1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593
|
#include "Patch.h"
#include "i18n.h"
#include "ipatch.h"
#include "shaderlib.h"
#include "irenderable.h"
#include "itextstream.h"
#include "iselectiontest.h"
#include "registry/registry.h"
#include "math/Frustum.h"
#include "math/Ray.h"
#include "texturelib.h"
#include "brush/TextureProjection.h"
#include "brush/Winding.h"
#include "command/ExecutionFailure.h"
#include "selection/algorithm/Shader.h"
#include "selection/algorithm/Texturing.h"
#include "PatchSavedState.h"
#include "PatchNode.h"
// ====== Helper Functions ==================================================================
inline VertexPointer vertexpointer_Meshvertex(const MeshVertex* array) {
return VertexPointer(&array->vertex, sizeof(MeshVertex));
}
inline const Colour4b colour_for_index(std::size_t i, std::size_t width)
{
static const Vector3& cornerColourVec = GlobalPatchModule().getSettings().getVertexColour(patch::PatchEditVertexType::Corners);
static const Vector3& insideColourVec = GlobalPatchModule().getSettings().getVertexColour(patch::PatchEditVertexType::Inside);
const Colour4b colour_corner(int(cornerColourVec[0]*255), int(cornerColourVec[1]*255),
int(cornerColourVec[2]*255), 255);
const Colour4b colour_inside(int(insideColourVec[0]*255), int(insideColourVec[1]*255),
int(insideColourVec[2]*255), 255);
return (i%2 || (i/width)%2) ? colour_inside : colour_corner;
}
inline bool double_valid(double f) {
return f == f;
}
// ====== Patch Implementation =========================================================================
// Constructor
Patch::Patch(PatchNode& node) :
_node(node),
_undoStateSaver(nullptr),
_transformChanged(false),
_tesselationChanged(true),
_shader(texdef_name_default())
{
construct();
}
// Copy constructor (create this patch from another patch)
Patch::Patch(const Patch& other, PatchNode& node) :
IPatch(other),
Bounded(other),
Snappable(other),
IUndoable(other),
_node(node),
_undoStateSaver(nullptr),
_transformChanged(false),
_tesselationChanged(true),
_shader(other._shader.getMaterialName())
{
// Initalise the default values
construct();
// Copy over the definitions from the <other> patch
_patchDef3 = other._patchDef3;
_subDivisions = other._subDivisions;
setDims(other._width, other._height);
copy_ctrl(_ctrl.begin(), other._ctrl.begin(), other._ctrl.begin()+(_width*_height));
_shader.setMaterialName(other._shader.getMaterialName());
controlPointsChanged();
}
void Patch::construct()
{
_width = _height = 0;
_patchDef3 = false;
_subDivisions = Subdivisions(0, 0);
// Check, if the shader name is correct
check_shader();
}
// Get the current control point array
PatchControlArray& Patch::getControlPoints() {
return _ctrl;
}
// Same as above, just for const arguments
const PatchControlArray& Patch::getControlPoints() const {
return _ctrl;
}
// Get the (temporary) transformed control point array, not the saved ones
PatchControlArray& Patch::getControlPointsTransformed() {
return _ctrlTransformed;
}
const PatchControlArray& Patch::getControlPointsTransformed() const {
return _ctrlTransformed;
}
std::size_t Patch::getWidth() const {
return _width;
}
std::size_t Patch::getHeight() const {
return _height;
}
void Patch::setDims(std::size_t w, std::size_t h)
{
if((w%2)==0)
w -= 1;
ASSERT_MESSAGE(w <= MAX_PATCH_WIDTH, "patch too wide");
if(w > MAX_PATCH_WIDTH)
w = MAX_PATCH_WIDTH;
else if(w < MIN_PATCH_WIDTH)
w = MIN_PATCH_WIDTH;
if((h%2)==0)
_height -= 1;
ASSERT_MESSAGE(h <= MAX_PATCH_HEIGHT, "patch too tall");
if(h > MAX_PATCH_HEIGHT)
h = MAX_PATCH_HEIGHT;
else if(h < MIN_PATCH_HEIGHT)
h = MIN_PATCH_HEIGHT;
_width = w;
_height = h;
if(_width * _height != _ctrl.size())
{
_ctrl.resize(_width * _height);
_ctrlTransformed.resize(_ctrl.size());
_node.updateSelectableControls();
}
}
PatchNode& Patch::getPatchNode()
{
return _node;
}
void Patch::connectUndoSystem(IUndoSystem& undoSystem)
{
assert(!_undoStateSaver);
// Acquire a new state saver
_undoStateSaver = undoSystem.getStateSaver(*this);
}
// Remove the attached instance and decrease the counters
void Patch::disconnectUndoSystem(IUndoSystem& undoSystem)
{
assert(_undoStateSaver);
_undoStateSaver = nullptr;
undoSystem.releaseStateSaver(*this);
}
// Return the interally stored AABB
const AABB& Patch::localAABB() const
{
return _localAABB;
}
RenderSystemPtr Patch::getRenderSystem() const
{
return _renderSystem.lock();
}
void Patch::setRenderSystem(const RenderSystemPtr& renderSystem)
{
_renderSystem = renderSystem;
_shader.setRenderSystem(renderSystem);
}
// Implementation of the abstract method of SelectionTestable
// Called to test if the patch can be selected by the mouse pointer
void Patch::testSelect(Selector& selector, SelectionTest& test)
{
// ensure the tesselation is up to date
updateTesselation();
// The updateTesselation routine might have produced a degenerate patch, catch this
if (_mesh.vertices.empty()) return;
SelectionIntersection best;
IndexPointer::index_type* pIndex = &_mesh.indices.front();
for (std::size_t s=0; s<_mesh.numStrips; s++) {
test.TestQuadStrip(vertexpointer_Meshvertex(&_mesh.vertices.front()), IndexPointer(pIndex, _mesh.lenStrips), best);
pIndex += _mesh.lenStrips;
}
if (best.isValid()) {
selector.addIntersection(best);
}
}
// Transform this patch as defined by the transformation matrix <matrix>
void Patch::transform(const Matrix4& matrix)
{
// Cycle through all the patch control vertices and transform the points
for (PatchControlIter i = _ctrlTransformed.begin();
i != _ctrlTransformed.end();
++i)
{
i->vertex = matrix.transformPoint(i->vertex);
}
// Check the handedness of the matrix and invert it if needed
if(matrix.getHandedness() == Matrix4::LEFTHANDED)
{
PatchControlArray_invert(_ctrlTransformed, _width, _height);
}
// Mark this patch as changed
transformChanged();
}
// Called if the patch has changed, so that the dirty flags are set
void Patch::transformChanged()
{
_transformChanged = true;
_tesselationChanged = true;
}
// Called to evaluate the transform
void Patch::evaluateTransform()
{
// Only do something, if the patch really has changed
if (_transformChanged)
{
_transformChanged = false;
revertTransform();
_node.evaluateTransform();
}
}
// Revert the changes, fall back to the saved state in <_ctrl>
void Patch::revertTransform()
{
_ctrlTransformed = _ctrl;
}
// Apply the transformed control array, save it into <_ctrl> and overwrite the old values
void Patch::freezeTransform()
{
undoSave();
// Save the transformed working set array over _ctrl
_ctrl = _ctrlTransformed;
// Don't call controlPointsChanged() here since that one will re-apply the
// current transformation matrix, possible the second time.
transformChanged();
updateTesselation();
for (Observers::iterator i = _observers.begin(); i != _observers.end();)
{
(*i++)->onPatchControlPointsChanged();
}
}
// callback for changed control points
void Patch::controlPointsChanged()
{
transformChanged();
evaluateTransform();
updateTesselation();
_node.onControlPointsChanged();
for (Observers::iterator i = _observers.begin(); i != _observers.end();)
{
(*i++)->onPatchControlPointsChanged();
}
}
// Snaps the control points to the grid
void Patch::snapto(float snap)
{
undoSave();
for(PatchControlIter i = _ctrl.begin(); i != _ctrl.end(); ++i)
{
i->vertex.snap(snap);
}
controlPointsChanged();
}
const std::string& Patch::getShader() const
{
return _shader.getMaterialName();
}
void Patch::setShader(const std::string& name)
{
undoSave();
_shader.setMaterialName(name);
// Check if the shader is ok
check_shader();
// Call the callback functions
textureChanged();
}
const SurfaceShader& Patch::getSurfaceShader() const
{
return _shader;
}
SurfaceShader& Patch::getSurfaceShader()
{
return _shader;
}
bool Patch::hasVisibleMaterial() const
{
if (!_shader.getGLShader()) return false;
const MaterialPtr& material = _shader.getGLShader()->getMaterial();
return material && material->isVisible();
}
float Patch::getTextureAspectRatio() const
{
return _shader.getTextureAspectRatio();
}
int Patch::getShaderFlags() const
{
if (_shader.getGLShader() != 0)
{
return _shader.getGLShader()->getFlags();
}
return 0;
}
// Return a defined patch control vertex at <row>,<col>
PatchControl& Patch::ctrlAt(std::size_t row, std::size_t col) {
return _ctrl[row*_width+col];
}
// The same as above just for const
const PatchControl& Patch::ctrlAt(std::size_t row, std::size_t col) const {
return _ctrl[row*_width+col];
}
PatchControl& Patch::getTransformedCtrlAt(std::size_t row, std::size_t col)
{
if (_ctrlTransformed.empty())
{
_ctrlTransformed = _ctrl;
}
return _ctrlTransformed[row * _width + col];
}
// called just before an action to save the undo state
void Patch::undoSave()
{
// Notify the undo observer to save this patch state
if (_undoStateSaver != NULL)
{
_undoStateSaver->saveState();
}
}
// Save the current patch state into a new UndoMemento instance (allocated on heap) and return it to the undo observer
IUndoMementoPtr Patch::exportState() const
{
return IUndoMementoPtr(new SavedState(_width, _height, _ctrl, _patchDef3, _subDivisions.x(), _subDivisions.y(), _shader.getMaterialName()));
}
// Revert the state of this patch to the one that has been saved in the UndoMemento
void Patch::importState(const IUndoMementoPtr& state)
{
undoSave();
const SavedState& other = *(std::static_pointer_cast<SavedState>(state));
// begin duplicate of SavedState copy constructor, needs refactoring
// copy construct
{
_width = other.m_width;
_height = other.m_height;
_ctrl = other.m_ctrl;
_ctrlTransformed = _ctrl;
_node.updateSelectableControls();
_patchDef3 = other.m_patchDef3;
_subDivisions = Subdivisions(other.m_subdivisions_x, other.m_subdivisions_y);
_shader.setMaterialName(other._materialName);
}
// end duplicate code
// Notify that this patch has changed
textureChanged();
controlPointsChanged();
}
void Patch::check_shader()
{
if (!shader_valid(getShader().c_str()))
{
rError() << "patch has invalid texture name: '" << getShader() << "'\n";
}
}
// Patch Destructor
Patch::~Patch()
{
for (Observers::iterator i = _observers.begin(); i != _observers.end();)
{
(*i++)->onPatchDestruction();
}
}
bool Patch::isValid() const
{
if(!_width || !_height)
{
return false;
}
for(PatchControlConstIter i = _ctrl.begin(); i != _ctrl.end(); ++i)
{
if(!double_valid((*i).vertex.x())
|| !double_valid((*i).vertex.y())
|| !double_valid((*i).vertex.z())
|| !double_valid((*i).texcoord.x())
|| !double_valid((*i).texcoord.y()))
{
rError() << "patch has invalid control points\n";
return false;
}
}
return true;
}
bool Patch::isDegenerate() const {
if (!isValid()) {
// Invalid patches are also "degenerate"
return true;
}
Vector3 prev(0,0,0);
// Compare each control's 3D coordinates with the previous one and break out
// on the first non-equal one
for (PatchControlConstIter i = _ctrl.begin(); i != _ctrl.end(); ++i) {
// Skip the first comparison
if (i != _ctrl.begin() && !math::isNear(i->vertex, prev, 0.0001)) {
return false;
}
// Remember the coords of this vertex
prev = i->vertex;
}
// The loop went through, all vertices the same
return true;
}
void Patch::updateTesselation(bool force)
{
// Only do something if the tesselation has actually changed
if (!_tesselationChanged && !force) return;
_tesselationChanged = false;
if (!isValid())
{
_mesh.clear();
_localAABB = AABB();
return;
}
// Run the tesselation code
_mesh.generate(_width, _height, _ctrlTransformed, subdivisionsFixed(), getSubdivisions(), _node.getRenderEntity());
updateAABB();
_node.onTesselationChanged();
}
void Patch::invertMatrix()
{
undoSave();
PatchControlArray_invert(_ctrl, _width, _height);
controlPointsChanged();
}
void Patch::transposeMatrix()
{
undoSave();
// greebo: create a new temporary control array to hold the "old" matrix
PatchControlArray tmp = _ctrl;
std::size_t i = 0;
for (std::size_t w = 0; w < _width; ++w)
{
for (std::size_t h = 0; h < _height; ++h)
{
// Copy elements such that the columns end up as rows
_ctrl[i++] = tmp[h*_width + w];
}
}
std::swap(_width, _height);
controlPointsChanged();
}
void Patch::Redisperse(EMatrixMajor mt)
{
std::size_t w, h, width, height, row_stride, col_stride;
PatchControlIter p1, p2, p3;
undoSave();
switch(mt)
{
case COL:
width = (_width-1)>>1;
height = _height;
col_stride = 1;
row_stride = _width;
break;
case ROW:
width = (_height-1)>>1;
height = _width;
col_stride = _width;
row_stride = 1;
break;
default:
ERROR_MESSAGE("neither row-major nor column-major");
return;
}
for(h=0;h<height;h++)
{
p1 = _ctrl.begin()+(h*row_stride);
for(w=0;w<width;w++)
{
p2 = p1+col_stride;
p3 = p2+col_stride;
p2->vertex = math::midPoint(p1->vertex, p3->vertex);
p1 = p3;
}
}
controlPointsChanged();
}
void Patch::redisperseRows()
{
Redisperse(ROW);
}
void Patch::redisperseColumns()
{
Redisperse(COL);
}
void Patch::insertRemove(bool insert, bool column, bool first)
{
undoSave();
try
{
if (insert)
{
// Decide whether we should insert rows or columns
if (column) {
// The insert point is 1 for "beginning" and width-2 for "end"
insertColumns(first ? 1 : _width-2);
}
else {
// The insert point is 1 for "beginning" and height-2 for "end"
insertRows(first ? 1 : _height-2);
}
}
else {
// Col/Row Removal
if (column) {
// Column removal, pass TRUE
removePoints(true, first ? 2 : _width - 3);
}
else {
// Row removal, pass FALSE
removePoints(false, first ? 2 : _height - 3);
}
}
}
catch (const GenericPatchException& g) {
rError() << "Error manipulating patch dimensions: " << g.what() << "\n";
}
controlPointsChanged();
}
void Patch::appendPoints(bool columns, bool beginning) {
bool rows = !columns; // Shortcut for readability
if ((columns && _width + 2 > MAX_PATCH_WIDTH) ||
(rows && _height + 2 > MAX_PATCH_HEIGHT))
{
rError() << "Patch::appendPoints() error: " <<
"Cannot make patch any larger.\n";
return;
}
// Sanity check passed, now start the action
undoSave();
// Create a backup of the old control vertices
PatchControlArray oldCtrl = _ctrl;
std::size_t oldHeight = _height;
std::size_t oldWidth = _width;
// Resize this patch
setDims(columns ? oldWidth+2 : oldWidth, rows ? oldHeight+2 : oldHeight);
// Specify the target row to copy the values to
std::size_t targetColStart = (columns && beginning) ? 2 : 0;
std::size_t targetRowStart = (rows && beginning) ? 2 : 0;
// We're copying the old patch matrix into a sub-matrix of the new patch
// Fill in the control vertex values into the target area using this loop
for (std::size_t newRow = targetRowStart, oldRow = 0;
newRow < _height && oldRow < oldHeight;
newRow++, oldRow++)
{
for (std::size_t newCol = targetColStart, oldCol = 0;
oldCol < oldWidth && newCol < _width;
oldCol++, newCol++)
{
// Copy the control vertex from the old patch to the new patch
ctrlAt(newRow, newCol).vertex = oldCtrl[oldRow*oldWidth + oldCol].vertex;
ctrlAt(newRow, newCol).texcoord = oldCtrl[oldRow*oldWidth + oldCol].texcoord;
}
}
if (columns) {
// Extrapolate the vertex attributes of the columns
// These are the indices of the new columns
std::size_t newCol1 = beginning ? 0 : _width - 1; // The outermost column
std::size_t newCol2 = beginning ? 1 : _width - 2; // The nearest column
// This indicates the direction we are taking the base values from
// If we start at the beginning, we have to take the values on
// the "right", hence the +1 index
int neighbour = beginning ? +1 : -1;
for (std::size_t row = 0; row < _height; row++) {
// The distance of the two neighbouring columns,
// this is taken as extrapolation value
Vector3 vertexDiff = ctrlAt(row, newCol2 + neighbour).vertex -
ctrlAt(row, newCol2 + 2*neighbour).vertex;
Vector2 texDiff = ctrlAt(row, newCol2 + neighbour).texcoord -
ctrlAt(row, newCol2 + 2*neighbour).texcoord;
// Extrapolate the values of the nearest column
ctrlAt(row, newCol2).vertex = ctrlAt(row, newCol2 + neighbour).vertex + vertexDiff;
ctrlAt(row, newCol2).texcoord = ctrlAt(row, newCol2 + neighbour).texcoord + texDiff;
// Extrapolate once again linearly from the nearest column to the outermost column
ctrlAt(row, newCol1).vertex = ctrlAt(row, newCol2).vertex + vertexDiff;
ctrlAt(row, newCol1).texcoord = ctrlAt(row, newCol2).texcoord + texDiff;
}
}
else {
// Extrapolate the vertex attributes of the rows
// These are the indices of the new rows
std::size_t newRow1 = beginning ? 0 : _height - 1; // The outermost row
std::size_t newRow2 = beginning ? 1 : _height - 2; // The nearest row
// This indicates the direction we are taking the base values from
// If we start at the beginning, we have to take the values on
// the "right", hence the +1 index
int neighbour = beginning ? +1 : -1;
for (std::size_t col = 0; col < _width; col++) {
// The distance of the two neighbouring rows,
// this is taken as extrapolation value
Vector3 vertexDiff = ctrlAt(newRow2 + neighbour, col).vertex -
ctrlAt(newRow2 + 2*neighbour, col).vertex;
Vector2 texDiff = ctrlAt(newRow2 + neighbour, col).texcoord -
ctrlAt(newRow2 + 2*neighbour, col).texcoord;
// Extrapolate the values of the nearest row
ctrlAt(newRow2, col).vertex = ctrlAt(newRow2 + neighbour, col).vertex + vertexDiff;
ctrlAt(newRow2, col).texcoord = ctrlAt(newRow2 + neighbour, col).texcoord + texDiff;
// Extrapolate once again linearly from the nearest row to the outermost row
ctrlAt(newRow1, col).vertex = ctrlAt(newRow2, col).vertex + vertexDiff;
ctrlAt(newRow1, col).texcoord = ctrlAt(newRow2, col).texcoord + texDiff;
}
}
controlPointsChanged();
}
void Patch::flipTexture(int nAxis)
{
selection::algorithm::TextureFlipper::FlipPatch(*this, nAxis);
}
/** greebo: Helper function that shifts all control points in
* texture space about <s,t>
*/
void Patch::translateTexCoords(const Vector2& translation)
{
// Cycle through all control points and shift them in texture space
for (PatchControlIter i = _ctrl.begin(); i != _ctrl.end(); ++i)
{
i->texcoord += translation;
}
}
void Patch::translateTexture(float s, float t)
{
undoSave();
s = -1 * s / _shader.getWidth();
t = t / _shader.getHeight();
translateTexCoords(Vector2(s,t));
controlPointsChanged();
}
void Patch::scaleTexture(float s, float t)
{
selection::algorithm::TextureScaler::ScalePatch(*this, { s, t });
}
void Patch::rotateTexture(float angle)
{
selection::algorithm::TextureRotator::RotatePatch(*this, degrees_to_radians(angle));
}
void Patch::fitTexture(float s, float t)
{
// Save the current patch state to the undoMemento
undoSave();
/* greebo: Calculate the texture width and height increment per control point.
* If we have a 4x4 patch and want to tile it 3x3, the distance
* from one control point to the next one has to cover 3/4 of a full texture,
* hence texture_x_repeat/patch_width and texture_y_repeat/patch_height.*/
float sIncr = s / static_cast<float>(_width - 1);
float tIncr = t / static_cast<float>(_height - 1);
// Set the pointer to the first control point
PatchControlIter pDest = _ctrl.begin();
float tc = 0;
// Cycle through the patch matrix (row per row)
// Increment the <tc> counter by <tIncr> increment
for (std::size_t h=0; h < _height; h++, tc += tIncr)
{
float sc = 0;
// Cycle through the row points: reset sc to zero
// and increment it by sIncr at each step.
for (std::size_t w = 0; w < _width; w++, sc += sIncr)
{
// Set the texture coordinates
pDest->texcoord[0] = sc;
pDest->texcoord[1] = tc;
// Set the pointer to the next control point
pDest++;
}
}
// Notify the patch
controlPointsChanged();
}
void Patch::scaleTextureNaturally()
{
// Save the undo memento
undoSave();
// Retrieve the default scale from the registry
auto defaultScale = registry::getValue<float>("user/ui/textures/defaultTextureScale");
// Cycles through all the patch columns and assigns s/t coordinates.
// During each column or row cycle, the highest world distance between columns or rows
// determines the distance in UV space (longest distance is taken).
// World distances are scaled to UV space with the actual texture width/height,
// scaled by the value in the registry.
auto horizScale = 1.0f / (static_cast<float>(_shader.getWidth()) * defaultScale);
double texcoordX = 0;
// Cycle through the patch width,
for (std::size_t w = 0; w < _width; w++)
{
// Apply the currently active <tex> value to the control point texture coordinates.
for (std::size_t h = 0; h < _height; h++)
{
// Set the x-coord (or better s-coord?) of the texture to tex.
// For the first width cycle this is tex=0, so the texture is not shifted at the first vertex
ctrlAt(h, w).texcoord[0] = texcoordX;
}
// If we reached the last row (_width - 1) we are finished (all coordinates are applied)
if (w + 1 == _width) break;
// Determine the texcoord of the next column
double highestNextTexCoord = 0;
// Determine the longest distance to the next column.
// Again, cycle through the current column
for (std::size_t h = 0; h < _height; h++)
{
// v is the vector pointing from one control point to the next neighbour
auto worldDistance = ctrlAt(h, w).vertex - ctrlAt(h, w + 1).vertex;
// Scale the distance in world coordinates into texture coords
double nextTexcoordX = texcoordX + worldDistance.getLength() * horizScale;
// Use the farthest extrapolated texture cooord
highestNextTexCoord = std::max(highestNextTexCoord, nextTexcoordX);
}
// Remember the highest found texcoord, assign it to the next column
texcoordX = highestNextTexCoord;
}
// Now the same goes for the texture height, cycle through all the rows
// and calculate the longest distances, convert them to texture coordinates
// and apply them to the according texture coordinates.
auto vertScale = 1.0f / (static_cast<float>(_shader.getHeight()) * defaultScale);
double texcoordY = 0;
// Each row is visited once
for (std::size_t h = 0; h < _height; h++)
{
// Visit every vertex in this row, assigning the current texCoordY
for (std::size_t w = 0; w < _width; w++)
{
ctrlAt(h, w).texcoord[1] = -texcoordY;
}
if (h + 1 == _height) break;
double highestNextTexCoord = 0;
for (std::size_t w = 0; w < _width; w++)
{
auto worldDistance = ctrlAt(h, w).vertex - ctrlAt(h + 1, w).vertex;
double nextTexcoordY = texcoordY + worldDistance.getLength() * vertScale;
highestNextTexCoord = std::max(highestNextTexCoord, nextTexcoordY);
}
texcoordY = highestNextTexCoord;
}
// Notify the patch that it control points got changed
controlPointsChanged();
}
void Patch::updateAABB()
{
AABB aabb;
for(PatchControlIter i = _ctrlTransformed.begin(); i != _ctrlTransformed.end(); ++i)
{
aabb.includePoint(i->vertex);
}
// greebo: Only trigger the callbacks if the bounds actually changed
if (_localAABB != aabb)
{
_localAABB = aabb;
_node.boundsChanged();
}
}
// Inserts two columns before and after the column having the index <colIndex>
void Patch::insertColumns(std::size_t colIndex) {
if (colIndex == 0 || colIndex == _width) {
throw GenericPatchException("Patch::insertColumns: can't insert at this index.");
}
if (_width + 2 > MAX_PATCH_WIDTH) {
throw GenericPatchException("Patch::insertColumns: patch has too many columns.");
}
// Create a backup of the old control vertices
PatchControlArray oldCtrl = _ctrl;
std::size_t oldHeight = _height;
std::size_t oldWidth = _width;
// Resize this patch
setDims(oldWidth + 2, oldHeight);
// Now fill in the control vertex values and interpolate
// before and after the insert point.
for (std::size_t row = 0; row < _height; row++) {
for (std::size_t newCol = 0, oldCol = 0;
newCol < _width && oldCol < oldWidth;
newCol++, oldCol++)
{
// Is this the insert point?
if (oldCol == colIndex) {
// Left column (to be interpolated)
ctrlAt(row, newCol).vertex = float_mid(
oldCtrl[row*oldWidth + oldCol - 1].vertex,
oldCtrl[row*oldWidth + oldCol].vertex
);
ctrlAt(row, newCol).texcoord = float_mid(
oldCtrl[row*oldWidth + oldCol - 1].texcoord,
oldCtrl[row*oldWidth + oldCol].texcoord
);
// Set the newCol counter to the middle column
newCol++;
ctrlAt(row, newCol).vertex = oldCtrl[row*oldWidth + oldCol].vertex;
ctrlAt(row, newCol).texcoord = oldCtrl[row*oldWidth + oldCol].texcoord;
// Set newCol to the right column (to be interpolated)
newCol++;
ctrlAt(row, newCol).vertex = float_mid(
oldCtrl[row*oldWidth + oldCol].vertex,
oldCtrl[row*oldWidth + oldCol + 1].vertex
);
ctrlAt(row, newCol).texcoord = float_mid(
oldCtrl[row*oldWidth + oldCol].texcoord,
oldCtrl[row*oldWidth + oldCol + 1].texcoord
);
}
else {
// No special column, just copy the control vertex
ctrlAt(row, newCol).vertex = oldCtrl[row*oldWidth + oldCol].vertex;
ctrlAt(row, newCol).texcoord = oldCtrl[row*oldWidth + oldCol].texcoord;
}
}
}
}
// Inserts two rows before and after the column having the index <colIndex>
void Patch::insertRows(std::size_t rowIndex) {
if (rowIndex == 0 || rowIndex == _height) {
throw GenericPatchException("Patch::insertRows: can't insert at this index.");
}
if (_height + 2 > MAX_PATCH_HEIGHT) {
throw GenericPatchException("Patch::insertRows: patch has too many rows.");
}
// Create a backup of the old control vertices
PatchControlArray oldCtrl = _ctrl;
std::size_t oldHeight = _height;
std::size_t oldWidth = _width;
// Resize this patch
setDims(oldWidth, oldHeight + 2);
// Now fill in the control vertex values and interpolate
// before and after the insert point.
for (std::size_t col = 0; col < _width; col++) {
for (std::size_t newRow = 0, oldRow = 0;
newRow < _height && oldRow < oldHeight;
newRow++, oldRow++)
{
// Is this the insert point?
if (oldRow == rowIndex) {
// the column above the insert point (to be interpolated)
ctrlAt(newRow, col).vertex = float_mid(
oldCtrl[(oldRow-1)*oldWidth + col].vertex,
oldCtrl[oldRow*oldWidth + col].vertex
);
ctrlAt(newRow, col).texcoord = float_mid(
oldCtrl[(oldRow-1)*oldWidth + col].texcoord,
oldCtrl[oldRow*oldWidth + col].texcoord
);
// Set the newRow counter to the middle row
newRow++;
ctrlAt(newRow, col).vertex = oldCtrl[oldRow*oldWidth + col].vertex;
ctrlAt(newRow, col).texcoord = oldCtrl[oldRow*oldWidth + col].texcoord;
// Set newRow to the lower column (to be interpolated)
newRow++;
ctrlAt(newRow, col).vertex = float_mid(
oldCtrl[oldRow*oldWidth + col].vertex,
oldCtrl[(oldRow+1)*oldWidth + col].vertex
);
ctrlAt(newRow, col).texcoord = float_mid(
oldCtrl[oldRow*oldWidth + col].texcoord,
oldCtrl[(oldRow+1)*oldWidth + col].texcoord
);
}
else {
// No special column, just copy the control vertex
ctrlAt(newRow, col).vertex = oldCtrl[oldRow*oldWidth + col].vertex;
ctrlAt(newRow, col).texcoord = oldCtrl[oldRow*oldWidth + col].texcoord;
}
}
}
}
// Removes the two rows before and after the column/row having the index <index>
void Patch::removePoints(bool columns, std::size_t index) {
bool rows = !columns; // readability shortcut ;)
if ((columns && _width<5) || (!columns && _height < 5))
{
throw GenericPatchException("Patch::removePoints: can't remove any more rows/columns.");
}
// Check column index bounds
if (columns && (index < 2 || index > _width - 3)) {
throw GenericPatchException("Patch::removePoints: can't remove columns at this index.");
}
// Check row index bounds
if (rows && (index < 2 || index > _height - 3)) {
throw GenericPatchException("Patch::removePoints: can't remove rows at this index.");
}
// Create a backup of the old control vertices
PatchControlArray oldCtrl = _ctrl;
std::size_t oldHeight = _height;
std::size_t oldWidth = _width;
// Resize this patch
setDims(columns ? oldWidth - 2 : oldWidth, rows ? oldHeight - 2 : oldHeight);
// Now fill in the control vertex values and skip
// the rows/cols before and after the remove point.
for (std::size_t newRow = 0, oldRow = 0;
newRow < _height && oldRow < oldHeight;
newRow++, oldRow++)
{
// Skip the row before and after the removal point
if (rows && (oldRow == index - 1 || oldRow == index + 1)) {
// Increase the old row pointer by 1
oldRow++;
}
for (std::size_t oldCol = 0, newCol = 0;
oldCol < oldWidth && newCol < _width;
oldCol++, newCol++)
{
// Skip the column before and after the removal point
if (columns && (oldCol == index - 1 || oldCol == index + 1)) {
// Increase the old row pointer by 1
oldCol++;
}
// Copy the control vertex from the old patch to the new patch
ctrlAt(newRow, newCol).vertex = oldCtrl[oldRow*oldWidth + oldCol].vertex;
ctrlAt(newRow, newCol).texcoord = oldCtrl[oldRow*oldWidth + oldCol].texcoord;
}
}
}
void Patch::constructSeam(patch::CapType eType, std::vector<Vector3>& points, std::size_t width)
{
switch(eType)
{
case patch::CapType::InvertedBevel:
{
setDims(3, 3);
_ctrl[0].vertex = points[0];
_ctrl[1].vertex = points[1];
_ctrl[2].vertex = points[1];
_ctrl[3].vertex = points[1];
_ctrl[4].vertex = points[1];
_ctrl[5].vertex = points[1];
_ctrl[6].vertex = points[2];
_ctrl[7].vertex = points[1];
_ctrl[8].vertex = points[1];
}
break;
case patch::CapType::Bevel:
{
setDims(3, 3);
Vector3 p3(points[2] + (points[0] - points[1]));
_ctrl[0].vertex = p3;
_ctrl[1].vertex = p3;
_ctrl[2].vertex = points[2];
_ctrl[3].vertex = p3;
_ctrl[4].vertex = p3;
_ctrl[5].vertex = points[1];
_ctrl[6].vertex = p3;
_ctrl[7].vertex = p3;
_ctrl[8].vertex = points[0];
}
break;
case patch::CapType::EndCap:
{
Vector3 p5(math::midPoint(points[0], points[4]));
setDims(3, 3);
_ctrl[0].vertex = points[0];
_ctrl[1].vertex = p5;
_ctrl[2].vertex = points[4];
_ctrl[3].vertex = points[1];
_ctrl[4].vertex = points[2];
_ctrl[5].vertex = points[3];
_ctrl[6].vertex = points[2];
_ctrl[7].vertex = points[2];
_ctrl[8].vertex = points[2];
}
break;
case patch::CapType::InvertedEndCap:
{
setDims(5, 3);
_ctrl[0].vertex = points[4];
_ctrl[1].vertex = points[3];
_ctrl[2].vertex = points[2];
_ctrl[3].vertex = points[1];
_ctrl[4].vertex = points[0];
_ctrl[5].vertex = points[3];
_ctrl[6].vertex = points[3];
_ctrl[7].vertex = points[2];
_ctrl[8].vertex = points[1];
_ctrl[9].vertex = points[1];
_ctrl[10].vertex = points[3];
_ctrl[11].vertex = points[3];
_ctrl[12].vertex = points[2];
_ctrl[13].vertex = points[1];
_ctrl[14].vertex = points[1];
}
break;
case patch::CapType::Cylinder:
{
std::size_t mid = (width - 1) >> 1;
bool degenerate = (mid % 2) != 0;
std::size_t newHeight = mid + (degenerate ? 2 : 1);
setDims(3, newHeight);
if(degenerate)
{
++mid;
for(std::size_t i = width; i != width + 2; ++i)
{
points[i] = points[width - 1];
}
}
{
PatchControlIter pCtrl = _ctrl.begin();
for(std::size_t i = 0; i != _height; ++i, pCtrl += _width)
{
pCtrl->vertex = points[i];
}
}
{
PatchControlIter pCtrl = _ctrl.begin() + 2;
std::size_t h = _height - 1;
for(std::size_t i = 0; i != _height; ++i, pCtrl += _width)
{
pCtrl->vertex = points[h + (h - i)];
if (i == _height - 1) break; // prevent iterator from being incremented post bounds
}
}
Redisperse(COL);
}
break;
default:
ERROR_MESSAGE("invalid patch-cap type");
return;
}
controlPointsChanged();
}
// greebo: Calculates the nearest patch CORNER vertex from the given <point>
// Note: if this routine returns end(), something's rotten with the patch
PatchControlIter Patch::getClosestPatchControlToPoint(const Vector3& point) {
PatchControlIter pBest = end();
// Initialise with an illegal distance value
double closestDist = -1.0;
PatchControlIter corners[4] = {
_ctrl.begin(),
_ctrl.begin() + (_width-1),
_ctrl.begin() + (_width*(_height-1)),
_ctrl.begin() + (_width*_height - 1)
};
// Cycle through all the control points with an iterator
//for (PatchControlIter i = _ctrl.begin(); i != _ctrl.end(); ++i) {
for (unsigned int i = 0; i < 4; i++) {
// Calculate the distance of the current vertex
double candidateDist = (corners[i]->vertex - point).getLength();
// Compare the distance to the currently closest one
if (candidateDist < closestDist || pBest == end()) {
// Store this distance as best value so far
closestDist = candidateDist;
// Store the pointer in <best>
pBest = corners[i];
}
}
return pBest;
}
/* greebo: This calculates the nearest patch control to the given brush <face>
*
* @returns: a pointer to the nearest patch face. (Can technically be end(), but really should not happen).*/
PatchControlIter Patch::getClosestPatchControlToPatch(const Patch& patch) {
// A pointer to the patch vertex closest to the patch
PatchControlIter pBest = end();
// Initialise the best distance with an illegal value
double closestDist = -1.0;
// Cycle through the winding vertices and calculate the distance to each patch vertex
for (PatchControlConstIter i = patch.begin(); i != patch.end(); ++i)
{
// Retrieve the vertex
const Vector3& patchVertex = i->vertex;
// Get the nearest control point to the current otherpatch vertex
PatchControlIter candidate = getClosestPatchControlToPoint(patchVertex);
if (candidate != end())
{
double candidateDist = (patchVertex - candidate->vertex).getLength();
// If we haven't found a best patch control so far or
// the candidate distance is even better, save it!
if (pBest == end() || candidateDist < closestDist)
{
// Memorise this patch control
pBest = candidate;
closestDist = candidateDist;
}
}
} // end for
return pBest;
}
/* greebo: This calculates the nearest patch control to the given brush <face>
*
* @returns: a pointer to the nearest patch face. (Can technically be end(), but really should not happen).*/
PatchControlIter Patch::getClosestPatchControlToFace(const Face* face)
{
// A pointer to the patch vertex closest to the face
PatchControlIter pBest = end();
// Initialise the best distance with an illegal value
double closestDist = -1.0;
// Check for NULL pointer, just to make sure
if (face != NULL)
{
// Retrieve the winding from the brush face
const Winding& winding = face->getWinding();
// Cycle through the winding vertices and calculate the distance to each patch vertex
for (Winding::const_iterator i = winding.begin(); i != winding.end(); ++i) {
// Retrieve the vertex
const Vector3& faceVertex = i->vertex;
// Get the nearest control point to the current face vertex
PatchControlIter candidate = getClosestPatchControlToPoint(faceVertex);
if (candidate != end())
{
double candidateDist = (faceVertex - candidate->vertex).getLength();
// If we haven't found a best patch control so far or
// the candidate distance is even better, save it!
if (pBest == end() || candidateDist < closestDist)
{
// Memorise this patch control
pBest = candidate;
closestDist = candidateDist;
}
}
} // end for
}
return pBest;
}
Vector2 Patch::getPatchControlArrayIndices(const PatchControlIter& control)
{
std::size_t count = 0;
// Go through the patch column per column and find the control vertex
for (PatchControlIter p = _ctrl.begin(); p != _ctrl.end(); ++p, ++count)
{
// Compare the iterators to check if we have found the control
if (p == control)
{
int row = static_cast<int>(floor(static_cast<float>(count) / _width));
int col = static_cast<int>(count % _width);
return Vector2(col, row);
}
}
return Vector2(0,0);
}
/* Project the vertex onto the given plane and transform it into the texture space using the worldToTexture matrix
*/
Vector2 getProjectedTextureCoords(const Vector3& vertex, const Plane3& plane, const Matrix4& worldToTexture) {
// Project the patch vertex onto the brush face plane
Vector3 projection = plane.getProjection(vertex);
// Transform the projection coordinates into texture space
Vector3 texcoord = worldToTexture.transformPoint(projection);
// Return the texture coordinates
return Vector2(texcoord[0], texcoord[1]);
}
/* greebo: This routine can be used to create seamless texture transitions from brushes to patches.
*
* The idea is to flatten out the patch so that the distances between the patch control vertices
* are preserved, but all of them lie flat in a plane. These points can then be projected onto
* the brush faceplane and this way the texture coordinates can be easily calculated via the
* world-to-texture-space transformations (the matrix is retrieved from the TexDef class).
*
* The main problem that has to be tackled is not the "natural" texturing itself (the method
* "natural" already takes care of that), but the goal that the patch/brush texture transition
* is seamless.
*
* The starting point of the "flattening" is the nearest control vertex of the patch (the closest
* patch vertex to any of the brush winding vertices. Once this point has been found, the patch is
* systematically flattened into a "virtual" patch plane. From there the points are projected into
* the texture space and you're already there.
*
* Note: This took me quite a bit and it's entirely possible that there is a more clever solution
* to this, but for this weekend I'm done with this (and it works ;)).
*
* Note: The angle between patch and brush can also be 90 degrees, the algorithm catches this case
* and calculates its own virtual patch directions.
*/
void Patch::pasteTextureNatural(const Face* face)
{
// Check for NULL pointers
if (face == nullptr) return;
// Convert the size_t stuff into int, because we need it for signed comparisons
int patchHeight = static_cast<int>(_height);
int patchWidth = static_cast<int>(_width);
// Get the plane and its normalised normal vector of the face
Plane3 plane = face->getPlane().getPlane().getNormalised();
Vector3 faceNormal = plane.normal();
// Get the conversion matrix from the FaceTextureDef, the local2World argument is the identity matrix
Matrix4 worldToTexture = face->getProjection().getWorldToTexture(faceNormal, Matrix4::getIdentity());
// Calculate the nearest corner vertex of this patch (to the face's winding vertices)
PatchControlIter nearestControl = getClosestPatchControlToFace(face);
// Determine the control array indices of the nearest control vertex
Vector2 indices = getPatchControlArrayIndices(nearestControl);
// this is the point from where the patch is virtually flattened
int wStart = static_cast<int>(indices.x());
int hStart = static_cast<int>(indices.y());
// Calculate the increments in the patch array, needed for the loops
int wIncr = (wStart == patchWidth-1) ? -1 : 1;
int wEnd = (wIncr<0) ? -1 : patchWidth;
int hIncr = (hStart == patchHeight-1) ? -1 : 1;
int hEnd = (hIncr<0) ? -1 : patchHeight;
PatchControl* startControl = &_ctrl[(patchWidth*hStart) + wStart];
// Calculate the base directions that are used to "flatten" the patch
// These have to be orthogonal to the facePlane normal, so that the texture coordinates
// can be retrieved by projection onto the facePlane.
// Get the control points of the next column and the next row
PatchControl& nextColumn = _ctrl[(patchWidth*(hStart + hIncr)) + wStart];
PatchControl& nextRow = _ctrl[(patchWidth*hStart) + (wStart + wIncr)];
// Calculate the world direction of these control points and extract a base
Vector3 widthVector = (nextRow.vertex - startControl->vertex);
Vector3 heightVector = (nextColumn.vertex - startControl->vertex);
if (widthVector.getLength() == 0.0f || heightVector.getLength() == 0.0f)
{
throw cmd::ExecutionFailure(
_("Sorry. Patch is not suitable for this kind of operation.")
);
}
// Save the undo memento
undoSave();
// Calculate the base vectors of the virtual plane the patch is flattened in
Vector3 widthBase, heightBase;
getVirtualPatchBase(widthVector, heightVector, faceNormal, widthBase, heightBase);
// Now cycle (systematically) through all the patch vertices, flatten them out by
// calculating the 3D distances of each vertex and projecting them onto the facePlane.
// Initialise the starting point
PatchControl* prevColumn = startControl;
Vector3 prevColumnVirtualVertex = prevColumn->vertex;
for (int w = wStart; w != wEnd; w += wIncr) {
// The first control in this row, calculate its virtual coords
PatchControl* curColumn = &_ctrl[(patchWidth*hStart) + w];
// The distance between the last column and this column
double xyzColDist = (curColumn->vertex - prevColumn->vertex).getLength();
// The vector pointing to the next control point, if it *was* a completely planar patch
Vector3 curColumnVirtualVertex = prevColumnVirtualVertex + widthBase * xyzColDist;
// Store this value for the upcoming column cycle
PatchControl* prevRow = curColumn;
Vector3 prevRowVirtualVertex = curColumnVirtualVertex;
// Cycle through all the columns
for (int h = hStart; h != hEnd; h += hIncr) {
// The current control
PatchControl* control = &_ctrl[(patchWidth*h) + w];
// The distance between the last and the current vertex
double xyzRowDist = (control->vertex - prevRow->vertex).getLength();
// The vector pointing to the next control point, if it *was* a completely planar patch
Vector3 virtualControlVertex = prevRowVirtualVertex + heightBase * xyzRowDist;
// Project the virtual vertex onto the brush faceplane and transform it into texture space
control->texcoord = getProjectedTextureCoords(virtualControlVertex, plane, worldToTexture);
// Update the variables for the next loop
prevRow = control;
prevRowVirtualVertex = virtualControlVertex;
}
// Set the prevColumn control vertex to this one
prevColumn = curColumn;
prevColumnVirtualVertex = curColumnVirtualVertex;
}
// Notify the patch about the change
controlPointsChanged();
}
void Patch::pasteTextureNatural(Patch& sourcePatch) {
// Save the undo memento
undoSave();
// Convert the size_t stuff into int, because we need it for signed comparisons
int patchHeight = static_cast<int>(_height);
int patchWidth = static_cast<int>(_width);
// Calculate the nearest corner vertex of this patch (to the sourcepatch vertices)
PatchControlIter nearestControl = getClosestPatchControlToPatch(sourcePatch);
PatchControlIter refControl = sourcePatch.getClosestPatchControlToPatch(*this);
Vector2 texDiff = refControl->texcoord - nearestControl->texcoord;
for (int col = 0; col < patchWidth; col++) {
for (int row = 0; row < patchHeight; row++) {
// Substract the texture coord difference from each control vertex
ctrlAt(row, col).texcoord += texDiff;
}
}
// Notify the patch about the change
controlPointsChanged();
}
void Patch::pasteTextureProjected(const Face* face) {
// Save the undo memento
undoSave();
/* greebo: If there is a face pointer being passed to this method,
* the algorithm takes each vertex of the patch, projects it onto
* the plane (defined by the brush face) and transforms the coordinates
* into the texture space. */
if (face != NULL) {
// Get the normal vector of the face
Plane3 plane = face->getPlane().getPlane().getNormalised();
// Get the (already normalised) facePlane normal
Vector3 faceNormal = plane.normal();
// Get the conversion matrix from the FaceTextureDef, the local2World argument is the identity matrix
Matrix4 worldToTexture = face->getProjection().getWorldToTexture(faceNormal, Matrix4::getIdentity());
// Cycle through all the control points with an iterator
for (PatchControlIter i = _ctrl.begin(); i != _ctrl.end(); ++i) {
// Project the vertex onto the face plane and transform it into texture space
i->texcoord = getProjectedTextureCoords(i->vertex, plane, worldToTexture);
}
// Notify the patch about the change
controlPointsChanged();
}
}
/* This clones the texture u/v coordinates from the <other> patch onto this one
* Note: the patch dimensions must match exactly for this function to be performed.
*/
void Patch::pasteTextureCoordinates(const Patch* otherPatch) {
undoSave();
if (otherPatch != NULL) {
if (otherPatch->getWidth() == _width && otherPatch->getHeight() == _height) {
PatchControlConstIter other;
PatchControlIter self;
// Clone the texture coordinates one by one
for (other = otherPatch->begin(), self = _ctrl.begin();
other != otherPatch->end();
++other, ++self)
{
self->texcoord = other->texcoord;
}
// Notify the patch about the change
controlPointsChanged();
}
else {
rMessage() << "Error: Cannot copy texture coordinates, patch dimensions must match!\n";
}
}
}
void Patch::alignTexture(AlignEdge align)
{
if (isDegenerate()) return;
// A 5x3 patch has (5-1)x2 + (3-1)x2 edges at the border
// The edges in texture space, sorted the same as in the winding
std::vector<Vector2> texEdges;
std::vector<Vector2> texCoords;
// Calculate all edges in texture space
for (std::size_t h = 0; h < _height-1; ++h)
{
for (std::size_t w = 0; w < _width-1; ++w)
{
texEdges.push_back(ctrlAt(0, w).texcoord - ctrlAt(0, w+1).texcoord);
texCoords.push_back(ctrlAt(0,w).texcoord);
texEdges.push_back(ctrlAt(_height-1, w+1).texcoord - ctrlAt(_height-1, w).texcoord);
texCoords.push_back(ctrlAt(_height-1, w+1).texcoord);
}
texEdges.push_back(ctrlAt(h, 0).texcoord - ctrlAt(h+1, 0).texcoord);
texCoords.push_back(ctrlAt(h, 0).texcoord);
texEdges.push_back(ctrlAt(h+1, _width-1).texcoord - ctrlAt(h, _width-1).texcoord);
texCoords.push_back(ctrlAt(h+1, _width-1).texcoord);
}
// Find the edge which is nearest to the s,t base vector, to classify them as "top" or "left"
std::size_t bottomEdge = findBestEdgeForDirection(Vector2(1,0), texEdges);
std::size_t leftEdge = findBestEdgeForDirection(Vector2(0,1), texEdges);
std::size_t rightEdge = findBestEdgeForDirection(Vector2(0,-1), texEdges);
std::size_t topEdge = findBestEdgeForDirection(Vector2(-1,0), texEdges);
// The bottom edge is the one with the larger T texture coordinate
if (texCoords[topEdge].y() > texCoords[bottomEdge].y())
{
std::swap(topEdge, bottomEdge);
}
// The right edge is the one with the larger S texture coordinate
if (texCoords[rightEdge].x() < texCoords[leftEdge].x())
{
std::swap(rightEdge, leftEdge);
}
// Find the winding vertex index we're calculating the delta for
std::size_t coordIndex = 0;
// The dimension to move (1 for top/bottom, 0 for left right)
std::size_t dim = 0;
switch (align)
{
case IPatch::AlignEdge::Top:
coordIndex = topEdge;
dim = 1;
break;
case IPatch::AlignEdge::Bottom:
coordIndex = bottomEdge;
dim = 1;
break;
case IPatch::AlignEdge::Left:
coordIndex = leftEdge;
dim = 0;
break;
case IPatch::AlignEdge::Right:
coordIndex = rightEdge;
dim = 0;
break;
};
Vector2 snapped = texCoords[coordIndex];
// Snap the dimension we're going to change only (s for left/right, t for top/bottom)
snapped[dim] = float_snapped(snapped[dim], 1.0);
Vector2 delta = snapped - texCoords[coordIndex];
// Shift the texture such that we hit the snapped coordinate
translateTexCoords(delta);
controlPointsChanged();
}
PatchTesselation& Patch::getTesselation()
{
// Ensure the tesselation is up to date
updateTesselation();
return _mesh;
}
PatchRenderIndices Patch::getRenderIndices() const
{
// Ensure the tesselation is up to date
const_cast<Patch&>(*this).updateTesselation();
PatchRenderIndices info;
info.indices = _mesh.indices;
info.lenStrips = _mesh.lenStrips;
info.numStrips = _mesh.numStrips;
return info;
}
PatchMesh Patch::getTesselatedPatchMesh() const
{
// Ensure the tesselation is up to date
const_cast<Patch&>(*this).updateTesselation();
PatchMesh mesh;
mesh.width = _mesh.width;
mesh.height = _mesh.height;
for (std::vector<MeshVertex>::const_iterator i = _mesh.vertices.begin();
i != _mesh.vertices.end(); ++i)
{
VertexNT v;
v.vertex = i->vertex;
v.texcoord = i->texcoord;
v.normal = i->normal;
mesh.vertices.push_back(v);
}
return mesh;
}
void Patch::constructPlane(const AABB& aabb, int axis, std::size_t width, std::size_t height)
{
setDims(width, height);
int x, y, z;
switch(axis)
{
case 2: x=0; y=1; z=2; break;
case 1: x=0; y=2; z=1; break;
case 0: x=1; y=2; z=0; break;
default:
ERROR_MESSAGE("invalid view-type");
return;
}
if(_width < MIN_PATCH_WIDTH || _width > MAX_PATCH_WIDTH) _width = 3;
if(_height < MIN_PATCH_HEIGHT || _height > MAX_PATCH_HEIGHT) _height = 3;
Vector3 vStart;
vStart[x] = aabb.origin[x] - aabb.extents[x];
vStart[y] = aabb.origin[y] - aabb.extents[y];
vStart[z] = aabb.origin[z];
auto xAdj = std::abs((vStart[x] - (aabb.origin[x] + aabb.extents[x])) / static_cast<Vector3::ElementType>(_width - 1));
auto yAdj = std::abs((vStart[y] - (aabb.origin[y] + aabb.extents[y])) / static_cast<Vector3::ElementType>(_height - 1));
Vector3 vTmp;
vTmp[z] = vStart[z];
PatchControlIter pCtrl = _ctrl.begin();
vTmp[y]=vStart[y];
for (std::size_t h=0; h<_height; h++)
{
vTmp[x]=vStart[x];
for (std::size_t w=0; w<_width; w++, ++pCtrl)
{
pCtrl->vertex = vTmp;
vTmp[x]+=xAdj;
}
vTmp[y]+=yAdj;
}
scaleTextureNaturally();
}
// Returns the dimension for the given viewtype, used by the patch prefab routines
// constDim will be the dimension which is held constant for each patch row,
// matching to the view vector, e.g. Z for the XY viewtype
// It is ensured that dim1 < dim2
inline void assignDimsForViewType(OrthoOrientation viewType, std::size_t& dim1, std::size_t& dim2, std::size_t& constDim)
{
switch (viewType)
{
case OrthoOrientation::XY: constDim = 2; break; // z coordinate is incremented each patch row
case OrthoOrientation::YZ: constDim = 0; break; // x coordinate is incremented each patch row
case OrthoOrientation::XZ: constDim = 1; break; // y coordinate is incremented each patch row
};
// Calculate the other two dimensions, such that colDim1 < colDim2
dim1 = (constDim + 1) % 3;
dim2 = (constDim + 2) % 3;
if (dim2 < dim1)
{
std::swap(dim1, dim2);
}
}
void Patch::constructBevel(const AABB& aabb, OrthoOrientation viewType)
{
Vector3 vPos[3] =
{
aabb.origin - aabb.extents,
aabb.origin,
aabb.origin + aabb.extents
};
std::size_t dim1 = 0, dim2 = 0, constDim = 0;
assignDimsForViewType(viewType, dim1, dim2, constDim);
std::size_t lowlowhigh[3] = { 0, 0, 2 };
std::size_t lowhighhigh[3] = { 0, 2, 2 };
setDims(3, 3);
PatchControlIter ctrl = _ctrl.begin();
for (std::size_t h = 0; h < 3; ++h)
{
for (std::size_t w = 0; w < 3; ++w, ++ctrl)
{
// One of the dimensions stays constant per row
ctrl->vertex[constDim] = vPos[h][constDim];
// One dimension goes like "low", "low", "high" in a row
ctrl->vertex[dim1] = vPos[ lowlowhigh[w] ][dim1];
// One dimension goes like "low", "high", "high" in a row
ctrl->vertex[dim2] = vPos[ lowhighhigh[w] ][dim2];
}
}
if (viewType == OrthoOrientation::XZ)
{
invertMatrix();
}
}
void Patch::constructEndcap(const AABB& aabb, OrthoOrientation viewType)
{
Vector3 vPos[3] =
{
aabb.origin - aabb.extents,
aabb.origin,
aabb.origin + aabb.extents
};
std::size_t pEndIndex[] =
{
2, 0,
2, 2,
1, 2,
0, 2,
0, 0,
};
// Define the "row" dimension, e.g. z for an XY-oriented patch
std::size_t dim1 = 0, dim2 = 0, constDim = 0;
assignDimsForViewType(viewType, dim1, dim2, constDim);
setDims(5, 3);
PatchControlIter pCtrl = _ctrl.begin();
for (std::size_t h = 0; h < 3; ++h)
{
std::size_t* pIndex = pEndIndex;
for (std::size_t w = 0; w < 5; ++w, pIndex += 2, ++pCtrl)
{
pCtrl->vertex[dim1] = vPos[pIndex[0]][dim1];
pCtrl->vertex[dim2] = vPos[pIndex[1]][dim2];
pCtrl->vertex[constDim] = vPos[h][constDim];
}
}
if (viewType != OrthoOrientation::XZ)
{
invertMatrix();
}
}
void Patch::ConstructPrefab(const AABB& aabb, EPatchPrefab eType, OrthoOrientation viewType, std::size_t width, std::size_t height)
{
if (eType == ePlane)
{
constructPlane(aabb, static_cast<int>(viewType), width, height);
}
else if (eType == eBevel)
{
constructBevel(aabb, viewType);
}
else if (eType == eEndCap)
{
constructEndcap(aabb, viewType);
}
else if (eType == eSqCylinder || eType == eCylinder ||
eType == eDenseCylinder || eType == eVeryDenseCylinder ||
eType == eCone || eType == eSphere)
{
Vector3 vPos[3] =
{
aabb.origin - aabb.extents,
aabb.origin,
aabb.origin + aabb.extents,
};
PatchControlIter pStart;
switch(eType)
{
case eSqCylinder:
setDims(9, 3);
pStart = _ctrl.begin();
break;
case eDenseCylinder:
case eVeryDenseCylinder:
case eCylinder:
setDims(9, 3);
pStart = _ctrl.begin() + 1;
break;
case eCone: setDims(9, 3);
pStart = _ctrl.begin() + 1;
break;
case eSphere:
setDims(9, 5);
pStart = _ctrl.begin() + (9+1);
break;
default:
ERROR_MESSAGE("this should be unreachable");
return;
}
// greebo: Determine which dimensions are assigned, depending on the view type
// Define the "row" dimension, e.g. z for an XY-oriented cylinder
std::size_t colDim1 = 0, colDim2 = 0, rowDim = 0;
assignDimsForViewType(viewType, colDim1, colDim2, rowDim);
// As first measure, assign a closed, axis-aligned loop of vertices for each patch row
// Depending on the prefab type, further actions are performed in the switch statement below
{
// greebo: the other "column" dimensions are using the same pattern for each view
// 0 = min, 1 = mid, 2 = max
std::size_t pCylIndex[] =
{
0, 0,
1, 0,
2, 0,
2, 1,
2, 2,
1, 2,
0, 2,
0, 1,
0, 0,
};
for (std::size_t h = 0; h < 3; ++h)
{
std::size_t* pIndex = pCylIndex;
PatchControlIter pCtrl = pStart;
for (std::size_t w = 0; w < 8; ++w, ++pCtrl)
{
// For the "row" dimension, we use the patch height 0..2
pCtrl->vertex[rowDim] = vPos[h][rowDim];
// Assign the other two "column" dimensions
pCtrl->vertex[colDim1] = vPos[pIndex[0]][colDim1];
pCtrl->vertex[colDim2] = vPos[pIndex[1]][colDim2];
pIndex += 2;
}
// Go to the next line, but only do that if we're not at the last one already
// to not increment the pStart iterator beyond the end of the container
if (h < 2) pStart += 9;
}
}
switch(eType)
{
case eSqCylinder:
{
PatchControlIter pCtrl = _ctrl.begin();
for (std::size_t h = 0; h < 3; ++h)
{
pCtrl[8].vertex = pCtrl[0].vertex;
// Go to the next line
if (h < 2) pCtrl+=9;
}
}
break;
case eDenseCylinder:
case eVeryDenseCylinder:
case eCylinder:
{
// Regular cylinders get the first column snapped to the last one
// to form a closed loop
PatchControlIter pCtrl = _ctrl.begin();
for (std::size_t h = 0; h < 3; ++h)
{
pCtrl[0].vertex = pCtrl[8].vertex;
// Go to the next line
if (h < 2) pCtrl+=9;
}
}
break;
case eCone:
// Close the control vertex loop of cones
{
PatchControlIter pCtrl = _ctrl.begin();
for (std::size_t h = 0; h < 2; ++h)
{
pCtrl[0].vertex = pCtrl[8].vertex;
// Go to the next line
if (h < 1) pCtrl+=9;
}
}
// And "merge" the vertices of the last row into one single point
{
PatchControlIter pCtrl = _ctrl.begin() + 9*2;
for (std::size_t w = 0; w < 9; ++w, ++pCtrl)
{
pCtrl->vertex[colDim1] = vPos[1][colDim1];
pCtrl->vertex[colDim2] = vPos[1][colDim2];
pCtrl->vertex[rowDim] = vPos[2][rowDim];
}
}
break;
case eSphere:
// Close the vertex loop for spheres too (middle row)
{
PatchControlIter pCtrl = _ctrl.begin() + 9;
for (std::size_t h = 0; h < 3; ++h)
{
pCtrl[0].vertex = pCtrl[8].vertex;
// Go to the next line
if (h < 2) pCtrl+=9;
}
}
// Merge the first and last row vertices into one single point
{
PatchControlIter pCtrl = _ctrl.begin();
for (std::size_t w = 0; w < 9; ++w, ++pCtrl)
{
pCtrl->vertex[colDim1] = vPos[1][colDim1];
pCtrl->vertex[colDim2] = vPos[1][colDim2];
pCtrl->vertex[rowDim] = vPos[0][rowDim];
}
}
{
PatchControlIter pCtrl = _ctrl.begin() + (9*4);
for (std::size_t w = 0; w < 9; ++w, ++pCtrl)
{
pCtrl->vertex[colDim1] = vPos[1][colDim1];
pCtrl->vertex[colDim2] = vPos[1][colDim2];
pCtrl->vertex[rowDim] = vPos[2][rowDim];
}
}
break;
default:
ERROR_MESSAGE("this should be unreachable");
return;
}
if (eType == eDenseCylinder)
{
insertRemove(true, false, true);
}
if (eType == eVeryDenseCylinder)
{
insertRemove(true, false, false);
insertRemove(true, false, true);
}
if (viewType == OrthoOrientation::XZ)
{
invertMatrix();
}
}
scaleTextureNaturally();
}
namespace
{
Vector3 getAverageNormal(const Vector3& normal1, const Vector3& normal2, double thickness)
{
// Beware of normals with 0 length
if (normal1.getLengthSquared() == 0) return normal2;
if (normal2.getLengthSquared() == 0) return normal1;
// Both normals have length > 0
Vector3 n1 = normal1.getNormalised();
Vector3 n2 = normal2.getNormalised();
// Get the angle bisector
Vector3 normal = (n1 + n2).getNormalised();
// Now calculate the length correction out of the angle
// of the two normals
auto factor = cos(n1.angle(n2) * 0.5);
// Stretch the normal to fit the required thickness
normal *= thickness;
// Check for div by zero (if the normals are antiparallel)
// and stretch the resulting normal, if necessary
if (factor != 0)
{
normal /= factor;
}
return normal;
}
inline void calculateColTangentForCtrl(const Patch& sourcePatch, std::size_t row, std::size_t col, Vector3 colTangent[2])
{
const auto& curCtrl = sourcePatch.ctrlAt(row, col);
auto sourceWidth = sourcePatch.getWidth();
// Are we at the beginning/end of the column?
if (col == 0 || col == sourceWidth - 1)
{
// Get the next row index
std::size_t nextCol = (col == sourceWidth - 1) ? (col - 1) : (col + 1);
const PatchControl& colNeighbour = sourcePatch.ctrlAt(row, nextCol);
// One available tangent
colTangent[0] = colNeighbour.vertex - curCtrl.vertex;
// Reverse it if we're at the end of the column
colTangent[0] *= (col == sourceWidth - 1) ? -1 : +1;
}
// We are in between, two tangents can be calculated
else
{
// Take two neighbouring vertices that should form a line segment
const PatchControl& neighbour1 = sourcePatch.ctrlAt(row, col + 1);
const PatchControl& neighbour2 = sourcePatch.ctrlAt(row, col - 1);
// Calculate both available tangents
colTangent[0] = neighbour1.vertex - curCtrl.vertex;
colTangent[1] = neighbour2.vertex - curCtrl.vertex;
// Reverse the second one
colTangent[1] *= -1;
// Cull redundant tangents
if (math::isParallel(colTangent[1], colTangent[0]))
{
colTangent[1] = Vector3(0, 0, 0);
}
}
}
inline void calculateRowTangentForCtrl(const Patch& sourcePatch, std::size_t row, std::size_t col, Vector3 rowTangent[2])
{
const auto& curCtrl = sourcePatch.ctrlAt(row, col);
auto sourceHeight = sourcePatch.getHeight();
// Are we at the beginning or the end?
if (row == 0 || row == sourceHeight - 1)
{
// Yes, only calculate one row tangent
// Get the next row index
std::size_t nextRow = (row == sourceHeight - 1) ? (row - 1) : (row + 1);
const PatchControl& rowNeighbour = sourcePatch.ctrlAt(nextRow, col);
// First tangent
rowTangent[0] = rowNeighbour.vertex - curCtrl.vertex;
// Reverse it accordingly
rowTangent[0] *= (row == sourceHeight - 1) ? -1 : +1;
}
else
{
// Two tangents to calculate
const PatchControl& rowNeighbour1 = sourcePatch.ctrlAt(row + 1, col);
const PatchControl& rowNeighbour2 = sourcePatch.ctrlAt(row - 1, col);
// First tangent
rowTangent[0] = rowNeighbour1.vertex - curCtrl.vertex;
rowTangent[1] = rowNeighbour2.vertex - curCtrl.vertex;
// Reverse the second one
rowTangent[1] *= -1;
// Cull redundant tangents
if (math::isParallel(rowTangent[1], rowTangent[0]))
{
rowTangent[1] = Vector3(0, 0, 0);
}
}
}
Vector3 calculateNormalForTangents(Vector3 colTangent[2], Vector3 rowTangent[2], const float thickness)
{
Vector3 normal;
// If two column tangents are available, take the length-corrected average
if (colTangent[1].getLengthSquared() > 0)
{
// Two column normals to calculate
Vector3 normal1 = rowTangent[0].cross(colTangent[0]);
Vector3 normal2 = rowTangent[0].cross(colTangent[1]);
if (normal1.getLengthSquared() > 0)
{
normal1.normalise();
}
if (normal2.getLengthSquared() > 0)
{
normal2.normalise();
}
normal = getAverageNormal(normal1, normal2, thickness);
// Scale the normal down, as it is multiplied with thickness later on
normal /= thickness;
}
else
{
// One column tangent available, maybe we have a second rowtangent?
if (rowTangent[1].getLengthSquared() > 0)
{
// Two row normals to calculate
Vector3 normal1 = rowTangent[0].cross(colTangent[0]);
Vector3 normal2 = rowTangent[1].cross(colTangent[0]);
if (normal1.getLengthSquared() > 0)
{
normal1.normalise();
}
if (normal2.getLengthSquared() > 0)
{
normal2.normalise();
}
normal = getAverageNormal(normal1, normal2, thickness);
// Scale the normal down, as it is multiplied with thickness later on
normal /= thickness;
}
else
{
normal = rowTangent[0].cross(colTangent[0]);
if (normal.getLengthSquared() > 0)
{
normal.normalise();
}
}
}
return normal;
}
}
void Patch::createThickenedOpposite(const Patch& sourcePatch,
const float thickness,
const int axis)
{
// Clone the dimensions from the other patch
setDims(sourcePatch.getWidth(), sourcePatch.getHeight());
// Also inherit the tesselation from the source patch
setFixedSubdivisions(sourcePatch.subdivisionsFixed(), sourcePatch.getSubdivisions());
// Copy the shader from the source patch
setShader(sourcePatch.getShader());
// if extrudeAxis == 0,0,0 the patch is extruded along its vertex normals
Vector3 extrudeAxis(0,0,0);
switch (axis) {
case 0: // X-Axis
extrudeAxis = Vector3(1,0,0);
break;
case 1: // Y-Axis
extrudeAxis = Vector3(0,1,0);
break;
case 2: // Z-Axis
extrudeAxis = Vector3(0,0,1);
break;
default:
// Default value already set during initialisation
break;
}
for (std::size_t col = 0; col < _width; col++)
{
for (std::size_t row = 0; row < _height; row++)
{
// The current control vertex on the other patch
const PatchControl& curCtrl = sourcePatch.ctrlAt(row, col);
Vector3 normal;
// Are we extruding along vertex normals (i.e. extrudeAxis == 0,0,0)?
if (extrudeAxis == Vector3(0,0,0))
{
// The col tangents (empty if 0,0,0)
Vector3 colTangent[2] = { Vector3(0,0,0), Vector3(0,0,0) };
calculateColTangentForCtrl(sourcePatch, row, col, colTangent);
// Calculate the tangent vectors to the next row
Vector3 rowTangent[2] = { Vector3(0,0,0), Vector3(0,0,0) };
calculateRowTangentForCtrl(sourcePatch, row, col, rowTangent);
normal = calculateNormalForTangents(colTangent, rowTangent, thickness);
}
else
{
// Take the predefined extrude direction instead
normal = extrudeAxis;
}
// Store the new coordinates into this patch at the current coords
ctrlAt(row, col).vertex = curCtrl.vertex + normal*thickness;
// Clone the texture cooordinates of the source patch
ctrlAt(row, col).texcoord = curCtrl.texcoord;
}
}
// Notify the patch about the change
controlPointsChanged();
}
void Patch::createThickenedWall(const Patch& sourcePatch,
const Patch& targetPatch,
const int wallIndex)
{
// Copy the shader from the source patch
setShader(sourcePatch.getShader());
// The start and end control vertex indices
int start = 0;
int end = 0;
// The increment (incr = 1 for the "long" edge, incr = width for the "short" edge)
int incr = 1;
// These are the target dimensions of this wall
// The width is depending on which edge is "seamed".
int cols = 0;
int rows = 3;
int sourceWidth = static_cast<int>(sourcePatch.getWidth());
int sourceHeight = static_cast<int>(sourcePatch.getHeight());
bool sourceTesselationFixed = sourcePatch.subdivisionsFixed();
Subdivisions sourceTesselationX(sourcePatch.getSubdivisions().x(), 1);
Subdivisions sourceTesselationY(sourcePatch.getSubdivisions().y(), 1);
// Determine which of the four edges have to be connected
// and calculate the start, end & stepsize for the following loop
switch (wallIndex) {
case 0:
cols = sourceWidth;
start = 0;
end = sourceWidth - 1;
incr = 1;
setFixedSubdivisions(sourceTesselationFixed, sourceTesselationX);
break;
case 1:
cols = sourceWidth;
start = sourceWidth * (sourceHeight-1);
end = sourceWidth*sourceHeight - 1;
incr = 1;
setFixedSubdivisions(sourceTesselationFixed, sourceTesselationX);
break;
case 2:
cols = sourceHeight;
start = 0;
end = sourceWidth*(sourceHeight-1);
incr = sourceWidth;
setFixedSubdivisions(sourceTesselationFixed, sourceTesselationY);
break;
case 3:
cols = sourceHeight;
start = sourceWidth - 1;
end = sourceWidth*sourceHeight - 1;
incr = sourceWidth;
setFixedSubdivisions(sourceTesselationFixed, sourceTesselationY);
break;
}
setDims(cols, rows);
const PatchControlArray& sourceCtrl = sourcePatch.getControlPoints();
const PatchControlArray& targetCtrl = targetPatch.getControlPoints();
int col = 0;
// Now go through the control vertices with these calculated stepsize
for (int idx = start; idx <= end; idx += incr, col++) {
Vector3 sourceCoord = sourceCtrl[idx].vertex;
Vector3 targetCoord = targetCtrl[idx].vertex;
Vector3 middleCoord = (sourceCoord + targetCoord) / 2;
// Now assign the vertex coordinates
ctrlAt(0, col).vertex = sourceCoord;
ctrlAt(1, col).vertex = middleCoord;
ctrlAt(2, col).vertex = targetCoord;
}
if (wallIndex == 0 || wallIndex == 3) {
invertMatrix();
}
// Notify the patch about the change
controlPointsChanged();
}
void Patch::stitchTextureFrom(Patch& sourcePatch) {
// Save the undo memento
undoSave();
// Convert the size_t stuff into int, because we need it for signed comparisons
int patchHeight = static_cast<int>(_height);
int patchWidth = static_cast<int>(_width);
// Calculate the nearest corner vertex of this patch (to the sourcepatch vertices)
PatchControlIter nearestControl = getClosestPatchControlToPatch(sourcePatch);
PatchControlIter refControl = sourcePatch.getClosestPatchControlToPatch(*this);
// Get the distance in texture space
Vector2 texDiff = refControl->texcoord - nearestControl->texcoord;
// The floored values
Vector2 floored(floor(fabs(texDiff[0])), floor(fabs(texDiff[1])));
// Compute the shift applicable to all vertices
Vector2 shift;
shift[0] = (fabs(texDiff[0])>1.0E-4) ? -floored[0] * texDiff[0]/fabs(texDiff[0]) : 0.0f;
shift[1] = (fabs(texDiff[1])>1.0E-4) ? -floored[1] * texDiff[1]/fabs(texDiff[1]) : 0.0f;
// Now shift all the texture vertices in the right direction, so that this patch
// is getting as close as possible to the origin in texture space.
for (PatchControlIter i = _ctrl.begin(); i != _ctrl.end(); ++i) {
i->texcoord += shift;
}
int sourceHeight = static_cast<int>(sourcePatch.getHeight());
int sourceWidth = static_cast<int>(sourcePatch.getWidth());
// Go through all the 3D vertices and see if they are shared by the other patch
for (int col = 0; col < patchWidth; col++) {
for (int row = 0; row < patchHeight; row++) {
// The control vertex that is to be manipulated
PatchControl& self = ctrlAt(row, col);
// Check all the other patch controls for spatial coincidences
for (int srcCol = 0; srcCol < sourceWidth; srcCol++) {
for (int srcRow = 0; srcRow < sourceHeight; srcRow++) {
// Get the other control
const PatchControl& other = sourcePatch.ctrlAt(srcRow, srcCol);
auto dist = (other.vertex - self.vertex).getLength();
// Allow the coords to be a _bit_ distant
if (fabs(dist) < 0.005) {
// Assimilate the texture coordinates
self.texcoord = other.texcoord;
}
}
}
}
}
// Notify the patch about the change
controlPointsChanged();
}
void Patch::normaliseTexture()
{
selection::algorithm::TextureNormaliser::NormalisePatch(*this);
}
const Subdivisions& Patch::getSubdivisions() const
{
return _subDivisions;
}
void Patch::setFixedSubdivisions(bool isFixed, const Subdivisions& divisions)
{
undoSave();
_patchDef3 = isFixed;
_subDivisions = divisions;
if (_subDivisions.x() == 0)
{
_subDivisions.x() = 4;
}
if (_subDivisions.y() == 0)
{
_subDivisions.y() = 4;
}
SceneChangeNotify();
textureChanged();
controlPointsChanged();
}
bool Patch::subdivisionsFixed() const
{
return _patchDef3;
}
bool Patch::getIntersection(const Ray& ray, Vector3& intersection)
{
std::vector<RenderIndex>::const_iterator stripStartIndex = _mesh.indices.begin();
// Go over each quad strip and intersect the ray with its triangles
for (std::size_t strip = 0; strip < _mesh.numStrips; ++strip)
{
// Iterate over the indices. The +2 increment will lead up to the next quad
for (std::vector<RenderIndex>::const_iterator indexIter = stripStartIndex;
indexIter + 2 < stripStartIndex + _mesh.lenStrips; indexIter += 2)
{
Vector3 triangleIntersection;
// Run a selection test against the quad's triangles
{
const Vector3& p1 = _mesh.vertices[*indexIter].vertex;
const Vector3& p2 = _mesh.vertices[*(indexIter + 1)].vertex;
const Vector3& p3 = _mesh.vertices[*(indexIter + 2)].vertex;
if (ray.intersectTriangle(p1, p2, p3, triangleIntersection) == Ray::POINT)
{
intersection = triangleIntersection;
return true;
}
}
{
const Vector3& p1 = _mesh.vertices[*(indexIter + 2)].vertex;
const Vector3& p2 = _mesh.vertices[*(indexIter + 1)].vertex;
const Vector3& p3 = _mesh.vertices[*(indexIter + 3)].vertex;
if (ray.intersectTriangle(p1, p2, p3, triangleIntersection) == Ray::POINT)
{
intersection = triangleIntersection;
return true;
}
}
}
stripStartIndex += _mesh.lenStrips;
}
return false;
}
void Patch::textureChanged()
{
_node.onMaterialChanged();
for (auto i = _observers.begin(); i != _observers.end();)
{
(*i++)->onPatchTextureChanged();
}
signal_patchTextureChanged().emit();
}
void Patch::attachObserver(Observer* observer)
{
_observers.insert(observer);
}
void Patch::detachObserver(Observer* observer)
{
_observers.erase(observer);
}
sigc::signal<void>& Patch::signal_patchTextureChanged()
{
static sigc::signal<void> _sigPatchTextureChanged;
return _sigPatchTextureChanged;
}
void Patch::queueTesselationUpdate()
{
_tesselationChanged = true;
}
|