1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335
|
/*
This file is part of darktable,
copyright (c) 2021 darktable developers.
darktable is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
darktable is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with darktable. If not, see <http://www.gnu.org/licenses/>.
*/
#include "common.h"
#include "noise_generator.h"
// Normalization scaling of the wavelet to approximate a laplacian
// from the function above for sigma = B_SPLINE_SIGMA as a constant
#define B_SPLINE_TO_LAPLACIAN 3.182727439285017f
#define B_SPLINE_TO_LAPLACIAN_2 10.129753952777762f // square
typedef enum dt_isotropy_t
{
DT_ISOTROPY_ISOTROPE = 0, // diffuse in all directions with same intensity
DT_ISOTROPY_ISOPHOTE = 1, // diffuse more in the isophote direction (orthogonal to gradient)
DT_ISOTROPY_GRADIENT = 2 // diffuse more in the gradient direction
} dt_isotropy_t;
// Discretization parameters for the Partial Derivative Equation solver
#define H_STEP 1 // spatial step
#define KAPPA 0.25f // 0.25 if h = 1, 1 if h = 2
inline void find_gradient(const float4 pixels[9], float4 xy[2])
{
// Compute the gradient with centered finite differences in a 3×3 stencil
// warning : x is vertical, y is horizontal
xy[0] = (pixels[7] - pixels[1]) / 2.f;
xy[1] = (pixels[5] - pixels[3]) / 2.f;
}
inline void find_laplacian(const float4 pixels[9], float4 xy[2])
{
// Compute the laplacian with centered finite differences in a 3×3 stencil
// warning : x is vertical, y is horizontal
xy[0] = (pixels[7] + pixels[1]) - 2.f * pixels[4];
xy[1] = (pixels[5] + pixels[3]) - 2.f * pixels[4];
}
inline float4 sqf(const float4 in)
{
return in * in;
}
inline void rotation_matrix_isophote(const float4 c2,
const float4 cos_theta_sin_theta,
const float4 cos_theta2, const float4 sin_theta2,
float4 a[2][2])
{
// Write the coefficients of a square symmetrical matrice of rotation of the gradient :
// [[ a11, a12 ],
// [ a12, a22 ]]
// taken from https://www.researchgate.net/publication/220663968
// c dampens the gradient direction
a[0][0] = cos_theta2 + c2 * sin_theta2;
a[1][1] = c2 * cos_theta2 + sin_theta2;
a[0][1] = a[1][0] = (c2 - 1.0f) * cos_theta_sin_theta;
}
inline void rotation_matrix_gradient(const float4 c2,
const float4 cos_theta_sin_theta,
const float4 cos_theta2, const float4 sin_theta2,
float4 a[2][2])
{
// Write the coefficients of a square symmetrical matrice of rotation of the gradient :
// [[ a11, a12 ],
// [ a12, a22 ]]
// based on https://www.researchgate.net/publication/220663968 and inverted
// c dampens the isophote direction
a[0][0] = c2 * cos_theta2 + sin_theta2;
a[1][1] = cos_theta2 + c2 * sin_theta2;
a[0][1] = a[1][0] = (1.0f - c2) * cos_theta_sin_theta;
}
inline void build_matrix(const float4 a[2][2], float4 kern[9])
{
const float4 b11 = a[0][1] / 2.0f;
const float4 b13 = -b11;
const float4 b22 = -2.0f * (a[0][0] + a[1][1]);
// build the kernel of rotated anisotropic laplacian
// from https://www.researchgate.net/publication/220663968 :
// [ [ a12 / 2, a22, -a12 / 2 ],
// [ a11, -2 (a11 + a22), a11 ],
// [ -a12 / 2, a22, a12 / 2 ] ]
// N.B. we have flipped the signs of the a12 terms
// compared to the paper. There's probably a mismatch
// of coordinate convention between the paper and the
// original derivation of this convolution mask
// (Witkin 1991, https://doi.org/10.1145/127719.122750).
kern[0] = b11;
kern[1] = a[1][1];
kern[2] = b13;
kern[3] = a[0][0];
kern[4] = b22;
kern[5] = a[0][0];
kern[6] = b13;
kern[7] = a[1][1];
kern[8] = b11;
}
inline void isotrope_laplacian(float4 kern[9])
{
// see in https://eng.aurelienpierre.com/2021/03/rotation-invariant-laplacian-for-2d-grids/#Second-order-isotropic-finite-differences
// for references (Oono & Puri)
kern[0] = 0.25f;
kern[1] = 0.5f;
kern[2] = 0.25f;
kern[3] = 0.5f;
kern[4] = -3.f;
kern[5] = 0.5f;
kern[6] = 0.25f;
kern[7] = 0.5f;
kern[8] = 0.25f;
}
inline void compute_kern(const float4 c2,
const float4 cos_theta_sin_theta,
const float4 cos_theta2, const float4 sin_theta2,
const dt_isotropy_t isotropy_type,
float4 kern[9])
{
// Build the matrix of rotation with anisotropy
switch(isotropy_type)
{
case(DT_ISOTROPY_ISOTROPE):
default:
{
isotrope_laplacian(kern);
break;
}
case(DT_ISOTROPY_ISOPHOTE):
{
float4 a[2][2] = { { (float4)0.f } };
rotation_matrix_isophote(c2, cos_theta_sin_theta, cos_theta2, sin_theta2, a);
build_matrix(a, kern);
break;
}
case(DT_ISOTROPY_GRADIENT):
{
float4 a[2][2] = { { (float4)0.f } };
rotation_matrix_gradient(c2, cos_theta_sin_theta, cos_theta2, sin_theta2, a);
build_matrix(a, kern);
break;
}
}
}
kernel void
diffuse_pde(read_only image2d_t HF, read_only image2d_t LF,
read_only image2d_t mask, const int has_mask,
write_only image2d_t output,
const int width, const int height,
const float4 anisotropy, const int4 isotropy_type,
const float regularization, const float variance_threshold,
const float current_radius_square, const int mult,
const float4 ABCD, const float strength)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
const char opacity = (has_mask) ? read_imageui(mask, sampleri, (int2)(x, y)).x : 1;
const float4 regularization_factor = regularization * current_radius_square / 9.f;
float4 out;
if(opacity)
{
// non-local neighbours coordinates
const int j_neighbours[3] = {
clamp((x - mult * H_STEP), 0, width - 1),
x,
clamp((x + mult * H_STEP), 0, width - 1) };
const int i_neighbours[3] = {
clamp((y - mult * H_STEP), 0, height - 1),
y,
clamp((y + mult * H_STEP), 0, height - 1) };
// fetch non-local pixels and store them locally and contiguously
float4 neighbour_pixel_HF[9];
float4 neighbour_pixel_LF[9];
for(int ii = 0; ii < 3; ii++)
for(int jj = 0; jj < 3; jj++)
{
neighbour_pixel_HF[3 * ii + jj] = read_imagef(HF, samplerA, (int2)(j_neighbours[ii], i_neighbours[jj]));
neighbour_pixel_LF[3 * ii + jj] = read_imagef(LF, samplerA, (int2)(j_neighbours[ii], i_neighbours[jj]));
}
// build the local anisotropic convolution filters for gradients and laplacians
float4 gradient[2], laplacian[2];
find_gradient(neighbour_pixel_LF, gradient);
find_gradient(neighbour_pixel_HF, laplacian);
const float4 magnitude_grad = dtcl_sqrt(sqf(gradient[0]) + sqf(gradient[1]));
// Compute cos(arg(grad)) = dx / hypot - force arg(grad) = 0 if hypot == 0
gradient[0] = (magnitude_grad != 0.f) ? gradient[0] / magnitude_grad
: 1.f; // cos(0)
// Compute sin (arg(grad))= dy / hypot - force arg(grad) = 0 if hypot == 0
gradient[1] = (magnitude_grad != 0.f) ? gradient[1] / magnitude_grad
: 0.f; // sin(0)
// Warning : now gradient[2] = { cos(arg(grad)) , sin(arg(grad)) }
const float4 magnitude_lapl = dtcl_sqrt(sqf(laplacian[0]) + sqf(laplacian[1]));
// Compute cos(arg(lapl)) = dx / hypot - force arg(lapl) = 0 if hypot == 0
laplacian[0] = (magnitude_lapl != 0.f) ? laplacian[0] / magnitude_lapl
: 1.f; // cos(0)
// Compute sin (arg(lapl))= dy / hypot - force arg(lapl) = 0 if hypot == 0
laplacian[1] = (magnitude_lapl != 0.f) ? laplacian[1] / magnitude_lapl
: 0.f; // sin(0)
// Warning : now laplacian[2] = { cos(arg(lapl)) , sin(arg(lapl)) }
const float4 cos_theta_grad_sq = sqf(gradient[0]);
const float4 sin_theta_grad_sq = sqf(gradient[1]);
const float4 cos_theta_sin_theta_grad = gradient[0] * gradient[1];
const float4 cos_theta_lapl_sq = sqf(laplacian[0]);
const float4 sin_theta_lapl_sq = sqf(laplacian[1]);
const float4 cos_theta_sin_theta_lapl = laplacian[0] * laplacian[1];
// c² in https://www.researchgate.net/publication/220663968
// warning : in c2[s], s is the order of the derivative
const float4 c2[4] = { native_exp(-magnitude_grad * anisotropy.x),
native_exp(-magnitude_lapl * anisotropy.y),
native_exp(-magnitude_grad * anisotropy.z),
native_exp(-magnitude_lapl * anisotropy.w) };
float4 kern_first[9], kern_second[9], kern_third[9], kern_fourth[9];
compute_kern(c2[0], cos_theta_sin_theta_grad, cos_theta_grad_sq, sin_theta_grad_sq, isotropy_type.x, kern_first);
compute_kern(c2[1], cos_theta_sin_theta_lapl, cos_theta_lapl_sq, sin_theta_lapl_sq, isotropy_type.y, kern_second);
compute_kern(c2[2], cos_theta_sin_theta_grad, cos_theta_grad_sq, sin_theta_grad_sq, isotropy_type.z, kern_third);
compute_kern(c2[3], cos_theta_sin_theta_lapl, cos_theta_lapl_sq, sin_theta_lapl_sq, isotropy_type.w, kern_fourth);
// convolve filters and compute the variance and the regularization term
float4 derivatives[4] = { (float4)0.f };
float4 variance = (float4)0.f;
#pragma unroll
for(int k = 0; k < 9; k++)
{
derivatives[0] += kern_first[k] * neighbour_pixel_LF[k];
derivatives[1] += kern_second[k] * neighbour_pixel_LF[k];
derivatives[2] += kern_third[k] * neighbour_pixel_HF[k];
derivatives[3] += kern_fourth[k] * neighbour_pixel_HF[k];
variance += sqf(neighbour_pixel_HF[k]);
}
// Regularize the variance taking into account the blurring scale.
// This allows to keep the scene-referred variance roughly constant
// regardless of the wavelet scale where we compute it.
// Prevents large scale halos when deblurring.
variance = variance_threshold + variance * regularization_factor;
// compute the update
float4 acc = (float4)0.f;
for(int k = 0; k < 4; k++) acc += derivatives[k] * ((float *)&ABCD)[k];
float4 hf = read_imagef(HF, samplerA, (int2)(x, y));
acc = (hf * strength + acc / variance);
// update the solution
float4 lf = read_imagef(LF, samplerA, (int2)(x, y));
out = fmax(acc + lf, 0.f);
}
else
{
float4 hf = read_imagef(HF, samplerA, (int2)(x, y));
float4 lf = read_imagef(LF, samplerA, (int2)(x, y));
out = hf + lf;
}
write_imagef(output, (int2)(x, y), out);
}
kernel void
build_mask(read_only image2d_t in, write_only image2d_t mask,
const float threshold, const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pix_in = read_imagef(in, samplerA, (int2)(x, y));
float m = (pix_in.x > threshold || pix_in.y > threshold || pix_in.z > threshold);
write_imageui(mask, (int2)(x, y), m);
}
kernel void
inpaint_mask(write_only image2d_t inpainted, read_only image2d_t original,
read_only image2d_t mask, const int width, const int height)
{
const int x = get_global_id(0);
const int y = get_global_id(1);
if(x >= width || y >= height) return;
float4 pix_in = read_imagef(original, samplerA, (int2)(x, y));
char m = read_imageui(mask, samplerA, (int2)(x, y)).x;
float4 pix_out = pix_in;
if(m)
{
unsigned int state[4] = { splitmix32(x + 1), splitmix32((x + 1) * (y + 3)), splitmix32(1337), splitmix32(666) };
xoshiro128plus(state);
xoshiro128plus(state);
xoshiro128plus(state);
xoshiro128plus(state);
pix_out = fabs(gaussian_noise_simd(pix_in, pix_in, state));
}
write_imagef(inpainted, (int2)(x, y), pix_out);
}
|