1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
|
/*
This file is part of darktable,
copyright (c) 2009--2012 johannes hanika.
copyright (c) 2011--2013 Ulrich Pegelow
darktable is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
darktable is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with darktable. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "common.h"
static inline float4 matrix_dot(const float4 vector, const float4 matrix[3])
{
float4 output;
const float4 vector_copy = { vector.x, vector.y, vector.z, 0.f };
output.x = dot(vector_copy, matrix[0]);
output.y = dot(vector_copy, matrix[1]);
output.z = dot(vector_copy, matrix[2]);
output.w = vector.w;
return output;
}
static inline float4 matrix_product(const float4 xyz, constant const float *const matrix)
{
const float R = matrix[0] * xyz.x + matrix[1] * xyz.y + matrix[2] * xyz.z;
const float G = matrix[3] * xyz.x + matrix[4] * xyz.y + matrix[5] * xyz.z;
const float B = matrix[6] * xyz.x + matrix[7] * xyz.y + matrix[8] * xyz.z;
const float a = xyz.w;
return (float4)(R, G, B, a);
}
// same as above but with 4×float padded matrix
static inline float4 matrix_product_float4(const float4 xyz, constant const float *const matrix)
{
const float R = matrix[0] * xyz.x + matrix[1] * xyz.y + matrix[2] * xyz.z;
const float G = matrix[4] * xyz.x + matrix[5] * xyz.y + matrix[6] * xyz.z;
const float B = matrix[8] * xyz.x + matrix[9] * xyz.y + matrix[10] * xyz.z;
const float a = xyz.w;
return (float4)(R, G, B, a);
}
static inline float4 Lab_2_LCH(float4 Lab)
{
float H = atan2(Lab.z, Lab.y);
H = (H > 0.0f) ? H / (2.0f*M_PI_F) : 1.0f - fabs(H) / (2.0f*M_PI_F);
const float L = Lab.x;
const float C = sqrt(Lab.y*Lab.y + Lab.z*Lab.z);
return (float4)(L, C, H, Lab.w);
}
static inline float4 LCH_2_Lab(float4 LCH)
{
const float L = LCH.x;
const float a = cos(2.0f*M_PI_F*LCH.z) * LCH.y;
const float b = sin(2.0f*M_PI_F*LCH.z) * LCH.y;
return (float4)(L, a, b, LCH.w);
}
static inline float4 lab_f(float4 x)
{
const float4 epsilon = 216.0f / 24389.0f;
const float4 kappa = 24389.0f / 27.0f;
return (x > epsilon) ? dtcl_pow(x, (float4)(1.0f/3.0f)) : (kappa * x + (float4)16.0f) / ((float4)116.0f);
}
static inline float4 XYZ_to_Lab(float4 xyz)
{
float4 lab;
const float4 d50 = (float4)(0.9642f, 1.0f, 0.8249f, 1.0f);
xyz = lab_f(xyz / d50);
lab.x = 116.0f * xyz.y - 16.0f;
lab.y = 500.0f * (xyz.x - xyz.y);
lab.z = 200.0f * (xyz.y - xyz.z);
return lab;
}
static inline float4 lab_f_inv(float4 x)
{
const float4 epsilon = 0.206896551f;
const float4 kappa = 24389.0f / 27.0f;
return (x > epsilon) ? x*x*x : ((float4)116.0f * x - (float4)16.0f)/kappa;
}
static inline float4 Lab_to_XYZ(float4 Lab)
{
const float4 d50 = (float4)(0.9642f, 1.0f, 0.8249f, 0.0f);
float4 f;
f.y = (Lab.x + 16.0f)/116.0f;
f.x = Lab.y/500.0f + f.y;
f.z = f.y - Lab.z/200.0f;
return d50 * lab_f_inv(f);
}
static inline float4 prophotorgb_to_XYZ(float4 rgb)
{
const float rgb_to_xyz[3][3] = { // prophoto rgb
{0.7976749f, 0.1351917f, 0.0313534f},
{0.2880402f, 0.7118741f, 0.0000857f},
{0.0000000f, 0.0000000f, 0.8252100f},
};
float4 XYZ = (float4)(0.0f, 0.0f, 0.0f, 0.0f);
XYZ.x += rgb_to_xyz[0][0] * rgb.x;
XYZ.x += rgb_to_xyz[0][1] * rgb.y;
XYZ.x += rgb_to_xyz[0][2] * rgb.z;
XYZ.y += rgb_to_xyz[1][0] * rgb.x;
XYZ.y += rgb_to_xyz[1][1] * rgb.y;
XYZ.y += rgb_to_xyz[1][2] * rgb.z;
XYZ.z += rgb_to_xyz[2][0] * rgb.x;
XYZ.z += rgb_to_xyz[2][1] * rgb.y;
XYZ.z += rgb_to_xyz[2][2] * rgb.z;
return XYZ;
}
static inline float4 XYZ_to_prophotorgb(float4 XYZ)
{
const float xyz_to_rgb[3][3] = { // prophoto rgb d50
{ 1.3459433f, -0.2556075f, -0.0511118f},
{-0.5445989f, 1.5081673f, 0.0205351f},
{ 0.0000000f, 0.0000000f, 1.2118128f},
};
float4 rgb = (float4)(0.0f, 0.0f, 0.0f, 0.0f);
rgb.x += xyz_to_rgb[0][0] * XYZ.x;
rgb.x += xyz_to_rgb[0][1] * XYZ.y;
rgb.x += xyz_to_rgb[0][2] * XYZ.z;
rgb.y += xyz_to_rgb[1][0] * XYZ.x;
rgb.y += xyz_to_rgb[1][1] * XYZ.y;
rgb.y += xyz_to_rgb[1][2] * XYZ.z;
rgb.z += xyz_to_rgb[2][0] * XYZ.x;
rgb.z += xyz_to_rgb[2][1] * XYZ.y;
rgb.z += xyz_to_rgb[2][2] * XYZ.z;
return rgb;
}
static inline float4 Lab_to_prophotorgb(float4 Lab)
{
const float4 XYZ = Lab_to_XYZ(Lab);
return XYZ_to_prophotorgb(XYZ);
}
static inline float4 prophotorgb_to_Lab(float4 rgb)
{
const float4 XYZ = prophotorgb_to_XYZ(rgb);
return XYZ_to_Lab(XYZ);
}
static inline float4 RGB_2_HSL(const float4 RGB)
{
float H = 0.0f;
float S = 0.0f;
// assumes that each channel is scaled to [0; 1]
const float R = RGB.x;
const float G = RGB.y;
const float B = RGB.z;
const float var_Min = fmin(R, fmin(G, B));
const float var_Max = fmax(R, fmax(G, B));
const float del_Max = var_Max - var_Min;
const float L = (var_Max + var_Min) / 2.0f;
if(fabs(del_Max) > 1e-6f && fabs(del_Max) > 1e-6)
{
if (L < 0.5f) S = del_Max / (var_Max + var_Min);
else S = del_Max / (2.0f - var_Max - var_Min);
const float del_R = (((var_Max - R) / 6.0f) + (del_Max / 2.0f)) / del_Max;
const float del_G = (((var_Max - G) / 6.0f) + (del_Max / 2.0f)) / del_Max;
const float del_B = (((var_Max - B) / 6.0f) + (del_Max / 2.0f)) / del_Max;
if (R == var_Max) H = del_B - del_G;
else if (G == var_Max) H = (1.0f / 3.0f) + del_R - del_B;
else if (B == var_Max) H = (2.0f / 3.0f) + del_G - del_R;
if (H < 0.0f) H += 1.0f;
if (H > 1.0f) H -= 1.0f;
}
return (float4)(H, S, L, RGB.w);
}
static inline float Hue_2_RGB(float v1, float v2, float vH)
{
if (vH < 0.0f) vH += 1.0f;
if (vH > 1.0f) vH -= 1.0f;
if ((6.0f * vH) < 1.0f) return (v1 + (v2 - v1) * 6.0f * vH);
if ((2.0f * vH) < 1.0f) return (v2);
if ((3.0f * vH) < 2.0f) return (v1 + (v2 - v1) * ((2.0f / 3.0f) - vH) * 6.0f);
return (v1);
}
static inline float4 HSL_2_RGB(const float4 HSL)
{
float R, G, B;
const float H = HSL.x;
const float S = HSL.y;
const float L = HSL.z;
float var_1, var_2;
if (S < 1e-6f)
{
R = B = G = L;
}
else
{
if (L < 0.5f) var_2 = L * (1.0f + S);
else var_2 = (L + S) - (S * L);
var_1 = 2.0f * L - var_2;
R = Hue_2_RGB(var_1, var_2, H + (1.0f / 3.0f));
G = Hue_2_RGB(var_1, var_2, H);
B = Hue_2_RGB(var_1, var_2, H - (1.0f / 3.0f));
}
// returns RGB scaled to [0; 1] for each channel
return (float4)(R, G, B, HSL.w);
}
static inline float4 RGB_2_HSV(const float4 RGB)
{
float4 HSV;
const float minv = fmin(RGB.x, fmin(RGB.y, RGB.z));
const float maxv = fmax(RGB.x, fmax(RGB.y, RGB.z));
const float delta = maxv - minv;
HSV.z = maxv;
HSV.w = RGB.w;
if(fabs(maxv) > 1e-6f && fabs(delta) > 1e-6f)
{
HSV.y = delta / maxv;
}
else
{
HSV.x = 0.0f;
HSV.y = 0.0f;
return HSV;
}
if (RGB.x == maxv)
HSV.x = (RGB.y - RGB.z) / delta;
else if (RGB.y == maxv)
HSV.x = 2.0f + (RGB.z - RGB.x) / delta;
else
HSV.x = 4.0f + (RGB.x - RGB.y) / delta;
HSV.x /= 6.0f;
if(HSV.x < 0)
HSV.x += 1.0f;
return HSV;
}
static inline float4 HSV_2_RGB(const float4 HSV)
{
float4 RGB;
if (fabs(HSV.y) < 1e-6f)
{
RGB.x = RGB.y = RGB.z = HSV.z;
RGB.w = HSV.w;
return RGB;
}
const int i = floor(6.0f*HSV.x);
const float v = HSV.z;
const float w = HSV.w;
const float p = v * (1.0f - HSV.y);
const float q = v * (1.0f - HSV.y * (6.0f*HSV.x - i));
const float t = v * (1.0f - HSV.y * (1.0f - (6.0f*HSV.x - i)));
switch (i)
{
case 0:
RGB = (float4)(v, t, p, w);
break;
case 1:
RGB = (float4)(q, v, p, w);
break;
case 2:
RGB = (float4)(p, v, t, w);
break;
case 3:
RGB = (float4)(p, q, v, w);
break;
case 4:
RGB = (float4)(t, p, v, w);
break;
case 5:
default:
RGB = (float4)(v, p, q, w);
break;
}
return RGB;
}
// XYZ -> sRGB matrix, D65
static inline float4 XYZ_to_sRGB(float4 XYZ)
{
float4 sRGB;
sRGB.x = 3.1338561f * XYZ.x - 1.6168667f * XYZ.y - 0.4906146f * XYZ.z;
sRGB.y = -0.9787684f * XYZ.x + 1.9161415f * XYZ.y + 0.0334540f * XYZ.z;
sRGB.z = 0.0719453f * XYZ.x - 0.2289914f * XYZ.y + 1.4052427f * XYZ.z;
sRGB.w = XYZ.w;
return sRGB;
}
// sRGB -> XYZ matrix, D65
static inline float4 sRGB_to_XYZ(float4 sRGB)
{
float4 XYZ;
XYZ.x = 0.4360747f * sRGB.x + 0.3850649f * sRGB.y + 0.1430804f * sRGB.z;
XYZ.y = 0.2225045f * sRGB.x + 0.7168786f * sRGB.y + 0.0606169f * sRGB.z;
XYZ.z = 0.0139322f * sRGB.x + 0.0971045f * sRGB.y + 0.7141733f * sRGB.z;
XYZ.w = sRGB.w;
return XYZ;
}
static inline float4 XYZ_to_JzAzBz(float4 XYZ_D65)
{
const float4 M[3] = { { 0.41478972f, 0.579999f, 0.0146480f, 0.0f },
{ -0.2015100f, 1.120649f, 0.0531008f, 0.0f },
{ -0.0166008f, 0.264800f, 0.6684799f, 0.0f } };
const float4 A[3] = { { 0.5f, 0.5f, 0.0f, 0.0f },
{ 3.524000f, -4.066708f, 0.542708f, 0.0f },
{ 0.199076f, 1.096799f, -1.295875f, 0.0f } };
float4 temp1, temp2;
// XYZ -> X'Y'Z
temp1.x = 1.15f * XYZ_D65.x - 0.15f * XYZ_D65.z;
temp1.y = 0.66f * XYZ_D65.y + 0.34f * XYZ_D65.x;
temp1.z = XYZ_D65.z;
temp1.w = 0.f;
// X'Y'Z -> LMS
temp2.x = dot(M[0], temp1);
temp2.y = dot(M[1], temp1);
temp2.z = dot(M[2], temp1);
temp2.w = 0.f;
// LMS -> L'M'S'
temp2 = dtcl_pow(fmax(temp2 / 10000.f, 0.0f), 0.159301758f);
temp2 = dtcl_pow((0.8359375f + 18.8515625f * temp2) / (1.0f + 18.6875f * temp2), 134.034375f);
// L'M'S' -> Izazbz
temp1.x = dot(A[0], temp2);
temp1.y = dot(A[1], temp2);
temp1.z = dot(A[2], temp2);
// Iz -> Jz
temp1.x = fmax(0.44f * temp1.x / (1.0f - 0.56f * temp1.x) - 1.6295499532821566e-11f, 0.f);
return temp1;
}
static inline float4 JzAzBz_2_XYZ(const float4 JzAzBz)
{
const float b = 1.15f;
const float g = 0.66f;
const float c1 = 0.8359375f; // 3424 / 2^12
const float c2 = 18.8515625f; // 2413 / 2^7
const float c3 = 18.6875f; // 2392 / 2^7
const float n_inv = 1.0f / 0.159301758f; // 2610 / 2^14
const float p_inv = 1.0f / 134.034375f; // 1.7 x 2523 / 2^5
const float d = -0.56f;
const float d0 = 1.6295499532821566e-11f;
const float4 MI[3] = { { 1.9242264357876067f, -1.0047923125953657f, 0.0376514040306180f, 0.0f },
{ 0.3503167620949991f, 0.7264811939316552f, -0.0653844229480850f, 0.0f },
{ -0.0909828109828475f, -0.3127282905230739f, 1.5227665613052603f, 0.0f } };
const float4 AI[3] = { { 1.0f, 0.1386050432715393f, 0.0580473161561189f, 0.0f },
{ 1.0f, -0.1386050432715393f, -0.0580473161561189f, 0.0f },
{ 1.0f, -0.0960192420263190f, -0.8118918960560390f, 0.0f } };
float4 XYZ, LMS, IzAzBz;
// Jz -> Iz
IzAzBz = JzAzBz;
IzAzBz.x += d0;
IzAzBz.x = fmax(IzAzBz.x / (1.0f + d - d * IzAzBz.x), 0.f);
// IzAzBz -> L'M'S'
LMS.x = dot(AI[0], IzAzBz);
LMS.y = dot(AI[1], IzAzBz);
LMS.z = dot(AI[2], IzAzBz);
LMS.w = 0.f;
// L'M'S' -> LMS
LMS = dtcl_pow(fmax(LMS, 0.0f), p_inv);
LMS = 10000.f * dtcl_pow(fmax((c1 - LMS) / (c3 * LMS - c2), 0.0f), n_inv);
// LMS -> X'Y'Z
XYZ.x = dot(MI[0], LMS);
XYZ.y = dot(MI[1], LMS);
XYZ.z = dot(MI[2], LMS);
XYZ.w = 0.f;
// X'Y'Z -> XYZ_D65
float4 XYZ_D65;
XYZ_D65.x = (XYZ.x + (b - 1.0f) * XYZ.z) / b;
XYZ_D65.y = (XYZ.y + (g - 1.0f) * XYZ_D65.x) / g;
XYZ_D65.z = XYZ.z;
XYZ_D65.w = JzAzBz.w;
return XYZ_D65;
}
static inline float4 JzAzBz_to_JzCzhz(float4 JzAzBz)
{
const float h = atan2(JzAzBz.z, JzAzBz.y) / (2.0f * M_PI_F);
float4 JzCzhz;
JzCzhz.x = JzAzBz.x;
JzCzhz.y = dtcl_sqrt(JzAzBz.y * JzAzBz.y + JzAzBz.z * JzAzBz.z);
JzCzhz.z = (h >= 0.0f) ? h : 1.0f + h;
JzCzhz.w = JzAzBz.w;
return JzCzhz;
}
// Convert CIE 1931 2° XYZ D65 to CIE 2006 LMS D65 (cone space)
/*
* The CIE 1931 XYZ 2° observer D65 is converted to CIE 2006 LMS D65 using the approximation by
* Richard A. Kirk, Chromaticity coordinates for graphic arts based on CIE 2006 LMS
* with even spacing of Munsell colours
* https://doi.org/10.2352/issn.2169-2629.2019.27.38
*/
static inline float4 XYZ_to_LMS(const float4 XYZ)
{
const float4 XYZ_D65_to_LMS_2006_D65[3]
= { { 0.257085f, 0.859943f, -0.031061f, 0.f },
{ -0.394427f, 1.175800f, 0.106423f, 0.f },
{ 0.064856f, -0.076250f, 0.559067f, 0.f } };
return matrix_dot(XYZ, XYZ_D65_to_LMS_2006_D65);
}
static inline float4 LMS_to_XYZ(const float4 LMS)
{
const float4 LMS_2006_D65_to_XYZ_D65[3]
= { { 1.80794659f, -1.29971660f, 0.34785879f, 0.f },
{ 0.61783960f, 0.39595453f, -0.04104687f, 0.f },
{ -0.12546960f, 0.20478038f, 1.74274183f, 0.f } };
return matrix_dot(LMS, LMS_2006_D65_to_XYZ_D65);
}
/*
* Convert from CIE 2006 LMS D65 to Filmlight RGB defined in
* Richard A. Kirk, Chromaticity coordinates for graphic arts based on CIE 2006 LMS
* with even spacing of Munsell colours
* https://doi.org/10.2352/issn.2169-2629.2019.27.38
*/
static inline float4 gradingRGB_to_LMS(const float4 RGB)
{
const float4 filmlightRGB_D65_to_LMS_D65[3]
= { { 0.95f, 0.38f, 0.00f, 0.f },
{ 0.05f, 0.62f, 0.03f, 0.f },
{ 0.00f, 0.00f, 0.97f, 0.f } };
return matrix_dot(RGB, filmlightRGB_D65_to_LMS_D65);
}
static inline float4 LMS_to_gradingRGB(const float4 LMS)
{
const float4 LMS_D65_to_filmlightRGB_D65[3]
= { { 1.0877193f, -0.66666667f, 0.02061856f, 0.f },
{ -0.0877193f, 1.66666667f, -0.05154639f, 0.f },
{ 0.f, 0.f, 1.03092784f, 0.f } };
return matrix_dot(LMS, LMS_D65_to_filmlightRGB_D65);
}
/*
* Re-express the Filmlight RGB triplet as Yrg luminance/chromacity coordinates
*/
static inline float4 LMS_to_Yrg(const float4 LMS)
{
// compute luminance
const float Y = 0.68990272f * LMS.x + 0.34832189f * LMS.y;
// normalize LMS
const float a = LMS.x + LMS.y + LMS.z;
const float4 lms = (a == 0.f) ? 0.f : LMS / a;
// convert to Filmlight rgb (normalized)
const float4 rgb = LMS_to_gradingRGB(lms);
return (float4)(Y, rgb.x, rgb.y, LMS.w);
}
static inline float4 Yrg_to_LMS(const float4 Yrg)
{
const float Y = Yrg.x;
// reform rgb (normalized) from chroma
const float r = Yrg.y;
const float g = Yrg.z;
const float b = 1.f - r - g;
const float4 rgb = { r, g, b, 0.f };
// convert to lms (normalized)
const float4 lms = gradingRGB_to_LMS(rgb);
// denormalize to LMS
const float denom = (0.68990272f * lms.x + 0.34832189f * lms.y);
const float a = (denom == 0.f) ? 0.f : Y / denom;
return lms * a;
}
/*
* Re-express Filmlight Yrg in polar coordinates Ych
*
* Note that we don't explicitly store the hue angle
* but rather just the cosine and sine of the angle.
* This is because we don't need the hue angle anywhere
* and this way we can avoid calculating expensive
* trigonometric functions.
*/
static inline float4 Yrg_to_Ych(const float4 Yrg)
{
const float Y = Yrg.x;
// Subtract white point. These are the r, g coordinates of
// sRGB (D50 adapted) (1, 1, 1) taken through
// XYZ D50 -> CAT16 D50->D65 adaptation -> LMS 2006
// -> grading RGB conversion.
const float r = Yrg.y - 0.21902143f;
const float g = Yrg.z - 0.54371398f;
const float c = dt_fast_hypot(g, r);
const float cos_h = c != 0.f ? r / c : 1.f;
const float sin_h = c != 0.f ? g / c : 0.f;
return (float4)(Y, c, cos_h, sin_h);
}
static inline float4 Ych_to_Yrg(const float4 Ych)
{
const float Y = Ych.x;
const float c = Ych.y;
const float cos_h = Ych.z;
const float sin_h = Ych.w;
const float r = c * cos_h + 0.21902143f;
const float g = c * sin_h + 0.54371398f;
return (float4)(Y, r, g, 0.f);
}
static inline float4 dt_xyY_to_uvY(const float4 xyY)
{
// This is the linear part of the chromaticity transform from CIE L*u*v* e.g. u'v'.
// See https://en.wikipedia.org/wiki/CIELUV
// It rescales the chromaticity diagram xyY in a more perceptual way,
// but it is still not hue-linear and not perfectly perceptual.
// As such, it is the only radiometricly-accurate representation of hue non-linearity in human vision system.
// Use it for "hue preserving" (as much as possible) gamut mapping in scene-referred space
const float denominator = -2.f * xyY.x + 12.f * xyY.y + 3.f;
float4 uvY;
uvY.x = 4.f * xyY.x / denominator; // u'
uvY.y = 9.f * xyY.y / denominator; // v'
uvY.z = xyY.z; // Y
uvY.w = xyY.w;
return uvY;
}
static inline float4 dt_uvY_to_xyY(const float4 uvY)
{
// This is the linear part of chromaticity transform from CIE L*u*v* e.g. u'v'.
// See https://en.wikipedia.org/wiki/CIELUV
// It rescales the chromaticity diagram xyY in a more perceptual way,
// but it is still not hue-linear and not perfectly perceptual.
// As such, it is the only radiometricly-accurate representation of hue non-linearity in human vision system.
// Use it for "hue preserving" (as much as possible) gamut mapping in scene-referred space
const float denominator = 6.0f * uvY.x - 16.f * uvY.y + 12.0f;
float4 xyY;
xyY.x = 9.f * uvY.x / denominator; // x
xyY.y = 4.f * uvY.y / denominator; // y
xyY.z = uvY.z; // Y
xyY.w = uvY.w;
return xyY;
}
static inline float4 dt_D65_XYZ_to_xyY(const float4 sXYZ)
{
// see cpu implementation for details, use D65_xy as fallback
float4 XYZ = fmax(0.0f, sXYZ);
float4 xyY;
const float sum = XYZ.x + XYZ.y + XYZ.z;
if(sum > 0.0f)
{
xyY.xy = XYZ.xy / sum;
}
else
{
xyY.x = (float)0.31271;
xyY.y = (float)0.32902;
}
xyY.z = XYZ.y;
xyY.w = XYZ.w;
return xyY;
}
static inline float4 dt_xyY_to_XYZ(const float4 xyY)
{
// see cpu implementation for details
float4 XYZ = 0.0f;
if(xyY.y != 0.0f)
{
XYZ.x = xyY.z * xyY.x / xyY.y;
XYZ.y = xyY.z;
XYZ.z = xyY.z * (1.f - xyY.x - xyY.y) / xyY.y;
}
XYZ.w = xyY.w;
return XYZ;
}
// port src/common/chromatic_adaptation.h
static inline float4 convert_XYZ_to_bradford_LMS(const float4 XYZ)
{
// Warning : needs XYZ normalized with Y - you need to downscale before
const float4 XYZ_to_Bradford_LMS[3] = { { 0.8951f, 0.2664f, -0.1614f, 0.f },
{ -0.7502f, 1.7135f, 0.0367f, 0.f },
{ 0.0389f, -0.0685f, 1.0296f, 0.f } };
return matrix_dot(XYZ, XYZ_to_Bradford_LMS);
}
static inline float4 convert_bradford_LMS_to_XYZ(const float4 LMS)
{
// Warning : output XYZ normalized with Y - you need to upscale later
const float4 Bradford_LMS_to_XYZ[3] = { { 0.9870f, -0.1471f, 0.1600f, 0.f },
{ 0.4323f, 0.5184f, 0.0493f, 0.f },
{ -0.0085f, 0.0400f, 0.9685f, 0.f } };
return matrix_dot(LMS, Bradford_LMS_to_XYZ);
}
static inline float4 convert_XYZ_to_CAT16_LMS(const float4 XYZ)
{
// Warning : needs XYZ normalized with Y - you need to downscale before
const float4 XYZ_to_CAT16_LMS[3] = { { 0.401288f, 0.650173f, -0.051461f, 0.f },
{ -0.250268f, 1.204414f, 0.045854f, 0.f },
{ -0.002079f, 0.048952f, 0.953127f, 0.f } };
return matrix_dot(XYZ, XYZ_to_CAT16_LMS);
}
static inline float4 convert_CAT16_LMS_to_XYZ(const float4 LMS)
{
// Warning : output XYZ normalized with Y - you need to upscale later
const float4 CAT16_LMS_to_XYZ[3] = { { 1.862068f, -1.011255f, 0.149187f, 0.f },
{ 0.38752f , 0.621447f, -0.008974f, 0.f },
{ -0.015841f, -0.034123f, 1.049964f, 0.f } };
return matrix_dot(LMS, CAT16_LMS_to_XYZ);
}
static inline void bradford_adapt_D50(float4 *lms_in,
const float4 origin_illuminant,
const float p, const int full)
{
// Bradford chromatic adaptation from origin to target D50 illuminant in LMS space
// p = powf(origin_illuminant[2] / D50[2], 0.0834f) needs to be precomputed for performance,
// since it is independent from current pixel values
// origin illuminant need also to be precomputed to LMS
// Precomputed D50 primaries in Bradford LMS for ICC transforms
const float4 D50 = { 0.996078f, 1.020646f, 0.818155f, 0.f };
if(full)
{
float4 temp = *lms_in / origin_illuminant;
// use linear Bradford if B is negative
temp.z = (temp.z > 0.f) ? dtcl_pow(temp.z, p) : temp.z;
*lms_in = D50 * temp;
}
else
*lms_in *= D50 / origin_illuminant;
}
static inline void CAT16_adapt_D50(float4 *lms_in,
const float4 origin_illuminant,
const float D, const int full)
{
// CAT16 chromatic adaptation from origin to target D50 illuminant in LMS space
// D is the coefficient of adaptation, depending of the surround lighting
// origin illuminant need also to be precomputed to LMS
// Precomputed D50 primaries in CAT16 LMS for ICC transforms
const float4 D50 = { 0.994535f, 1.000997f, 0.833036f, 0.f };
if(full) *lms_in *= D50 / origin_illuminant;
else *lms_in *= (D * D50 / origin_illuminant + 1.f - D);
}
static inline void XYZ_adapt_D50(float4 *lms_in,
const float4 origin_illuminant)
{
// XYZ chromatic adaptation from origin to target D65 illuminant in XYZ space
// origin illuminant need also to be precomputed to XYZ
// Precomputed D50 primaries in XYZ for camera WB adjustment
const float4 D50 = { 0.9642119944211994f, 1.0f, 0.8251882845188288f, 0.f };
*lms_in *= D50 / origin_illuminant;
}
static inline float4 gamut_check_Yrg(float4 Ych)
{
// Do a test conversion to Yrg
float4 Yrg = Ych_to_Yrg(Ych);
// Gamut-clip in Yrg at constant hue and luminance
// e.g. find the max chroma value that fits in gamut at the current hue
const float D65_r = 0.21902143f;
const float D65_g = 0.54371398f;
float max_c = Ych.y;
const float cos_h = Ych.z;
const float sin_h = Ych.w;
if(Yrg.y < 0.f)
{
max_c = fmin(-D65_r / cos_h, max_c);
}
if(Yrg.z < 0.f)
{
max_c = fmin(-D65_g / sin_h, max_c);
}
if(Yrg.y + Yrg.z > 1.f)
{
max_c = fmin((1.f - D65_r - D65_g) / (cos_h + sin_h), max_c);
}
// Overwrite chroma with the sanitized value and
Ych.y = max_c;
return Ych;
}
/** The following is darktable Uniform Color Space 2022
* © Aurélien Pierre
* https://eng.aurelienpierre.com/2022/02/color-saturation-control-for-the-21th-century/
*
* Use this space for color-grading in a perceptual framework.
* The CAM terms have been removed for performance.
**/
#define DT_UCS_L_STAR_RANGE 2.098883786377f
#define DT_UCS_L_STAR_UPPER_LIMIT 2.09885f
#define DT_UCS_Y_UPPER_LIMIT 1e8f
static inline float Y_to_dt_UCS_L_star(const float Y)
{
const float Y_hat = dtcl_pow(Y, 0.631651345306265f);
return DT_UCS_L_STAR_RANGE * Y_hat / (Y_hat + 1.12426773749357f);
}
static inline float dt_UCS_L_star_to_Y(const float L_star)
{
return dtcl_pow((1.12426773749357f * L_star / (DT_UCS_L_STAR_RANGE - L_star)), 1.5831518565279648f);
}
static inline float2 xyY_to_dt_UCS_UV(const float4 xyY)
{
const float4 x_factors = { -0.783941002840055f, 0.745273540913283f, 0.318707282433486f, 0.f };
const float4 y_factors = { 0.277512987809202f, -0.205375866083878f, 2.16743692732158f, 0.f };
const float4 offsets = { 0.153836578598858f, -0.165478376301988f, 0.291320554395942f, 0.f };
float4 UVD = x_factors * xyY.x + y_factors * xyY.y + offsets;
const float div = (UVD.z >= 0.0f) ? fmax(FLT_MIN, UVD.z) : fmin(-FLT_MIN, UVD.z);
UVD.xy /= div;
const float2 factors = { 1.39656225667f, 1.4513954287f };
const float2 half_values = { 1.49217352929f, 1.52488637914f };
const float2 UV_star = { factors.x * UVD.x / (fabs(UVD.x) + half_values.x),
factors.y * UVD.y / (fabs(UVD.y) + half_values.y) };
// The following is equivalent to a 2D matrix product
return (float2)( -1.124983854323892f * UV_star.x - 0.980483721769325f * UV_star.y,
1.86323315098672f * UV_star.x + 1.971853092390862f * UV_star.y);
}
static inline float4 xyY_to_dt_UCS_JCH(const float4 xyY, const float L_white)
{
/*
input :
* xyY in normalized CIE XYZ for the 2° 1931 observer adapted for D65
* L_white the lightness of white as dt UCS L* lightness
* cz = 1 for standard pre-print proofing conditions with average surround and n = 20 %
(background = middle grey, white = perfect diffuse white)
range : xy in [0; 1], Y normalized for perfect diffuse white = 1
*/
const float2 UV_star_prime = xyY_to_dt_UCS_UV(xyY);
// Y upper limit is calculated from the L star upper limit.
const float L_star = Y_to_dt_UCS_L_star(clamp(xyY.z, 0.f, DT_UCS_Y_UPPER_LIMIT));
const float M2 = UV_star_prime.x * UV_star_prime.x + UV_star_prime.y * UV_star_prime.y; // square of colorfulness M
// should be JCH[0] = powf(L_star / L_white), cz) but we treat only the case where cz = 1
return (float4)(L_star / L_white,
15.932993652962535f * dtcl_pow(L_star, 0.6523997524738018f) * dtcl_pow(M2, 0.6007557017508491f) / L_white,
atan2(UV_star_prime.y, UV_star_prime.x),
0.0f);
}
static inline float4 dt_UCS_JCH_to_xyY(const float4 JCH, const float L_white)
{
/*
input :
* xyY in normalized CIE XYZ for the 2° 1931 observer adapted for D65
* L_white the lightness of white as dt UCS L* lightness
* cz = 1 for standard pre-print proofing conditions with average surround and n = 20 %
(background = middle grey, white = perfect diffuse white)
range : xy in [0; 1], Y normalized for perfect diffuse white = 1
*/
// should be L_star = powf(JCH[0], 1.f / cz) * L_white but we treat only the case where cz = 1
// L_star upper limit is 2.098883786377 truncated to 32-bit float and last decimal removed.
// By clipping L_star to this limit, we ensure dt_UCS_L_star_to_Y() doesn't divide by zero.
// Instead of using above theoretical values we use some modified versions
// that not avoid div-by-zero but div-by-close-to-zero
// this leads to more stability for extremely bright parts as we avoid single float precision overflows
const float L_star = clamp(JCH.x * L_white, 0.f, DT_UCS_L_STAR_UPPER_LIMIT);
const float M = L_star != 0.f
? dtcl_pow(JCH.y * L_white / (15.932993652962535f * dtcl_pow(L_star, 0.6523997524738018f)), 0.8322850678616855f)
: 0.f;
const float U_star_prime = M * dtcl_cos(JCH.z);
const float V_star_prime = M * dtcl_sin(JCH.z);
// The following is equivalent to a 2D matrix product
const float2 UV_star = { -5.037522385190711f * U_star_prime - 2.504856328185843f * V_star_prime,
4.760029407436461f * U_star_prime + 2.874012963239247f * V_star_prime };
const float2 factors = { 1.39656225667f, 1.4513954287f };
const float2 half_values = { 1.49217352929f,1.52488637914f };
const float2 UV = { -half_values.x * UV_star.x / (fabs(UV_star.x) - factors.x),
-half_values.y * UV_star.y / (fabs(UV_star.y) - factors.y) };
const float4 U_factors = { 0.167171472114775f, -0.150959086409163f, 0.940254742367256f, 0.f };
const float4 V_factors = { 0.141299802443708f, -0.155185060382272f, 1.000000000000000f, 0.f };
const float4 offsets = { -0.00801531300850582f, -0.00843312433578007f, -0.0256325967652889f, 0.f };
const float4 xyD = U_factors * UV.x + V_factors * UV.y + offsets;
const float div = (xyD.z >= 0.0f) ? fmax(FLT_MIN, xyD.z) : fmin(-FLT_MIN, xyD.z);
return (float4)( xyD.x / div, xyD.y / div, dt_UCS_L_star_to_Y(L_star), 0.0f);
}
static inline float4 dt_UCS_JCH_to_HSB(const float4 JCH)
{
float4 HSB;
HSB.z = JCH.x * (dtcl_pow(JCH.y, 1.33654221029386f) + 1.f);
HSB.y = (HSB.z > 0.f) ? JCH.y / HSB.z : 0.f;
HSB.x = JCH.z;
return HSB;
}
static inline float4 dt_UCS_HSB_to_JCH(const float4 HSB)
{
float4 JCH;
JCH.z = HSB.x;
JCH.y = HSB.y * HSB.z;
JCH.x = HSB.z / (dtcl_pow(JCH.y, 1.33654221029386f) + 1.f);
return JCH;
}
static inline float4 dt_UCS_JCH_to_HCB(const float4 JCH)
{
float4 HCB;
HCB.z = JCH.x * (dtcl_pow(JCH.y, 1.33654221029386f) + 1.f);
HCB.y = JCH.y;
HCB.x = JCH.z;
return HCB;
}
static inline float4 dt_UCS_HCB_to_JCH(const float4 HCB)
{
float4 JCH;
JCH.z = HCB.x;
JCH.y = HCB.y;
JCH.x = HCB.z / (dtcl_pow(HCB.y, 1.33654221029386f) + 1.f);
return JCH;
}
static inline float4 dt_UCS_HSB_to_XYZ(const float4 HSB, const float L_w)
{
const float4 JCH = dt_UCS_HSB_to_JCH(HSB);
const float4 xyY = dt_UCS_JCH_to_xyY(JCH, L_w);
return dt_xyY_to_XYZ(xyY);
}
static inline float4 dt_UCS_LUV_to_JCH(const float L_star, const float L_white, const float2 UV_star_prime)
{
const float M2 = UV_star_prime.x * UV_star_prime.x + UV_star_prime.y * UV_star_prime.y; // square of colorfulness M
return (float4)(L_star / L_white,
15.932993652962535f * dtcl_pow(L_star, 0.6523997524738018f) * dtcl_pow(M2, 0.6007557017508491f) / L_white,
atan2(UV_star_prime.y, UV_star_prime.x),
0.0f);
}
static inline float soft_clip(const float x, const float soft_threshold, const float hard_threshold)
{
// use an exponential soft clipping above soft_threshold
// hard threshold must be > soft threshold
const float norm = hard_threshold - soft_threshold;
return (x > soft_threshold) ? soft_threshold + (1.f - dtcl_exp(-(x - soft_threshold) / norm)) * norm : x;
}
static inline float lookup_gamut(global const float *gamut_lut, const float x)
{
// Linearly interpolate the value of the gamut LUT at the hue angle in radians.
// convert in LUT coordinate
const float x_test = (LUT_ELEM - 1) * (x + M_PI_F) / (2.f * M_PI_F);
// find the 2 closest integer coordinates (next/previous)
const float x_prev = floor(x_test);
const float x_next = ceil(x_test);
// get the 2 closest LUT elements at integer coordinates
// cycle on the hue ring if out of bounds
const int xi = ((int)x_prev) & (LUT_ELEM - 1);
const int xii = ((int)x_next) & (LUT_ELEM - 1);
// fetch the corresponding y values
const float y_prev = gamut_lut[xi];
// return y_prev if we are on the same integer LUT element or do linear interpolation
return y_prev + ((xi != xii) ? (x_test - x_prev) * (gamut_lut[xii] - y_prev) : 0.0f);
}
|