1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
|
/*
This file is part of darktable,
copyright (c) 2016 johannes hanika.
copyright (c) 2016 Ulrich Pegelow.
darktable is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
darktable is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with darktable. If not, see <http://www.gnu.org/licenses/>.
*/
#include "color_conversion.h"
#include "rgb_norms.h"
/*
Primary LUT lookup. Measures the luminance of a given pixel using a selectable function, looks up that
luminance in the configured basecurve, and then scales each channel by the result.
Doing it this way avoids the color shifts documented as being possible in the legacy basecurve approach.
Also applies a multiplier prior to lookup in order to support fusion. The idea of doing this here is to
emulate the original use case of enfuse, which was to fuse multiple JPEGs from a camera that was set up
for exposure bracketing, and which may have had a camera-specific base curve applied.
*/
kernel void
basecurve_lut(read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float mul, read_only image2d_t table, constant float *a, const int preserve_colors,
constant dt_colorspaces_iccprofile_info_cl_t *profile_info, read_only image2d_t lut,
const int use_work_profile)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
float ratio = 1.f;
const float lum = mul * dt_rgb_norm(pixel, preserve_colors, use_work_profile, profile_info, lut);
if(lum > 0.f)
{
const float curve_lum = lookup_unbounded(table, lum, a);
ratio = mul * curve_lum / lum;
}
pixel.xyz *= ratio;
pixel = fmax(pixel, 0.f);
write_imagef (out, (int2)(x, y), pixel);
}
kernel void
basecurve_zero(write_only image2d_t out, const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
write_imagef (out, (int2)(x, y), (float4)0.0f);
}
/*
Original basecurve implementation. Applies a LUT on a per-channel basis which can cause color shifts.
These can be undesirable (skin tone shifts), or sometimes may be desired (fiery sunset). Continue to allow
the "old" method but don't make it the default, both for backwards compatibility and for those who are willing
to take the risks of "artistic" impacts on their image.
*/
kernel void
basecurve_legacy_lut(read_only image2d_t in, write_only image2d_t out, const int width, const int height,
const float mul, read_only image2d_t table, constant float *a)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(x, y));
// apply ev multiplier and use lut or extrapolation:
pixel.x = lookup_unbounded(table, mul * pixel.x, a);
pixel.y = lookup_unbounded(table, mul * pixel.y, a);
pixel.z = lookup_unbounded(table, mul * pixel.z, a);
pixel = fmax(pixel, 0.f);
write_imagef (out, (int2)(x, y), pixel);
}
kernel void
basecurve_compute_features(read_only image2d_t in, write_only image2d_t out, const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 value = read_imagef(in, sampleri, (int2)(x, y));
const float ma = max(value.x, max(value.y, value.z));
const float mi = min(value.x, min(value.y, value.z));
const float sat = 0.1f + 0.1f * (ma - mi) / max(1.0e-4f, ma);
value.w = sat;
const float c = 0.54f;
float v = fabs(value.x - c);
v = max(fabs(value.y - c), v);
v = max(fabs(value.z - c), v);
const float var = 0.5f;
const float e = 0.2f + dt_fast_expf(-v * v / (var * var));
value.w *= e;
write_imagef (out, (int2)(x, y), value);
}
constant float gw[5] = { 1.0f/16.0f, 4.0f/16.0f, 6.0f/16.0f, 4.0f/16.0f, 1.0f/16.0f };
kernel void
basecurve_blur_h(read_only image2d_t in, write_only image2d_t out,
const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
const int rad = 2;
constant float *w = gw + rad;
float4 sum = (float4)0.0f;
for (int i = -rad; i <= rad; i++)
{
const int xx = min(max(-x - i, x + i), width - (x + i - width + 1));
sum += read_imagef(in, sampleri, (int2)(xx, y)) * w[i];
}
write_imagef (out, (int2)(x, y), sum);
}
kernel void
basecurve_blur_v(read_only image2d_t in, write_only image2d_t out,
const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
const int rad = 2;
constant float *w = gw + rad;
float4 sum = (float4)0.0f;
for (int i = -rad; i <= rad; i++)
{
const int yy = min(max(-y - i, y + i), height - (y + i - height + 1));
sum += read_imagef(in, sampleri, (int2)(x, yy)) * w[i];
}
write_imagef (out, (int2)(x, y), sum);
}
kernel void
basecurve_expand(read_only image2d_t in, write_only image2d_t out, const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
// fill numbers in even pixels, zero odd ones
float4 pixel = (x % 2 == 0 && y % 2 == 0) ? 4.0f * read_imagef(in, sampleri, (int2)(x / 2, y / 2)) : (float4)0.0f;
write_imagef (out, (int2)(x, y), pixel);
}
kernel void
basecurve_reduce(read_only image2d_t in, write_only image2d_t out, const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = read_imagef(in, sampleri, (int2)(2 * x, 2 * y));
write_imagef (out, (int2)(x, y), pixel);
}
kernel void
basecurve_detail(read_only image2d_t in, read_only image2d_t det, write_only image2d_t out, const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 input = read_imagef(in, sampleri, (int2)(x, y));
float4 detail = read_imagef(det, sampleri, (int2)(x, y));
write_imagef (out, (int2)(x, y), input - detail);
}
kernel void
basecurve_adjust_features(read_only image2d_t in, read_only image2d_t det, write_only image2d_t out, const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 input = read_imagef(in, sampleri, (int2)(x, y));
float4 detail = read_imagef(det, sampleri, (int2)(x, y));
input.w *= 0.1f + sqrt(detail.x * detail.x + detail.y * detail.y + detail.z * detail.z);
write_imagef (out, (int2)(x, y), input);
}
kernel void
basecurve_blend_gaussian(read_only image2d_t in, read_only image2d_t col, write_only image2d_t out, const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 comb = read_imagef(in, sampleri, (int2)(x, y));
float4 collect = read_imagef(col, sampleri, (int2)(x, y));
comb.xyz += collect.xyz * collect.w;
comb.w += collect.w;
write_imagef (out, (int2)(x, y), comb);
}
kernel void
basecurve_blend_laplacian(read_only image2d_t in, read_only image2d_t col, read_only image2d_t tmp, write_only image2d_t out,
const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 comb = read_imagef(in, sampleri, (int2)(x, y));
float4 collect = read_imagef(col, sampleri, (int2)(x, y));
float4 temp = read_imagef(tmp, sampleri, (int2)(x, y));
comb.xyz += (collect.xyz - temp.xyz) * collect.w;
comb.w += collect.w;
write_imagef (out, (int2)(x, y), comb);
}
kernel void
basecurve_normalize(read_only image2d_t in, write_only image2d_t out, const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 comb = read_imagef(in, sampleri, (int2)(x, y));
comb.xyz /= (comb.w > 1.0e-8f) ? comb.w : 1.0f;
write_imagef (out, (int2)(x, y), comb);
}
kernel void
basecurve_reconstruct(read_only image2d_t in, read_only image2d_t tmp, write_only image2d_t out, const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 comb = read_imagef(in, sampleri, (int2)(x, y));
float4 temp = read_imagef(tmp, sampleri, (int2)(x, y));
comb += temp;
write_imagef (out, (int2)(x, y), comb);
}
kernel void
basecurve_finalize(read_only image2d_t in, read_only image2d_t comb, write_only image2d_t out, const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pixel = fmax(read_imagef(comb, sampleri, (int2)(x, y)), 0.f);
pixel.w = read_imagef(in, sampleri, (int2)(x, y)).w;
write_imagef (out, (int2)(x, y), pixel);
}
|