 0, 1, aimedParticle.t0, aimedParticle.tWidth);
// Apply a slight origin correction before rotating them, particles are not centered around 0,0,0 here
curQuad.translate(Vector3(0, -height*0.5f, 0));
curQuad.transform(local2aimed);
curQuad.translate(lastOrigin);
// Push two quads for animated particles
if (aimedParticle.animFrames > 0)
{
// "Current" quad
curQuad.assignColour(aimedParticle.curColour);
// Set the hoirzontal texcoord for the current frame
curQuad.setHorizTexCoords(aimedParticle.sWidth * aimedParticle.curFrame, aimedParticle.sWidth);
// Glue the first row of vertices to the last quad, if applicable
if (i > 1)
{
snapQuads(curQuad, *(_quads.end()-2));
}
_quads.push_back(curQuad);
// "Next" quad, re-use the curQuad structure
curQuad.assignColour(aimedParticle.nextColour);
// Set the hoirzontal texcoord for the next frame
curQuad.setHorizTexCoords(aimedParticle.sWidth * aimedParticle.nextFrame, aimedParticle.sWidth);
if (i > 1)
{
snapQuads(curQuad, *(_quads.end()-2));
}
_quads.push_back(curQuad);
}
else
{
if (i > 1)
{
snapQuads(curQuad, _quads.back());
}
// Non-animated case
_quads.push_back(curQuad);
}
}
lastOrigin = aimedParticle.origin;
}
}
void RenderableParticleBunch::snapQuads(ParticleQuad& curQuad, ParticleQuad& prevQuad)
{
// Take the midpoint
curQuad.verts[0].vertex = (curQuad.verts[0].vertex + prevQuad.verts[3].vertex) * 0.5f;
curQuad.verts[1].vertex = (curQuad.verts[1].vertex + prevQuad.verts[2].vertex) * 0.5f;
// Snap the "previous" vertices to the same spot
prevQuad.verts[3].vertex = curQuad.verts[0].vertex;
prevQuad.verts[2].vertex = curQuad.verts[1].vertex;
// Interpolate the normals too
curQuad.verts[0].normal = (curQuad.verts[0].normal + prevQuad.verts[3].normal).getNormalised();
curQuad.verts[1].normal = (curQuad.verts[1].normal + prevQuad.verts[2].normal).getNormalised();
prevQuad.verts[3].normal = curQuad.verts[0].normal;
prevQuad.verts[2].normal = curQuad.verts[1].normal;
}
void RenderableParticleBunch::calculateBounds()
{
for (Quads::const_iterator i = _quads.begin(); i != _quads.end(); ++i)
{
_bounds.includePoint(i->verts[0].vertex);
_bounds.includePoint(i->verts[1].vertex);
_bounds.includePoint(i->verts[2].vertex);
_bounds.includePoint(i->verts[3].vertex);
}
}
} // namespace
|